
Abstract

In this paper a new finite element model for the analysis of sandwich laminated plates

with a soft core and composite laminated face layers is presented. The model is for-

mulated using a mixed layerwise approach, by considering a higher order shear de-

formation theory (HSDT) to represent the displacement field of the compressible core

and a first order shear deformation theory (FSDT) for the displacement field of the

adjacent laminated face layers. The model is validated for free vibrations with results

from the literature and the effect of the core transverse compressibility is assessed on

modal damping.

Keywords: sandwich structures, composite laminates, finite element modelling, core

compressibility.

1 Introduction

Passive damping treatments are widely used in engineering applications in order to

reduce vibration and noise radiation [1, 2]. The theoretical work on constrained layer

damping can be traced to DiTaranto [3] and Mead and Markus [4] for the axial and

bending vibration of sandwich beams. Since then, different formulations and tech-

niques have been reported for modelling and predicting the energy dissipation of

the viscoelastic core layer in a vibrating passive constrained layer damping struc-

ture [5, 6, 7]. Other proposed formulations include thickness deformation of the core

layer dealing with the cases where only a portion of the base structure receives treat-

ment [8].

Sandwich plates with viscoelastic core are very effective in reducing and control-

ling vibration response of lightweight and flexible structures, where the soft core is

strongly deformed in shear, due to the adjacent stiff layers. Hence, due to this high
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Figure 1: Sandwich plate

shear developed inside the core, equivalent single layer plate theories, even those

based on higher order deformations, are not adequate to describe the behaviour of

these sandwiches, also due to the high deformation discontinuities that arise at the in-

terfaces between the viscoelastic core material and the surrounding elastic constrain-

ing layers. The usual approach to analyse the dynamic response of sandwich plates

uses a layered scheme of plate and brick elements with nodal linkage. This approach

leads to a time consuming spatial modelling task. To overcome these difficulties, the

layerwise theory has been considered for constrained viscoelastic treatments, and most

recently, Araújo et al. [9, 10] and Moita et al. [11, 12], among others, presented layer-

wise formulations for active sandwich plates with viscoelastic core and piezoelectric

sensors and actuators. In these models, the effect of core compressibility is often

overlooked. Hence in this paper a generalisation of the element developed by Araújo

et al. [9] is presented here for passive damping of soft core sandwich plates, where

the transverse compressibility of the core is included [13, 14] The viscoelastic core

layer is modelled according to a higher order shear deformation theory, adjacent elas-

tic layers are modelled using the first order shear deformation theory, and all materials

are considered to be orthotropic, with elastic layers being formulated as laminated

composite plies. Passive damping is dealt with using the complex modulus approach,

allowing for frequency dependent viscoelastic materials. The dynamic response of the

finite element model is validated using reference solutions from the literature.

2 Sandwich plate model

The development of a layerwise finite element model is presented here, to analyse

sandwich laminated plates with a viscoelastic (v) core and composite laminated face

layers (e1, e2), as shown in Figure 1.

The basic assumptions in the development of the sandwich plate model are:

1. The origin of the z axis is the medium plane of the core layer;

2



2. No slip occurs at the interfaces between layers;

3. The displacement is C0 along the interfaces;

4. Elastic layers are modelled with first order shear deformation theory (FSDT)

and viscoelastic core with a higher order shear deformation theory (HSDT);

5. All materials are linear, homogeneous and orthotropic and the elastic layers (e1)

and (e2) are made of laminated composite materials;

6. For the viscoelastic core, material properties are complex and frequency depen-

dent.

The FSDT displacement field of the face layers may be written in the general form:

ui(x, y, z, t) = ui
0(x, y, t) + (z − zi)θ

i
x(x, y, t)

vi(x, y, z, t) = vi
0(x, y, t) + (z − zi)θ

i
y(x, y, t)

wi(x, y, z, t) = wi
0(x, y, t)

(1)

where ui
0 and vi

0 are the in-plane displacements of the mid-plane of the layer, θi
x and

θi
y are rotations of normals to the mid-plane about the y axis (anticlockwise) and x

axis (clockwise), respectively, wi
0 is the transverse displacement of the layer, zi is the

z coordinate of the mid-plane of each layer, with reference to the core layer mid-plane

(z = 0), and i = e1, e2 is the layer index.

