Abstract

In this paper, starting from the theoretical background previously developed by the authors concerning the statics of masonry vaults and aimed at the selection of families of load shapes equilibrated by sets of admissible solutions, a strategy is outlined for identifying the areas of the vault to be reinforced with FRP provisions. As shown in the numerical investigation, higher intensities of the stress state are then allowed by the introduction of the reinforcement and the local relaxation of some of the constraints of the problem is possible.

Keywords: composites, constraint relaxation, masonry vaults, reinforcement.

1 Introduction

Approaches to the study of masonry constructions often refer to the No Tension assumption (for bibliography by the authors one may refer to [1]-[14]). The analysis of masonry constructions still represent a very open research stream because of the complexity of the behaviour of the basic material and of the geometry (in particular in case of vaulted surfaces of generic shape) and its possible applications for the forecasting and protection of monumental buildings, also by means of dynamic control [15]-[18], especially useful in the absence of the environmental forecast [19]-[20].

The paper focuses on the possibility of identifying the regions of a masonry vault to be equipped with FRP reinforcement starting from the premise that the solution of the problem of the NT vault under assigned loads may be searched for, as shown by the authors in some previous papers [13,14], after identifying the set of admissible solutions relevant to specific load families.

The presence of the reinforcement allows some local relaxing of some of the NT admissibility constraints governing the problem.
2 The Vault Inequality System

Let consider a vault with \(z = z_1(x,y) \) and \(z = z_2(x,y) \) \([z_1(x,y) \leq z_2(x,y)]\) (the \(z \)-axis is directed downward) the surfaces identifying the extrados upper and intrados lower profiles of the vault respectively, subject to purely vertical downward load, with \(X \) the plant of the vault, i.e. the projection of the middle surface on the \(<x,y> \) plane.

Let \(z = z(x,y) \) be any surface included in between the intrados and the extrados surfaces \(z_1(x,y) \) and \(z_2(x,y) \), and \(\bar{p}_z(x,y) \geq 0 \ \forall (x,y) \in X \) be the downward vertical load per unit area on the horizontal \(<x,y> \) plane.

It has been proved in [14] that a class of solutions of the No-Tension vault equilibrium under the assigned load can be obtained by solving the following Vault Inequality System (VIS):

\[
\begin{cases}
H_z(x,y) = z_{,xx}(x,y)z_{,yy}(x,y) - [z_{,xy}(x,y)]^2 = \frac{\bar{p}_z(x,y)}{Q} \geq 0 \\
z_{,xx}(x,y) \geq 0 \ ; \ z_{,yy}(x,y) \geq 0 \\
z_1(x,y) \leq z(x,y) \leq z_2(x,y)
\end{cases}
\] (1)

where \(H_z(x,y) \) denotes the Hessian determinant of the \(z \)-function and \(Q \) represents any positive real parameter i.e. the boundary thrust (dimensionally, a force), and, in the subscript position, the variables preceded by a comma denote derivation with respect to these variables.

The first two rows in Equations (1) express the condition for the convexity of the function \(z(x,y) \), and hence of the membrane force surface (see e.g. Rockafellar, 1970 [21]; Roberts and Varberg, 1973 [22]). Equation (1) will be referred to in the following as the Vault Inequality System (VIS).

3 The Case of the Sail Vault

3.1 Equilibrium Conditions

Let consider a sail vault with a rectangular plant under the load \(\bar{p}_z(x,y) \) assumed with the shape of the type of the self-weight of the vault, that is to say symmetric with respect to the \(x \) and \(y \) axes like the geometry of the vault

\[
\bar{p}_z(x,y) = p_o + p_x x^2 + p_y y^2 + p_{xy} x^2 y^2
\] (2)

with \(p_o, p_x, p_y \) and \(p_{xy} \) suitably defined constants, with \(p_o p_{xy} = p_x p_y \).

After selecting an expression of the membrane surface that is expected to be symmetric as well, in the form
Where K, A, B, C, D denote five unknown constants to be determined after the conditions governing the problem.

By imposing equilibrium of the membrane surface with the applied load (the first in Equations (1)), one gets

\[
\begin{align*}
\bar{p}_x(x, y) &= Q[AC + BCx^2 + ADy^2 + BDx^2y^2] \\
QAC &= p_o \\
QBC &= p_x \\
QAD &= p_y \\
QBD &= p_{xy}
\end{align*}
\]

\[
\Rightarrow \quad \begin{cases}
A = \frac{p_o}{p_y} \\
B = \frac{p_x}{p_y} \\
C = \frac{p_o}{p_x} \\
D = \frac{p_y}{p_{xy}}
\end{cases}
\]

That represent four equations in five unknowns.

