
Abstract

In numerical dynamic analyses of railway bridges, the ballast is either considered

as an additional mass or modeled using a mass-spring-damper system between the

bridge deck and the sleepers. In both cases, the influence of the ballast on the natural

frequencies of the bridge is neglected. However, a research project at the Division of

Structural Engineering and Bridges at KTH has shown that the ballast may influence

significantly the first natural frequency of bridges. To consider that aspect, a new finite

beam element model has been developed. The main feature of the element is that the

effect of the ballast is introduced through a non-linear longitudinal stiffness associated

to the slip at the interface between the bridge and the ballast. This simple element can

be used to model accurately the vertical vibrations in bridges, which allows a better

prediction of the fatigue life.

Keywords: railway bridges, dynamic analyses, finite elements, ballast.

1 Introduction

Static analyses are often used to estimate the fatigue life for railways bridges. How-

ever, dynamic analyzes may be necessary in order to obtain a more accurate estima-

tion. In particular, a recent research at the Division of Structural Engineering and

Bridges at KTH has shown that the free vibrations of bridges after the train pas-

sage may influence the fatigue life. One issue regarding the dynamic behavior of

railway bridges is that discrepancies between calculations and experiments are often

observed. This problem especially applies to short or median span bridges for which

important differences between calculated and measured natural frequencies can be ob-

tained. Several studies, see e.g. [1] and [2], have also shown that, for such bridges, the

natural frequencies vary as function of the amplitude of vibration.
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One difficulty in modeling relatively short railway bridges is that the influence of

the track superstructure composed by rails, sleepers and ballast is not well known. As

example, there is, so far, no clear recommendation in design codes to take the ballast

into account in dynamic analyzes. In several works about train-track-bridge dynamic

interaction [3, 4, 5, 6], the track and the bridge have been modeled by two beams and

the effect of the ballast has been introduced using a more or less advanced system

of viscoelastic spring/dampers and masses between the two beams. In [7], Liu et

al. developed a 3D finite element model of the bridge using elastic solid elements for

the ballast. Müller et al. [8] and Ruge et al. [9, 10] developed a truss model to study

the longitudinal stresses due to temperature changes and train braking. Following the

European codes, they introduced a non-linear stiffness between the bridge and the rail

to represent the coupling effect of the ballast.

The purpose of the present article is to propose a new and simple approach to model

the effect of the ballast in vertical dynamic analyses of railway bridges. The idea is

to use the methodology in [8, 9, 10] to develop a simple 2D beam finite element. In

this element, the effect of the ballast is taken into account by introducing a linear

or non-linear longitudinal stiffness associated to the slip at the interface between the

bridge and the ballast. This approach has already been presented by Fink and Mähr

[11], but in a continuum context, using differential equations. The organization of

the paper is as follow: the derivation of the finite element is presented in Section 2.

In Section 3 and 4, two numerical applications, based on lab and in-situ experiments

are proposed. In particular, it is shown that the present element can be used to model

the variation of the lowest bending natural frequency as function of the amplitude of

vibration. Finally, conclusions are presented in Section 5.

2 Finite element formulation
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Figure 1: Element kinematics

The finite element, see Figures 1 and 2, consists of two layers. The layer (a) rep-

resents the bridge whereas the layer (b) represents the track superstructure composed

by rails, sleepers and ballast. The slip at the interface between the two layers is con-

sidered. The element has four degrees of freedom. The horizontal displacements of
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Figure 2: Slip at the interface

the neutral axes of the two layers are not considered. It is assumed that the vertical

displacements v and rotations θ of the neutral axis of the two layers are the same. The

Bernoulli hypothesis is adopted, together with cubic shape functions, which gives

θ(x) =
∂v

∂x
= v′ (1)

v(x) = f1(x)v1 + f2(x)θ1 + f3(x)v2 + f4(x)θ2 (2)

with
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)3

(3)

f2(x) = x
(

1 −

x

L

)2

(4)

f3(x) = 3
(x

L

)2

− 2
(x

L

)3

(5)

f4(x) =
x2

L
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(6)

The bending strain and kinetic energy in the element are calculated by

φbs =
1

2
(EaIa + EbIb)

∫

L

(v′′)2 dx (7)

φk =
1

2
(ρaAa + ρbAb)

∫

L

(v̇)2 dx (8)

where Ei, Ai, ρi and Ii are the elastic modulus, the area, the density and the second

moment of area of the layer cross-section i.