For the viscoelastic core layer, the HSDT displacement field is written as a second

order Taylor series expansion of the displacements in the thickness coordinate:

uv(x, y, z, t) = uv
0(x, y, t) + zθv

x(x, y, t) + z2u∗

0
v(x, y, t) + z3θ∗x

v(x, y, t)

vv(x, y, z, t) = vv
0(x, y, t) + zθv

y(x, y, t) + z2v∗

0
v(x, y, t) + z3θ∗y

v(x, y, t)

wv(x, y, z, t) = wv
0(x, y, t) + zθv

z(x, y, t) + z2w∗

0
v(x, y, t)

(2)

where uv
0 and vv

0 are the in-plane displacements of the mid-plane of the core, θv
x and θv

y

are rotations of normals to the mid-plane of the core about the y axis (anticlockwise)

and x axis (clockwise), respectively, wv
0 is the transverse displacement of the core

mid-plane. The functions u∗

0
v, v∗

0
v, w∗

0
v, θ∗x

v, θ∗y
v and θv

z are higher order terms in the

series expansion, defined also in the mid-plane of the core layer.

The displacement continuity at the layer interfaces can be written as:

3



uv(x, y,
hv

2
, t) = ue1(x, y,

hv

2
, t)

vv(x, y,
hv

2
, t) = ve1(x, y,

hv

2
, t)

wv(x, y,
hv

2
, t) = we1

0

uv(x, y,−hv

2
, t) = ue2(x, y,−hv

2
, t)

vv(x, y,−hv

2
, t) = ve2(x, y,−hv

2
, t)

wv(x, y,−hv

2
, t) = we2

0

(3)

where the coordinates of layer mid-planes are:

ze1
=

hv

2
+

he1

2
zv = 0

ze2
= −hv

2
− he2

2

(4)

Applying the continuity conditions, one obtains:

θe1

x =
2

he1

(

ue1

0 − uv
0 −

hv

2
θv

x −
h2

v

4
u∗

0
v − h3

v

8
θ∗x

v

)

θe1

y =
2

he1

(

ve1

0 − vv
0 −

hv

2
θv

y −
h2

v

4
v∗

0
v − h3

v

8
θ∗y

v

)

θe2

x =
2

he2

(

−ue2

0 + uv
0 −

hv

2
θv

x +
h2

v

4
u∗

0
v − h3

v

8
θ∗x

v

)

θe2

y =
2

he2

(

−ve2

0 + vv
0 −

hv

2
θv

y +
h2

v

4
v∗

0
v − h3

v

8
θ∗y

v

)

θv
z =

we1

0 − we2

0

hv

w∗

0
v =

4

h2
v

(

we1

o + we2

0

2
− wv

0

)

(5)

These relations allow us to retain the translational degrees of freedom of the face

layers, while eliminating the corresponding rotational ones. At the same time, the

higher order terms in the transverse displacement expansion of the core are also elim-

inated. Hence, the generalized displacement field has 15 unknowns.
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2.1 Linear strains

2.1.1 Viscoelastic core

The non-zero linear strains associated with the assumed displacement field for the

viscoelastic core layer are:

εv
x =

∂uv
0

∂x
+ z

∂θv
x

∂x
+ z2 ∂u∗

0
v

∂x
+ z3∂θ∗x

v

∂x

εv
y =

∂vv
0

∂y
+ z

∂θv
y

∂y
+ z2∂v∗

0
v

∂y
+ z3

∂θ∗y
v

∂y

εv
z = θv

z + 2zw∗

0
v

γv
yz =

(

θv
y +

∂w0

∂y

)

+ z

(

2v∗

0
v +

∂θv
z

∂y

)

+ z2

(

3θ∗y
v +

∂w∗

0
v

∂y

)

γv
xz =

(

θv
x +

∂w0

∂x

)

+ z

(

2u∗

0
v +

∂θv
z

∂x

)

+ z2

(

3θ∗x
v +

∂w∗

0
v

∂x

)

γv
xy =

(

∂uv
0

∂y
+

∂vv
0

∂x

)

+ z

(

∂θv
x

∂y
+

∂θv
y

∂x

)

+ z2

(

∂u∗

0
v

∂y
+

∂v∗

0
v

∂x

)

+ z3

(

∂θ∗x
v

∂y
+

∂θ∗y
v

∂x

)

(6)

which can be written in the form:

