
Abstract

A multiobjective approach for optimization of passive damping for vibration reduction

in sandwich structures is presented in this paper. A layerwise finite element model for

sandwich plates with viscoelastic core and anisotropic laminated face layers is used

along with the complex modulus approach and the dynamic problem is solved in the

frequency domain. Constrained optimization is conducted for maximisation of modal

loss factors and minimisation of weight of sandwich beams and plates with elastic

laminated constraining layers and a viscoelastic core, with layer thickness and lami-

nate layer ply orientation angles as design variables. The problem is solved using the

Direct MultiSearch (DMS) solver for derivative-free multiobjective optimization and

solutions are compared with alternative ones obtained using genetic algorithms. DMS

is a solver for multiobjective optimization problems which does not use any derivatives

of the objective functions. It is based on a novel technique called direct multisearch,

developed by extending direct search from single to multiobjective optimisation.

Keywords: multiobjective optimisation, direct multisearch, sandwich structures, damp-

ing.

1 Introduction

Structural damping can be defined as the process by which a structure or structural

component dissipates mechanical energy or transfers it to connected structures or am-

bient media. These mechanisms have the effect of controlling the amplitude of res-

onant vibrations and modifying wave attenuation and sound transmission properties,

increasing structural life through reduction in structural fatigue.

Passive damping treatments are widely used in engineering applications in order

to reduce vibration and noise radiation [1, 2]. Passive layer damping, usually imple-
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mented as constrained layer damping, is the most common form of damping treatment,

where the damping layer deforms in shear mode, thus dissipating energy in a more ef-

ficient way.

The theoretical work on constrained layer damping can be traced to [3] and [4] for

the axial and bending vibration of sandwich beams. Since then, different formulations

and techniques have been reported for modeling and predicting the energy dissipa-

tion of the viscoelastic core layer in a vibrating passive constrained layer damping

structure [5, 6, 7]. Other proposed formulations include thickness deformation of the

core layer dealing with the cases where only a portion of the base structure receives

treatment [8].

Optimal design of constrained layer damping treatments of vibrating structures has

been a main subject of research, aiming at the maximisation of modal damping ra-

tios and modal strain energies, by determining the optimal material and geometric

parameters of the treatments, or minimising weight by selecting their optimal length

and location. For example, [9] optimized performance of constrained layer damping

treatments by selecting the optimal thickness and shear modulus of the viscoelastic

layer, and [10, 11] used a genetic algorithm and beam finite elements to maximise

the damping factor for partially treated beams, using as design variables the dimen-

sions and locations of the patches. As verified by [12], this layout optimization can

lead to significant saving in the amount of material used. For fully covered sandwich

beams, [13] determined the optimal passive constrained layer damping, with layer

thicknesses as design variables. The vibration damping of fully covered constrained

layer damping structures is determined by a large number of parameters which include

material properties and thicknesses of both the constraining layers and the viscoelas-

tic layer. Damping optimisation of sandwich plates and beams with viscoelastic core

material and composite laminated face layers has been conducted recently by Araújo

et al [14, 15], where the design variables are layer thicknesses and fibre orientation.

In these works, modal loss factors are maximised subject to displacement, failure and

mass constraints. A multiobjective approach is also considered [14] for minimising

weight and maximising the fundamental modal loss factor of the sandwich. More

recently, damping optimisation was considered in the framework of both active and

passive damping [16].

A constrained nonlinear multiobjective optimization problem can be mathemati-

cally formulated as

min F (x) ≡ (f1(x), f2(x), . . . , fm(x))⊤

s. t. x ∈ Ω
(1)

involving m objective functions fj : Ω ⊆ R
n → R ∪ {+∞}, j = 1, . . . ,m to min-

imize. Recall that to maximise fj is equivalent to minimise −fj . ∅ 6= Ω ⊆ R
n

represents the feasible region.