This gives the classical stiffness and mass matrices as
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with

EI = EaIa + EbIb ρA = ρaAa + ρbAb (11)

As shown in Figures 1 and 2, the slip g at the interface between the bridge and the

ballast is obtained as

g = h θ (12)

which, introducing Equations (1) to (6), gives

g = hGd (13)

with

G =
[

f ′

1(x) f ′

2(x) f ′

3(x) f ′

4(x)
]

(14)

and

d =
[

v1 θ1 v2 θ2

]T
(15)

The effect of the ballast is modeled by a shear force F at the interface. This force

is taken as a non-linear function of the slip g. Following Müller et al. [8] and Ruge et

al. [9, 10], a bilinear law is adopted. It is shown in Figure 3 and defined by

F = F (g) C =
∂F

∂g
(16)

It can be observed that F is the resultant of the forces acting through the width of

the interface and along a unit length. F is therefore in N/m.

The internal forces f at the nodes which give the same virtual work as the force F
in the element are defined by

δdT
f =

∫

L

δgTF dx (17)

which, by introducing Equation (13), gives

f = h

∫

L

G
TF dx (18)

The corresponding tangent stiffness matrix, defined by
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Figure 3: Bilinear shear force-slip law

δf = kt δd (19)

is obtained from Equations (13), (16), (18) and (19) as

kt = h2

∫

L

G
TC G dx (20)

f and kt are calculated using three Gauss points along the length of the element

(the positions of the Gauss points are indicated by × in Figure 1). It can be noted that

G consists of polynomials of second order and consequently an exact integration is

obtained if C is constant and taken as

C =
Fo

go

(21)

which means that only the linear part in Figure 3 is considered. In that case, the

tangent stiffness matrix is constant and is obtained as

ktc =
C h2

30L
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−3L −L2

−36 −3L 36 −3L
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(22)

Finally, the free vibrations of the composite beam are expressed by the non-linear

equation

f(d, d̈) = md̈ + f + kd = 0 (23)

with

d̈ =
[

v̈1 θ̈1 v̈2 θ̈2

]T
(24)
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Equation (23) is solved step by step using the average acceleration method. For

that, the expression
∂f

∂d
= kt + k (25)

is needed.

The purpose of the present work is to study the free vibrations of the lowest bending

modes separately. Therefore the initial value of the displacement vector d (or the

acceleration vector d̈) is taken as the bending mode and is calculated by an eigenvalue

analysis of Equation (23) in which the non-linear term f is replaced by the linear term

ktc d (26)

The initial nodal velocities are taken to zero. By doing that, the vibration of the

bridge is harmonic with the bending mode as shape. Using these initial conditions,

the response of the structure is calculated by using time integration and the natural

frequency is obtained by considering the times at which the displacements are maxi-

mum. Then, by taking different initial amplitudes it is possible to study the variation

of the lowest natural frequencies in bending.