εv
x = εv

x0 + zκv
x + z2ε∗x0

v + z3κ∗

x
v

εv
y = εv

y0 + zκv
y + z2ε∗y0

v + z3κ∗

y
v

εv
z = εv

z0 + zκv
z

γv
yz = γv

yz0 + zκv
yz + z2γ∗

yz0
v

γv
xz = γv

xz0 + zκv
xz + z2γ∗

xz0
v

γv
xy = γv

xy0 + zκv
xy + z2γ∗

xy0
v + z3κ∗

xy
v

(7)

where εv
x0, εv

y0, εv
z0, γv

xy0, γv
yz0 and γv

xz0 are the core mid-surface strains, κv
x, κv

y, κv
z , κv

xy,

κv
yz and κv

xz represent the curvatures associated with the first order terms in the series

expansion, ε∗x0
v, ε∗y0

v, γ∗

xy0
v, γ∗

yz0
v and γ∗

xz0
v describe the strains associated with the

second order terms and κ∗

x
v , κ∗

y
v and κ∗

xy
v correspond to curvatures associated with

the third order terms.

These quantities can be grouped in three vectors, containing membrane (m), bend-

ing (b) and shear (s) terms, respectively:

{εm}v =
[

εv
x0 εv

y0 γv
xy0 ε∗x0

v ε∗y0
v γ∗

xy0
v εv

z0

]T

{εb}v =
[

κv
x κv

y κv
xy κ∗

x
v κ∗

y
v κ∗

xy
v κv

z

]T

{εs}v =
[

γv
yz0 γv

xz0 γ∗

yz0
v γ∗

xz0
v κv

yz κv
xz

]T

(8)
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2.1.2 Elastic laminated face layers

The non-zero linear strains associated with the assumed first order displacement field

for these layers are:

εi
x =

∂ui
0

∂x
+ (z − zi)

∂θi
x

∂x

εi
y =

∂vi
0

∂y
+ (z − zi)

∂θi
y

∂y

γi
yz = θi

y +
∂wi

0

∂y

γi
xz = θi

x +
∂wi

0

∂x

γi
xy =

(

∂ui
0

∂y
+

∂vi
0

∂x

)

+ (z − zi)

(

∂θi
x

∂y
+

∂θi
y

∂x

)

(9)

where i = e1, e2.

These linear strains for the elastic face layers can also be written in the form:

εi
x = εi

x0 + zκi
x

εi
y = εi

y0 + zκi
y

γi
yz = γi

yz0

γi
xz = γi

xz0

γi
xy = γi

xy0 + zκi
xy

(10)

where εi
x0, εi

y0, γi
xy0, γi

yz0 and γi
xz0 are the layer mid-surface strains, and κi

x, κi
y and κi

xy

describe the curvatures for layer i = e1, e2. These quantities can be grouped in three

vectors, containing membrane (m), bending (b) and shear (s) terms, respectively:

{εm}i =
[

εi
x0 εi

y0 γi
xy0

]T

{εb}i =
[

κi
x κi

y κi
xy

]T

{εs}i =
[

γi
yz0 γi

xz0

]T

(11)

2.2 Constitutive relations

We consider that fibre-reinforced laminae in elastic multi-layers (e1) and (e2), and the

viscoelastic core (v) are characterized as orthotropic. However, due to the different

nature of the displacement fields in the face layers and in the core, the constitutive

relations are going to be different.
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For the laminas in the elastic laminated face layers, constitutive equations for each

lamina may be expressed in the principal material directions, assuming zero transverse

normal stress as [15, 16]:























σ11

σ22

σ23

σ13

σ12























=













Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66



































ε11

ε22

γ23

γ13

γ12























(12)

where σij are stress components, εij and γij are strain components, Qij are reduced

stiffness coefficients. Expressions for the reduced quantities mentioned above in terms

of engineering constants can be found in [15, 16].