In the presence of m (≥ 2) objective functions, the minimiser of one function are

not necessarily the minimiser of another. In this case, we don’t have a single point

2



that yields the ”optimum point for all objectives”. Instead, we have a set of points,

called Pareto optimal or nondominated set. Given two points x1, x2 in Ω, x1 is said to

dominate, in Pareto sense, another point x2 if and only if solution x1 is strictly better

than x2 in at least one of the objectives and point x1 is not worse than x2 in any of the

objectives. A set of points in Ω is nondominated when no point in the set is dominated

by another one in the set.

Direct MultiSearch (DMS) [17] is a solver for multiobjective optimization prob-

lems, without the use of derivatives and does not aggregate any components of the

objective function. It essentially generalizes all direct-search methods of directional

type from single to multiobjective optimization. DMS maintains a list of feasible non-

dominated points. At each iteration, the new feasible evaluated points are added to

this list and the dominated ones are removed. Successful iterations correspond then

to an iterate list changes, meaning that a new feasible nondominated point was found.

Otherwise, the iteration is declared as unsuccessful.

In this work, an application of the Direct MultiSearch (DMS) [17] solver for deriva-

tive-free multiobjective optimisation is made to the problems addressed in Araújo et

al. [14] for maximisation of modal loss factors and minimisation of weight of sand-

wich plates with elastic laminated constraining layers and a viscoelastic core. The

obtained Pareto front solutions are compared with the ones presented in the literature.

The paper is organised as follows. In section 2 the finite element model for com-

posite laminated sandwich plates with viscoelastic core is presented. In section 3 the

different objective functions are shown along with the design constraints. Section 4

presents two applications, one for a sandwich beam and another one for a sandwich

plate. We finish the article with some conclusions and remarks on the obtained solu-

tions and the methodology used.

2 Sandwich finite element model

We will use a layerwise finite element model [18] to analyze sandwich laminated

plates with a viscoelastic (v) core and laminated anisotropic face layers (e1, e2), and

top and bottom piezoelectric sensor (s) and actuator (a) layers, as shown in Figure 1.

Although sensor and actuator layers are included in the formulation presented here,

the piezoelectric effect will not be considered in this work, as it deals only with passive

damping. Hence, these sensor and actuator layers will have a purely elastic behaviour.

The basic assumptions in the development of the sandwich plate model are: all

points on a normal to the plate have the same transverse displacement w(x, y, t), where

t denotes time, and the origin of the z axis is the medium plane of the core layer; no

slip occurs at the interfaces between layers; the displacement is C0 along the inter-

faces; elastic layers (a, e2, e1, s) are each modelled with first order shear deformation

theory (FSDT) and viscoelastic core (v) with a higher order shear deformation theory

(HSDT); all materials are linear, homogeneous and orthotropic and the elastic layers

(e1) and (e2) are made of laminated composite materials; for the viscoelastic core,
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Figure 1: Sandwich plate.

material properties are complex and frequency dependent.

The FSDT displacement field of the face layers may be written in the general form:

ui(x, y, z, t) = ui
0
(x, y, t) + (z − zi)θ

i
x

vi(x, y, z, t) = vi
0
(x, y, t) + (z − zi)θ

i
y

wi(x, y, z, t) = w0(x, y, t)

(2)

where ui
0

and vi
0

are the in-plane displacements of the mid-plane of the layer, θi
x and

θi
y are rotations of normals to the mid-plane about the y axis (anticlockwise) and x

axis (clockwise), respectively, w0 is the transverse displacement of the layer (same for

all layers in the sandwich), zi is the z coordinate of the mid-plane of each layer, with

reference to the core layer mid-plane (z = 0), and i = a, e2, e1, s is the layer index.