The NT admissibility conditions should be checked by considering the values of the function \(z(x, y)\) at the origin of the axes and on the perimeter tympanes.

3.2 The minimum thrust membrane

For example by considering the case when the membrane surface is tangent to the extrados profile at the origin point \((0,0)\), after some developments, one may identify the three following cases with the relevant solutions:

Case 1):

\[
\begin{align*}
z(0,0) &= z_1(0,0) \\
z(x_1,0) &= z_2(x_1,0) \\
z(0,y_1) &= z_3(0,y_1)
\end{align*}
\]

\[
\begin{align*}
K &= z_{c1} \\
A &= 12 \frac{z_2(x_1,0) - K}{6p_ox^2 + p_xx^4} p_o, \\
B &= 12 \frac{z_2(x_1,0) - K}{6p_ox^2 + p_xx^4} p_x, \\
C &= 12 \frac{z_2(0,y_1) - K}{6p_ox^2 + p_xy^4} p_x, \\
D &= 12 \frac{z_2(0,y_1) - K}{6p_ox^2 + p_xy^4} p_{xy} \\
Q &= \frac{p_o}{AC} = 144p_x \left[\frac{6p_ox^2 + p_xx^4}{z_2(x_1,0) - K} \right]
\end{align*}
\]
The solution in the case 1) is valid only if

\[
z(x_1, y_1) \leq z_2(x_1, y_1) \Rightarrow K + \frac{A}{2} x_1^2 + \frac{B}{12} x_1^4 + \frac{C}{2} y_1^2 + \frac{D}{12} y_1^4 \leq z_2(x_1, y_1)
\]

(6)

Case 2):

\[
\begin{align*}
&z(0,0) = z_1(0,0) \\
&z(0, y_1) = z_2(0, y_1) \\
&z(x_1, y_1) = z_2(x_1, y_1)
\end{align*}
\]

\[
K = z_{c1} \\
A = 12 \frac{z_2(x_1, y_1) - z_2(0, y_1)}{p_o} \left(6p_o x_1^2 + p_x x_1^4\right) \\
B = 12 \frac{z_2(x_1, y_1) - z_2(0, y_1)}{p_x} \\
C = 12 \frac{z_2(0, y_1) - K}{p_o} \left(6p_o y_1^2 + p_y y_1^4\right) \\
D = 12 \frac{z_2(0, y_1) - K}{p_y} \\
Q = \frac{p_o}{AC} = 1 \left(6p_o x_1^2 + p_x x_1^4\right) \left(6p_o y_1^2 + p_y y_1^4\right)
\]

(7)

The solution in the case 2) is valid only if

\[
z(x_1, 0) \leq z_2(x_1, 0) \Rightarrow K + \frac{A}{2} x_1^2 + \frac{B}{12} x_1^4 \leq z_2(x_1, 0)
\]

(8)

Case 3):

\[
\begin{align*}
&z(0,0) = z_1(0,0) \\
&z(x_1, 0) = z_2(x_1, 0) \\
&z(x_1, y_1) = z_2(x_1, y_1)
\end{align*}
\]

\[
K = z_{c1} \\
A = 12 \frac{z_2(x_1, 0) - K}{p_o} \left(6p_o x_1^2 + p_x x_1^4\right) \\
B = 12 \frac{z_2(x_1, 0) - K}{p_x} \\
C = 12 \frac{z_2(x_1, y_1) - z_2(x_1, 0)}{p_o} \left(6p_o y_1^2 + p_y y_1^4\right) \\
D = 12 \frac{z_2(x_1, y_1) - z_2(x_1, 0)}{p_y} \\
Q = \frac{p_o}{AC} = 1 \left(6p_o x_1^2 + p_x x_1^4\right) \left(6p_o y_1^2 + p_y y_1^4\right)
\]

(9)
The solution in the case 3) is valid only if
\[
z(0,y_1) \leq z_2(0,y_1) \Rightarrow K + \frac{C}{2} y_1^2 + \frac{D}{12} y_1^4 \leq z_2(0,y_1) \tag{10}
\]

Since one has considered the situation when the membrane surface of the vault under the applied load touches the extrados surface at its keystone it represents the case when the minimum thrust occurs.