For the viscoelastic core, a full 3D orthotropic stiffness matrix is used in the prin-

cipal material directions [15, 16]:































σ11

σ22

σ33

σ23

σ13

σ12































=

















C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66















































ε11

ε22

ε33

γ23

γ13

γ12































(13)

Expressions for the stiffness coefficients Cij , in terms of engineering quantities, can be

found in [15, 16]. Furthermore, for the viscoelastic core layer, the stiffness coefficients

Cij are complex quantities, since the complex modulus approach was used in this

work, using the elastic-viscoelastic correspondence principle [17]. In this case, and for

isothermal conditions, the usual engineering moduli may be represented by complex

quantities:

E1(iω) = E ′

1(ω)(1 + iηE1
(ω))

E2(iω) = E ′

2(ω)(1 + iηE2
(ω))

E3(iω) = E ′

3(ω)(1 + iηE3
(ω))

G12(iω) = G′

12(ω)(1 + iηG12
(ω))

G23(iω) = G′

23(ω)(1 + iηG23
(ω))

G13(iω) = G′

13(ω)(1 + iηG13
(ω))

ν12(iω) = ν ′

12(ω)(1 − iην12
(ω))

ν23(iω) = ν ′

23(ω)(1 − iην23
(ω))

ν13(iω) = ν ′

13(ω)(1 − iην13
(ω))

(14)

where the prime quantities denote storage moduli, associated material loss factors are

represented by the letter η, ω represents frequency of vibration and i =
√
−1 is the
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imaginary unit. Furthermore, in Equation (14), E, G and ν denote Young’s moduli,

shear moduli and Poisson’s ratio, respectively.

The use of the complex modulus approach in linear viscoelasticity allows for the

direct use of experimentally obtained frequency dependent material properties to ob-

tain the frequency domain response in steady state oscillatory conditions. Addition-

ally, it is also possible to obtain transient responses from this approach, considering a

trigonometric expansion of the excitation and Fourier analysis [17, 18]. Hence, time

domain transient responses can be obtained by inverse Fourier analysis, as long as

the viscoelastic material model is causal [1, 17, 18], which is usually the case when

frequency dependent experimental complex moduli are used.

The definition of the constitutive relations of a laminate is usually made in terms

of stress resultants [19]. These forces and moments for the present model are defined

separately for the viscoelastic core (v) and for the elastic multilayered laminates (e1)

and (e2), and are obtained in the plate natural coordinate system, which is usually

rotated with respect to the principal material axes [15, 16].

3 Finite element formulation

The equations of motion for the plate are obtained by applying the extended Hamil-

ton’s principle:

δ

∫ t2

t1

L dt = 0 (15)

where δ is the variational symbol, and L represents the Lagrangian of the system,

defined as follows:

L =
∑

i=e1,v,e2

(Ti − Ui) − W (16)

In Equation (16), Ti is the kinetic energy and Ui is the strain energy of each layer

in the sandwich, and W is the work done by externally applied loads. It should be

noted that dissipative terms are included in the strain energy of the core (Uv) via the

complex modulus approach.

The kinetic and elastic energies in Equation (16) are defined as:

Ti =
1

2

∫

Ωi

ρi
˙{u}T

i
˙{u}i dΩi

Ui =
1

2

∫

Ωi

{ε}T

i {σ}i dΩi

(17)

where Ωi represents the volume domain of the layer, ρi is mass per unit volume of the

material, {σ}i and {ε}i are the stress and strain vectors, respectively, and ˙{u} is the
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time derivative of the displacement field vector {u}i = {ui, vi, wi}T
, which can be

expressed as:

{u}i = [Z]i {d} (18)

where the vector of the mechanical degrees of freedom is:

{d} =
[

ue2

0 ve2

0 we2

0 uv
0 vv

0 w0 θv
x θv

y u∗

0
v v∗

0
v θ∗x

v θ∗y
v ue1

0 ve1

0 we1

0

]T

(19)

and the [Z]i matrices are obtained using Equations (1) and (2), along with Equation

(5).

The external work W in Equation (16) can be written as:

W =

∫

Ω

{d}T {fb} dΩ +

∫

S

{d}T {fs} dS + {d}T {fc} (20)

where {fb}, {fs} and {fc} are the vectors of body forces, surface tractions and con-

centrated forces, respectively, and Ω and S represent volume and surface domains of

the plate, respectively.

Carrying on the integration in the thickness direction in Equations (17) and (20) and

substituting the result in Equations (16) and (15), one obtains the variational equation

of motion for the sandwich plate, the solution of which was obtained through the finite

element method, using an eight node serendipity element with 15 mechanical degrees

of freedom per node. The generalised displacements of the element can be expressed

as a function of the element nodal degrees of freedom:

{d}(e) = [N ] {a}(e)

{a}(e) =
[

{d}(e)T
1 . . . {d}(e)T

8

]T (21)

where [N ] contains the serendipity shape functions for the element [20].