3 Example 1 - Experimental bridge

10 m

ballast

steel bridge

m1 m2m2

Figure 4: Experimental bridge - model

Bridge EaIa = 1.1631 · 108 Nm2

ρaAa = 635 kg/m

m1 = 3193 kg

m2 = 481 kg

Ballast EbIb = 1.2831 · 107 Nm2

ρbAb = 3099 kg/m

Table 1: Experimental bridge - data

The first application is the experimental steel bridge developed and tested by Fink

and Mähr at the Technical University of Vienna [11]. The main interest of this ex-

periment is that it shows clearly that the ballast has an influence on the mechanical

properties of the bridge and cannot be considered just as an additional mass.
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max ampl. (×10−5) m 175 302 407 489 532

measured freq. (Hz) 4.32 4.08 3.95 3.87 3.84

calculated freq. (Hz) 4.27 4.18 3.97 3.84 3.77

Table 2: Experimental bridge - results

The bridge, see Figure 4 and Table 1, has two main girders consisting of two HEA

beams. The bridge deck is made of timber beams and panel. The bending stiffness

(EaIa) of the bridge is taken as the ones of the two HEA girders. The track superstruc-

ture consists of a 55 cm thick ballast bed, reinforced concrete sleepers and two UIC

60 rails. The bending stiffness of the track superstructure (EbIb) is taken as the one

of the two UIC 60 rails, which means that it is assumed that bridge and the rails have

the same kinematics. The mass of the track superstructure (ρbAb) includes the ballast,

the rails and the sleepers. The modal properties of the bridge were measured using a

system of two eccentric weight vibration generators inducing a harmonic force. m1

and m2 are the mass of the framework and generator at midspan and the mass of the

framework at the first and third quarter. The bridge has been modeled using 8 beam

elements.

The bridge was first tested without the ballast superstructure. Two tests, with dif-

ferent eccentric weights, were performed. Both tests gave the same first resonance

frequency, 4.66 Hz. This shows that without the ballast the bridge has a linear behav-

ior. The calculated first natural frequency is 4.58 Hz. It can then be concluded that the

numerical model of the bridge is accurate.

The bridge was then tested with the ballast superstructure. Several tests, with dif-

ferent eccentric weights, were performed. In each test, the resonance appears at a

different frequency, in the range of 3.84 Hz and 4.32 Hz. The measured resonance

frequencies and the maximum midspan amplitudes at resonance are given in Table

2. The first natural frequency calculated by introducing only the stiffness of the rails

(EbIb) and the mass of ballast superstructure (ρbAb) is 2.66 Hz. These experimental

and numerical results show that the ballast introduces additional stiffness and that this

additional stiffness is not constant but depends on the amplitudes of the vibration.

The bilinear shear force-slip law between the ballast and the bridge has then been

added in the numerical model. Equation (23) has been solved by taking as initial dis-

placement the first calculated eigenmode with the five maximum midspan amplitudes

observed in the tests. In each case, the first natural frequency has been calculated

from the numerical solution of Equation (23) (free vibration response). The parame-

ters go and Fo have been calibrated so that the difference between the 5 measured and

the 5 calculated frequencies is as small as possible. For that, the MATLAB function

fminsearch has been used. The results shown in Table 2 have been obtained with

go = 7.30 · 10−4 m Fo = 1.45 · 104 N/m (27)

Very good agreement between the measurements and the numerical model can be

observed. The largest difference, obtained with a measured frequency of 4.08 Hz, is
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only 2.4 %.

It can also be observed that the obtained values are of the same magnitude as the

ones given in [9, 10] (go = 2 · 10−3 m, Fo = 2 · 104 N/m for unloaded ballasted track

in summer). However, it is not certain that a comparison is relevant since the values

in [9, 10] are used for static analyzes of horizontal temperature effects.

Finally, the idea of the proposed approach is to consider the ballast superstructure

as a beam. Then, the additional stiffness due to the ballast is introduced only through a

shear force at the interface between the ballast and the bridge. Since the ballast is con-

sidered as a beam, another alternative to introduce additional stiffness is to consider

some bending stiffness in the ballast beam. However, using this alternative, one must

increase the total bending stiffness of the system (EaIa + EbIb) from 1.3 · 108 Nm2 to

3.3 · 108 Nm2 in order to obtain a natural first frequency of 4.27 Hz. It is clear that the

ballast cannot give such additional bending stiffness and consequently this alternative

is not realistic.