For the viscoelastic core layer, the HSDT displacement field is written as a second

order Taylor series expansion of the in-plane displacements in the thickness coordi-

nate, with constant transverse displacement:

uv(x, y, z, t) = uv
0
(x, y, t) + zθv

x + z2u∗

0

v + z3θ∗x
v

vv(x, y, z, t) = vv
0
(x, y, t) + zθv

y + z2v∗

0

v + z3θ∗y
v

wv(x, y, z, t) = w0(x, y, t)

(3)

where uv
0

and vv
0

are the in-plane displacements of the mid-plane of the core, θv
x and θv

y

are rotations of normals to the mid-plane of the core about the y axis (anticlockwise)

and x axis (clockwise), respectively, w0 is the transverse displacement of the core

(same for all layers in the sandwich). The functions u∗

0

v, v∗

0

v, θ∗x
v and θ∗y

v are higher

order terms in the series expansion, defined also in the mid-plane of the core layer.

Imposing displacement continuity conditions at the layer interfaces and retaining

the rotational degrees of freedom of the elastic layers, while eliminating the corre-

sponding in-plane displacement ones, the generalized displacement field has 17 un-

knowns:
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θa
x θa

y θe2

x θe2

y uv
0

vv
0

w0 θv
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We consider that fiber-reinforced laminae in elastic multi-layers (e1) and (e2), sen-

sor (s) and actuator (a) layers, and viscoelastic core (v) are characterized as or-

thotropic. Constitutive equations for each lamina in the sandwich may then be ex-

pressed in the principal material directions (x1, x2, x3 = z), and for the zero transverse

normal stress situation, as [19]:
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(4)

where σij are stress components, εij and γij are strain components, and Qij are re-

duced stiffness coefficients. Expressions for the reduced quantities mentioned above

can be found in [19]. For the viscoelastic core layer, the reduced stiffness coeffi-

cients Qij are complex quantities, since the complex modulus approach was used in

this work, using the elastic-viscoelastic principle. In this case, the usual engineering

moduli may be represented by complex quantities:

E1(iω) = E ′

1
(ω)(1 + iηE1

(ω))

E2(iω) = E ′

2
(ω)(1 + iηE2

(ω))

G12(iω) = G′

12
(ω)(1 + iηG12

(ω))

G23(iω) = G′

23
(ω)(1 + iηG23

(ω))

G13(iω) = G′

13
(ω)(1 + iηG13

(ω))

ν12(iω) = ν ′

12
(ω)(1 − iην12

(ω))

(5)

where the prime quantities denote storage moduli, associated material loss factors are

represented by the letter η, ω represents frequency of vibration and i =
√
−1 is the

imaginary unit. Furthermore, in Equation (5), E, G and ν denote Young’s moduli,

shear moduli and Poisson’s ratio, respectively.

The definition of constitutive relations of a laminate is usually made in terms of

stress resultants. These forces and moments are defined separately for the viscoelastic

core and the elastic layers [20].

The equations of motion for the plate are obtained by applying Hamilton’s prin-

ciple, using an eight node serendipity plate element with 17 degrees of freedom per

node:

Mü + Ku = f (6)
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where u and ü are generalised displacement degrees of freedom and corresponding

accelerations, respectively, M and K are the mass and stiffness matrices, respectively,

and f is the externally applied load vector. One should note that the viscoelastic be-

haviour of the core translates into a complex and frequency dependent stiffness matrix

K.

Assuming harmonic vibrations, the forced vibration problem is solved in the fre-

quency domain, which implies the solution of the following linear system of equations

for each frequency point:

[

K(ω) − ω2
M

]

u(ω) = F(ω) (7)

where F(ω) = F (f(t)) is the Fourier transform of the time domain force history f(t).

For the free vibration problem, Equation (7) reduces to the following non-linear

complex eigenvalue problem:

[K(ω) − λ∗

nM]un = 0 (8)

where, the complex eigenvalue λ∗

n is written as:

λ∗

n = λn (1 + iηn) (9)

and λn = ω2

n is the real part of the complex eigenvalue and ηn is the corresponding

modal loss factor.