The strains are related to the element degrees of freedom through:

{εm}(e) = [Bm](e) {a}(e)

{εb}(e) = [Bb]
(e) {a}(e)

{εs}(e) = [Bs]
(e) {a}(e)

(22)

where the strain matrices [Bm](e), [Bb]
(e)

and [Bs]
(e)

can be obtained from the shape

functions and their derivatives, and are calculated on a layer-by-layer basis.

The following equilibrium equation in matrix form is obtained:
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[M ](e) ¨{a}(e)
+ [K](e) {a}(e) = {F}(e)

(23)

where the mass and stiffness matrices in Equation (23) are expressed as:

[M ](e) =
∑

i

∫ +1

−1

∫ +1

−1

[N ]T [P ]i [N ] det [J ] dξdη

[K](e) =
∑

i

∫ +1

−1

∫ +1

−1

(

[Bm](e)Ti [Dm]i [Bm](e)i + [Bb]
(e)T
i [Dc]i [Bm](e)i

+ [Bm](e)Ti [Dc]i [Bb]
(e)
i + [Bb]

(e)T
i [Db]i [Bb]

(e)
i

+ [Bs]
(e)T
i [Ds]i [Bs]

(e)
i

)

det [J ] dξdη

(24)

where [J ] is the Jacobian of the transformation. Detailed expressions for matrices [P ],

[Dm](e), [Dc]
(e)

, [Db]
(e)

and [Ds]
(e)

can be found in [19].

The element load vector is given by:

{F}(e) =

∫ +1

−1

∫ +1

−1

[N ]T {fb}(e) h det [J ] dξdη +

∫ +1

−1

∫ +1

−1

[N ]T {fs}(e) det [J ] dξdη

+ [N ]T {fc}(e)

(25)

All necessary integrations are performed numerically, using Gauss-Legendre nu-

merical integration, and selective integration is employed in order to avoid shear lock-

ing. One should also note that the viscoelastic behaviour of the core translates into a

complex element stiffness matrix [K](e).

The system equilibrium equations are obtained in the usual way through assembly

of the element equations, yielding

[M ] ¨{a} + [K] {a} = {F} (26)

where {a} and ¨{a} are degrees of freedom and corresponding accelerations, respec-

tively. [M ] and [K] are the mass and complex stiffness matrices, respectively, and

{F} is the externally applied load vector.

Assuming harmonic vibrations, the final equilibrium equations are given by:

[

[K(ω)] − ω2 [M ]
]

{a} = {F} (27)

The forced vibration problem is solved in the frequency domain, which implies the

solution of the following linear system of equations for each frequency point:
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[

[K(ω)] − ω2 [Muu]
]

{a(ω)} = {F (ω)} (28)

where {F (ω)} = F ({F (t)}) is the Fourier transform of the time domain force history

{F (t)}.

For the free vibration problem, Equation (28) reduces to the following non-linear

eigenvalue problem:

[[K(ω)] − λ∗

n [M ]] {a}n = {0} (29)

where, the complex eigenvalue λ∗

n is written as:

λ∗

n = λn (1 + iηn) (30)

and λn = ω2
n is the real part of the complex eigenvalue and ηn is the corresponding

modal loss factor.

The non-linear eigenvalue problem is solved iteratively using ARPACK [21] with

a shift-invert transformation. The iterative process is considered to have converged

when:

‖ωi − ωi−1‖
ωi−1

≤ ǫ (31)

where ωi and ωi−1 are current and previous iteration values for the real part of the

particular eigenfrequency of interest, respectively, and ǫ is the convergence tolerance.

4 Application

The validation of the sandwich plate finite element model for free vibration is con-

ducted comparing natural frequencies for a sandwich square plate and a sandwich

beam with central viscoelastic soft cores. The modal loss factors are also computed

for a sandwich beam with damped core material.

4.1 Sandwich square plate

A simply supported sandwich square plate with orthotropic cross ply laminate skins

(0◦/90◦/core/90◦/0◦) of in-plane dimensions a×a, with width to thickness a/h = 10
and a/h = 100 is considered [14]. The skin to core thickness ratio is hcore/hskin = 10.