4 Example 2 - Composite bridge

0.3 m 0.3 m

36 m

symmetry

Figure 5: Composite bridge - model

ballast

sub-ballast

concrete slab

sleepers
rails

steel beams

a1

a3
a2

Figure 6: Composite bridge - cross-section

The bridge at Skidträsk (see Figures 5 and 6) is a single span, concrete-steel com-

posite bridge carrying one ballasted track. Its span is 36 m. The rails are supported
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Elements L (m) Aa (m2) Ia (m4) ρa (kg/m3)
1 0.3 0.3662 0.3852 21645

2 0.25 0.3662 0.3852 21645

3 − 7 0.75 0.3564 0.3154 22023

8 − 11 1 0.4042 0.3424 20337

12 − 15 1 0.4744 0.3840 18490

16 − 21 1 0.5042 0.3958 17932

Table 3: Composite bridge - data

by concrete sleepers separated with a regular distance of 65 cm. These sleepers lie

on ballast composed of rock particles with a diameter around 5 cm. The depth of the

ballast layer is approximately 50 cm. The sub-ballast, composed by particles with a

diameter around 10 cm, has a depth of 50 cm. A reinforced concrete slab transfers the

load from the track to two main steel beams. The total width of the slab is 6.7 m and

its height varies between 30 and 40 cm. The steel beams are simply supported with

respect to vertical bending moments. The line of supports is skewed relative to the

longitudinal axis of the track.

The bridge has been modeled using 42 beam elements. The equivalent steel section

parameters (Ea = 210 GPa) are given in Table 3 for the 21 first elements, starting from

the left side. The properties of the additional elements are obtained by symmetry.

These properties have been calculated by considering a cracked concrete section. The

bending stiffness of the track superstructure (EbIb = 1.2831 · 107 Nm2) is taken as the

one of the two UIC 60 rails. The cross-section area and density of the ballast are 4 m2

and 2040 kg/m3, which, by adding the contribution of the rails gives ρbAb = 8280
kg/m.

The bridge has been instrumented to measure the vertical bridge deck acceleration

during and after the passage of trains. Three accelerometers situated at midpoint (a1

and a2) and at quarter-point (a3) has been used, see Figure 6.

This study is based on the free vibration of the bridge just after the passage of a

freight train at the speed of about 100 km/h. In order to determine the first natural

frequency in bending an average acceleration, defined by

av =
a1 + a2

2
(28)

has been computed. A lowpass digital Butterworth filter has then been applied in or-

der to remove the contribution of the other modes. The results are shown in Figure 7.

These results have been used to study the influence of the amplitudes of the vibrations

on the lowest natural frequency. The following method has been used: at each max-

imum value of the average acceleration, a corresponding natural frequency has been

calculated by using the maximum values before and after (see Figure 8):

f(avi) =
1

ti+1 − ti−1

(29)
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The first maximum points of the average acceleration diagram have not been used,

firstly because these amplitudes are affected by the filter, secondly because it is not

certain that these accelerations have been registered after the passage of the train.

The results are presented in Figure 9. It can be observed that the first natural fre-

quency in bending increases from 3.3 Hz to 3.85 Hz when the acceleration decreases

from 0.26 m/s2 to 0.03 m/s2.

The first natural frequency calculated without introducing the bilinear shear force-

slip law is 2.63 Hz, which is quite far from the experimental results. The shear force

between the bridge and the ballast has then been introduced in the numerical model.

The calibration has been performed using the same method as in the first example.