The non-linear eigenvalue problem is solved iteratively using ARPACK [21] with

a shift-invert transformation. The iterative process is considered to have converged

when:

‖ωi − ωi−1‖
ωi−1

≤ ǫ (10)

where ωi and ωi−1 are current and previous iteration values for the real part of the

particular eigenfrequency of interest, respectively, and ǫ is the convergence tolerance.

3 Optimal design formulation

The objective of this study is to maximise damping in sandwich plate structures while

simultaneously minimising weight, which are conflicting objectives. If the structure

is subjected to a given load or load set, design constraints such as maximum displace-

ment, stress failure criteria, as well as physical constraints on design variables and

objective function should be imposed.

For damping maximisation with passive treatments in sandwich type structures,

the overall goal will be to maximise the fundamental modal loss factor η1, while at the

same time minimising the weight or mass m of the structure:
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min
x

F (x) = (f1(x), f2(x))T

s.t. g1 : −η1 ≤ 0

g2 :
w

wmax

− 1 ≤ 0

g3 : FTH − 1 ≤ 0

xl
i ≤ xi ≤ xu

i , i = 1, . . . , n

(11)

where f1 = 1/η1, f2 = M (mass), w and wmax are the maximum displacement of

the structure and the maximum allowable value of the displacement, respectively, and

FTH is the Tsai-Hill failure criteria parameter for the elastic composite material layers,

defined as:

FTH =
(σ11

X

)2

+
(σ22

Y

)2

+
(σ33

Z

)2

−
(

1

X2
+

1

Y 2
− 1

Z2

)

σ11σ22

−
(

1

Y 2
+

1

Z2
− 1

X2

)

σ22σ33

−
(

1

Z2
+

1

X2
− 1

Y 2

)

σ11σ33

+
(σ23

R

)2

+
(σ13

S

)2

+
(σ12

T

)2

< 1

(12)

where the stress components σij are calculated for each elastic layer ply and refer to

the principal material directions of the ply, X , Y and Z are lamina failure stresses in

the associated principal directions, which must respect the sign of the stresses, and

one must consider different values in traction and compression. R, S and T are failure

stresses in shear for the associated planes in Equation (12).

Assuming a uniform sandwich plate structure made of a given set of materials,

with fixed in-plane dimensions, the natural choice for the design variables xi in Equa-

tion (11) are the thicknesses of the constituent layers and the orientation angles of the

laminated elastic composite material plies. In Equation (11), xl
i and xu

i are the lower

and upper bounds on the design variables.

Calculation of the objective function is done by solving the eigenvalue problem of

Equation (8) iteratively, for a frequency dependent complex stiffness matrix and real

mass matrix.

Calculation of response quantities such as displacements and stresses are done af-

ter the eigenvalue problem has been solved. This problem is solved in the frequency

domain, by first making a forward Fourier transform of the applied load time history,

and then solving Equation (7) in order to the displacement vector, for the resonant
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frequency of interest. Afterwards, stresses in each elastic material layer ply are calcu-

lated and the Tsai-Hill factor FTH in Equation (12) is evaluated. The constraints g1,

g2 and g3 shown in Equation (11) are imposed by penalising the objective functions

in case of constraint violation. The side constraints are applied directly in the DMS

formulation.

4 Applications

For the applications described in this section, the elastic material properties for the

composite material layers are: E1 = 98.0 GPa, E2 = 7.9 GPa, ν12 = 0.28, ρ =
1520 kg/m3, and for the isotropic viscoelastic core: G = 20(1 + 0.3i) MPa, ν = 0.49,

ρ = 1140 kg/m3. As for the top and bottom isotropic layers, the elastic material

properties are: E = 2.0 GPa, ν = 0.29 and ρ = 1800 kg/m3.

The default parameters of DMS were used (version 0.2, May 2011) without cache.