The core is made of an isotropic material with E = 6.89 MPa, G = 3.45 MPa,

ν = 0 and ρ = 97 kg/m3. The properties of the face layer properties E1 = 131 GPa,

E2 = E3 = 10.34 GPa, G12 = G13 = 6.895 GPa, G23 = 6.205 GPa, ν12 = ν13 =
0.22, ν23 = 0.49 and ρ = 1627 kg/m3. The simply supported conditions are of the

following type: v = w = 0 at x = 0, a and u = w = 0 at y = 0, a.
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The natural frequencies obtained are normalised as:

ω̄ = ω
a2

h

√

(

ρ

E2

)

skin

(32)

Natural frequencies obtained with a 14 × 14 mesh are listed in Table 1 and com-

pared with semi-analytical solutions obtained by Rao and Desai [22] and finite element

layerwise solutions by Moreira and Rodrigues [14]. A good agreement is observed be-

tween the present solution and the reference ones. The present solution is particularly

close to the one reported by Rao and Desai [22] due to the similar nature of the expan-

sion of the transverse displacement of the core, whereas Moreira and Rodrigues [14]

use an out-of-plane spring stiffness concept to allow for transverse compressibility of

the core.

Modes

(1,1) (1,2) (2,2) (1,3) (2,3) (3,3)

a/h = 10 Present 1.8480 3.2204 4.2913 5.2274 6.0997 7.6872

[22] 1.8480 3.2196 4.2894 5.2236 6.0942 7.6762

[14] 1.8391 3.1947 4.2142 5.1901 5.9607 7.3988

a/h = 100 Present 11.942 23.403 30.945 36.147 41.455 49.791

[22] 11.940 23.402 30.943 36.143 41.447 49.762

[14] 11.888 23.168 30.272 35.444 40.037 47.214

Table 1: Normalised natural frequencies of sandwich square plate.

4.2 Sandwich beam

In this example, a wide beam with thin steel skins and a thick soft polymer foam core

is considered. The beam is clamped at one edge and free at the other. The length of the

beam is L = 260 mm and the width is b = 59.9 mm. The thickness of the foam core

is hv = 34.8 mm and the thin steel face layers have thickness he1
= he2

= 1.9 mm.

For steel, the material properties are E = 210 GPa, ν = 0.3 and ρ = 7900 kg/m3.

The material properties of the foam core (Divinycell H60) are E = 56 MPa, ν = 0.27
and ρ = 60 kg/m3.

The obtained bending natural frequencies with a mesh of 12 × 3 elements are pre-

sented in Table 2 along with the ones reported by Sokolinsky et al. [23] and Moreira

and Rodrigues [14]. The natural frequencies that are presented are grouped in two

categories, corresponding to the anti-symmetric and symmetric bending of the beam.

The anti-symmetric modes are those where the two faces of the sandwich vibrate in

phase opposition (thickness-stretch modes), whereas the symmetric modes correspond

to the usual beam bending modes, where the core compressibility is less of an issue.

Once again a good agreement was achieved.
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Mode Present 2D FEM [23] Higher-order theory [23] [14]

Anti-symmetric

1 164.7 165 165 164.8

2 511.4 512 511 511.5

3 911.1 913 910 912.0

4 1375 1379 1373 1376

Symmetric

1 2422 2476 2393 2578

2 2441 2509 2398 2582

3 2528 2558 2430 2617

4 2606 2567 2534 2727

Table 2: Natural frequencies of cantilever sandwich beam (Hz).

4.3 Damped sandwich beam

The same beam is now considered with 10% damping for the core material. The

results for natural frequencies and modal loss factors are presented in Table 3. It can

be observed, as expected [23], that the thickness-stretch modes are in general more

heavily damped than the bending ones.

Mode Natural frequency (Hz) Modal loss factor (%)

Anti-symmetric

1 164.7 8.8

2 511.5 8.3

3 911.2 7.6

4 1375 6.4

Symmetric

1 2422 9.9

2 2441 9.9

3 2528 9.0

4 2606 4.1

Table 3: Natural frequencies and modal loss factors of damped cantilever sandwich

beam.

5 Conclusion

A new sandwich plate finite element was presented with compressible viscoelastic

core. A layerwise approach was used, where the core and face layers are modelled

using different theories (first order for the faces and higher order for the core), in
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order to capture properly the high shear effects in the core. The solutions for free

vibration presented in the paper show an excellent agreement of the obtained natural

frequencies with the ones reported in the literature, for both bending and thickness-

stretch modes. An example was also presented for a damped sandwich beam, were it

is evident that the thickness-stretch modes are more heavily damped than the bending

modes.
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