Actually, when introducing a reinforcement at the intrados of the vault, the thrust may be reduced since the constraint relevant to the membrane surface \(z_1(x,y) \leq z(x,y) \quad \forall (x,y) \in X\) (the z-axis is downward directed), which requires that the membrane itself is contained in the upper profile, is locally relaxed. Therefore the reinforcement allows the membrane to come out from the vault thickness at the extrados. This circumstance implies that the parameter \(K\) may be smaller and also the thrust \(Q\) may decrease as the area of the intrados reinforcement is increased.

4 The Numerical Investigation

Let consider the case when the vault is characterized by its plant edge co-ordinates \(x_1, x_2, y_1,\) and \(y_2\), and a parabolic shape with \(z_1(x,y)\) and \(z_2(x,y)\) the extrados and intrados profiles, given as follows

\[
x_1 = -5; \quad x_2 = 5; \quad y_1 = -3; \quad y_2 = 3; \quad z_{c1} = 1.0; \quad z_{c2} = 1.5
\]

\[
z_1(x,y) = z_{c1} + C_x \frac{x^2}{(x_2 - x_1)^2} + C_y \frac{y^2}{(y_2 - y_1)^2} \tag{11}
\]

\[
z_2(x,y) = z_{c2} + C_x \frac{x^2}{(x_2 - x_1)^2} + C_y \frac{y^2}{(y_2 - y_1)^2}
\]

According to what developed in the previous Section, the membrane surface \(z(x,y)\) relevant to the minimum thrust is embedded in the vault profile, as shown in Figure 1, where the cross section of the vault and of the membrane surface relevant to the minimum thrust along the vertical diagonal plane is reported. Actually the adoption of some FRP reinforcement to be introduced at the intrados of the vault is such that the thrust may be still reduced and the membrane surface is allowed to locally overpass the extrados vault profile.
In the following four different cases are considered relevant to four different values of the thrust Q, and the regions of the vault where the reinforcement is to be applied are identified.

Figure 1: Cross section along the diagonal vertical plane of the vault and of the z-function relevant to the minimum thrust situation.

In Figures 2-5 the cross-sections along the vertical diagonal plane of the vault and of the membrane surfaces related to the four cases are depicted, whilst the trace of the areas to be reinforced projected on the vault plant for the four cases are reported in Figures 6-9.

Figure 2: Cross section along the vertical diagonal plane of the vault and of the z-functions for the first case when the membrane surface overpasses the extrados profile of the vault.

Figure 3: Cross section along the vertical diagonal plane of the vault and of the z-functions for the second case when the membrane surface overpasses the extrados profile of the vault.
Figure 4: Cross section along the vertical diagonal plane of the vault and of the z-functions for the third case when the membrane surface overpasses the extrados profile of the vault.

Figure 5: Cross section along the vertical diagonal plane of the vault and of the z-functions for the fourth case when the membrane surface overpasses the extrados profile of the vault.

Figure 6: Region of the vault to be reinforced at the intrados in the first case when the membrane surface overpasses the extrados profile of the vault.
Figure 7: Region of the vault to be reinforced at the intrados in the second case when the membrane surface overpasses the extrados profile of the vault.

Figure 8: Region of the vault to be reinforced at the intrados in the third case when the membrane surface overpasses the extrados profile of the vault.

Figure 9: Region of the vault to be reinforced at the intrados in the fourth case when the membrane surface overpasses the extrados profile of the vault.
5 Conclusions

The approach proposed in the paper shows that some easy application of the theoretical set up proposed by the authors for the treatment of masonry vaults modelled under the NT assumption may be performed, also with the specific objective of identifying the regions of the vault to be reinforced. By this approach, as shown in the investigation, one may evaluate the extension and the position of the areas where the reinforcement should be applied according to the expected collapse mechanism of the vault and to the desired reduction of the thrust at given locations.

Acknowledgements

The present research has been performed thanks to the financial support of the Italian Ministry of University and Research within a PRIN project and by the Department of Civil Protection of the Italian Government through the ReLuis pool (convention No.823 signed 24/09/2009, Thematic Area 2-Research Line 3-Task 1).

References

of Masonry International, British Masonry Society. 2003, Vol.16 No.3: 89-98. ISSN 0950-2289