4.1 Passive design of a simply supported sandwich beam

A simply supported sandwich beam of length L = 1 m and width b = 0.005 m,

with symmetric layout of layers is considered. The top and bottom isotropic elastic

layers have a thickness of ha = hs = 0.1 mm, the composite layers will have equal

thickness he1
= he2

, considered as a design variable. As for the viscoelastic core, its

thickness hv will also be a design variable. Thickness design variables are allowed to

vary between 0.5 mm and 10 mm. The orientation angles of the composite layers are

considered to be constant at 0◦ w.r.t. the longitudinal axis.

The fundamental flexural modal loss factor of the beam will be maximised, while

minimising total mass with a maximum allowable displacement wmax = h/5, where

h = ha +he1
+hv +he2

+hs is the total thickness of the beam. The failure stresses in

the Tsai-Hill expression were considered to be, for the elastic layers, X = 820 MPa,

Y = Z = 45 MPa, both in tension and compression, and R = S = T = 45 MPa. The

excitation consisted of a 1 N force applied at the mid-point of the beam at t = 0.

For the layerwise model, a 6× 1 finite element model was used, with a total of 543

degrees of freedom.

The nondominated solutions for each algorithm are presented in Figure 2.

In Figure 2 the few solutions named GA were obtained by genetic algorithms

in [14] and are compared with those obtained by DMS. We can observe that on the

left portion of the Pareto front in Figure 2, both approaches give similar results while

for the remaining part of the curve, DMS provides substantially better solutions.
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Figure 2: Pareto front for the simply supported sandwich beam. Mass (f2) in gram.

4.2 Passive design of a simply supported sandwich plate

A simply supported sandwich plate of in-plane dimensions 300 mm × 200 mm with

symmetric layout of layers is considered. The top and bottom elastic and isotropic

layers have a thickness ha = hs = 0.1 mm. The composite elastic layers are made of

3 plies each with equal thickness, which are design variables. As for the viscoelastic

core, its thickness hv will also be a design variable. The thickness design variables can

take values from 0.5 mm to 10 mm. The orientation angles of the composite elastic

layers are considered also to be design variables, assuming values between 0◦ and

175◦.

The fundamental flexural modal loss factor of the beam will be maximised, along

with the minimisation of weight with a maximum allowable displacement wmax =
h/5, where h = ha +he1

+hv +he2
+hs is the total thickness of the plate. The failure

stresses in Equation (12) are, for the elastic layers, X = 820 MPa, Y = Z = 45 MPa,

both in tension and compression, and R = S = T = 45 MPa. The excitation consisted

of a 10 N force applied at the mid-point of the plate at t = 0.

For the layerwise model, a 6× 4 finite element mesh was used, with a total of 1505

degrees of freedom.

The nondominated solutions for each algorithm are presented in Figure 3.

In Figure 3 the few solutions named GA were obtained by genetic algorithms

in [14] and are compared with those obtained by DMS. We can observe that on the left

and right portions of the Pareto front in Figure 3, both approaches give similar results

while for the intermediate part of the curve, DMS provides slightly better solutions.

When comparing the current Pareto front obtained by DMS with the one reported by

Araújo at al. [14] we can conclude that DMS provides more and better solutions for

9



4 5 6 7 8 9 10 11 12 13 14 15
300

400

500

600

700

800

900

1000

1100

1200

f1

f2

Pareto Front − Simply supported sandwich plate

 

 

DMS

GA

Figure 3: Pareto front for the simply supported sandwich plate. Mass (f2) in gram.

most cases.

5 Conclusions

In this paper we apply for the first time direct multisearch for the solution of a prob-

lem of passive damping optimization in viscoelastic sandwich composite structures.

The solutions obtained herein were compared with previous solutions available in the

literature and obtained by a genetic algorithm approach. We conclude that the present

method provides more reliable solutions for the problem of maximising damping and

simultaneously minimising weight.
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