Five maximum amplitudes and corresponding natural frequencies have been taken

from Figure 9. In each case, Equation (23) has been solved by taking as initial accel-

eration the first calculated eigenmode with the maximum amplitude. The first natural

frequency has been calculated from the numerical solution of Equation (23). The pa-

rameters go and Fo have been calibrated so that the difference between the measured

and the calculated frequencies is as small as possible. For that, the MATLAB function

fminsearch has been used. The results shown in Table 4 has been obtained with

go = 2.103 · 10−5 m Fo = 6685 N/m (30)

Very good agreement between the measurements and the numerical model can be

observed. The largest difference, obtained with an acceleration of 0.03 m/s2, is only

1.3 %.

measured acc. (m/s2) 0.03 0.10 0.19 0.23 0.26

measured freq. (Hz) 3.84 3.75 3.60 3.46 3.30

calculated freq. (Hz) 3.79 3.79 3.60 3.42 3.32

Table 4: Composite bridge - first natural frequency

The second and third natural frequencies in bending have been also identified from

the records of the three accelerometers. However, the amplitudes of the corresponding

modes were too low to study the dependency between the natural frequencies and the

amplitudes. Therefore linear eigenvalues computations have been performed by using

the constant matrix in Equation (22). Three calculations have been performed. The

results are presented in Table 5. In the first calculation, the shear force at the interface

bridge/ballast is not considered. It can be observed that the computed first natural

frequency is not accurate but the computed second and the third frequencies are closed

to the measured one. In the second calculation, the shear force at the interface has

been introduced by taking the parameters go and fo obtained from the minimisation

procedure. Accurate results are obtained. It can be observed that the shear force has a

strong influence on the first natural frequency but only a slight influence on the second

and third ones. In the third calculation, the shear force is not considered and the total

bending stiffness of the system (EaIa + EbIb) has been multiplied by 2.05 in order to

obtain the first natural frequency measured with low amplitudes. It can be observed
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Figure 7: Composite bridge - average acceleration after filtering

that such a model is not appropriate, firstly because it is not realistic that the ballast

can give such an additional stiffness, secondly because the calculated second and third

frequencies are far from the measured ones.

measured frequencies 3.3-3.8 11 23

case 1 C = 0 2.63 10.4 23.2

case 2 C = 6685/2.103 · 10−5 3.79 11.7 24.6

case 3 C = 0 (EaIa + EbIb) × 2.05 3.77 14.8 33.2

Table 5: Composite bridge - linear natural frequencies

Finally, in the first example, the experimental bridge has been tested with and with-

out ballast and thereby the contribution of the ballast could be clearly identified. This

was not the case for the Skidträsk bridge and therefore the above study presents cer-

tain uncertainties concerning the numerical model. The skew has not been considered.

However, the bridge is rather long and the effect of the skew is therefore not important.

The equivalent steel stiffness in Table 3 have been calculated by considering a cracked

concrete section, which can be questioned. However, calculation using an uncracked

section gives a first natural frequency of 2.80 Hz (instead of 2.63 Hz), which is still far

from the experimental values (3.3Hz - 3.8 Hz). The bridge is simply supported, but

the continuity of the ballast and the rails may introduce end moments at the supports.
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Figure 8: Composite bridge - computation of the first natural frequency

This effect has not been considered.

5 Conclusion

In this paper, a new and simple 2D beam finite element which considers the effect of

the ballast on vibrations of railway bridges has been presented. The idea is to introduce

a stiffness associated to the slip between the bridge and the track superstructure. This

stiffness can be considered as linear or non-linear. For the non-linear case, a bilinear

law has been adopted.

This model has been used in two numerical applications to study the influence of

the ballast on the lowest bending natural frequencies of bridges. Very good agreement

with experiments has been obtained. In particular, it has been shown that the model

can catch the influence of the amplitudes of vibrations on the value of the lowest

bending natural frequency.

It is clear that additional experimental and numerical studies are required in order

to fully validate the proposed finite element model. One issue is to check if a bilinear

law is enough or if a more advanced non-linear model is required. Another issue is to

considered the additional damping due to the ballast. Finally, this model is currently

used to get a better estimation of the dynamic response of the Skidtrsk bridge due to
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Figure 9: Composite bridge - variation of the first natural frequency

the passage of trains, and consequently a better estimation of the fatigue life.
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