
Abstract

Code-compliant accelerograms adopted for time-history dynamic analyses are required

to be compatible with the elastic design spectrum defining the seismic action. The

problem then arises to generate spectrum-compatible accelerograms while maintain-

ing realistic non-stationary characteristics, which in turn may play an important role

in the non-linear seismic response. In this paper, the harmonic wavelet analysis is re-

sorted to as a potent tool to: first, deterministically modify an accelerogram to match

the target spectrum; second, to randomly generate an arbitrary number of signals with

the same non-stationary characteristics of the parent accelerogram.

Keywords: artificial accelerograms, earthquake engineering, harmonic wavelet trans-

form, signal processing, spectrum-compatible accelerograms.

1 Introduction

Building codes define the seismic action through the elastic design spectrum (EDS),

which is a way to represent synthetically the seismic hazard at a given site. Further-

more, the response spectrum analysis is widely recognised as the reference method

of analysis and design for conventional earthquake-resistant structures. In order to

achieve a superior level of understanding of the structural and non-structural response,

however, non-linear time-history analysis has to be preferred. Such analysis is par-

ticularly useful for non-conventional buildings, when the inelastic behaviour of the

structural components must be accurately modeled and cannot be simply accounted

for with the behaviour factor q. One of the key issues with the non-linear time-history

analysis is the selection of an appropriate set of seismic inputs [1]. International codes

allow using both natural and artificial time-histories of ground accelerations but, be-

sides generic prescriptions of being representative of the site hazard from a seismo-
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logical standpoint, their on-average spectrum-compatibility is required: that is, if the

elastic response spectrum (ERS) is computed for each accelerogram of the suite, the

mean value of the spectral ordinates for each period of interest satisfies the compati-

bility conditions with the corresponding ordinate of the EDS, and therefore using this

suite to run a linear-elastic time-history analysis will lead to the seismic response as

the EDS prescribed by the code.

In this context, the direct use of natural accelerograms is an attractive option, but

unfortunately they are often not available in a sufficient number at a given site to

produce an acceptable structural assessment, therefore rising the need for artificial

accelerograms. The latter can be either simulated signals or recorded accelerograms

modified to cope with the required prescriptions. The EDS matching is not, however,

a trivial prescription, mainly because the EDS given by seismic codes is a synthetic

and indirect representation of the expected ground shaking at a given site under the

design scenario (i.e. for given return period and soil conditions), while an accelero-

gram gives a direct representation of the seismic action. Importantly, the mapping

between ERS and accelerograms is not bijective, since accelerograms provide richer

information. Indeed, intensity, frequency content and duration of the ground shaking

contribute altogether to build the ERS, but it is not possible to find them back: while a

unique ERS can be computed from an accelerogram, an infinite number of accelero-

grams can be associated to a target EDS. It follows that some of these quantities must

be specified to find the spectrum-compatible accelerograms (e.g. overall duration and

energy content). In other words, the richer information allowed by the direct use of ac-

celerograms, which is what makes worthwhile a non-linear time-history analysis even

if computationally more demanding, must be provided apart from the EDS offered by

the seismic code.

A number of different methods are available in the literature to simulate accelero-

grams (for a review see [2, 3]), the vast majority of them being stochastic, i.e. they

deal with ground motion signals as samples of a non-stationary random process [4–9].

Nonetheless, accelerograms generated in this way are not always fully satisfactory,

especially for geotechnical systems (e.g. Italian code NTC2008 bans their use) and

for analyses where the energy content plays a crucial role ( [10, 11]). Signal process-

ing comes helpful then to analyses, generate and manipulate the accelerograms. A

common practice is to use the Fourier Transform (FT) to look at the signals in the

frequency domain, where the distribution of the seismic energy at different frequen-

cies becomes apparent. On the other hand, the non-stationary characteristics of the

accelerogram can be properly analysed in the time domain. As a matter of fact, time

and frequency domains are in a kind of dualism because they are capable of high-

lighting some of the signal features while hiding some others. Joint time-frequency

signal representations can be therefore deemed as a powerful strategy to analyse the

evolutionary frequency content of accelerograms, and therefore getting the best from

the two domains. Among them, the wavelet analysis [12] is a very promising tool, as

it exploits localised functions (wavelets) instead of ever-lasting harmonics as a base to

decompose a signal. The Harmonic Wavelet Transform (HWT) enjoys the additional

advantage of overcoming the limitations of the classical FT without losing a meaning-
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ful engineering interpretation in terms frequency content.

In this paper, a novel method based on the HWT is proposed to generate a set of

spectrum-compatible accelerograms, which allow satisfying the compatibility condi-

tions with a target EDS starting from a parent accelerogram while retaining the bulk

of its non-stationary features in terms of amplitude and frequency. In a first stage, the

parent accelerogram is deterministically modified in order to be spectrum-compatible.

In a second stage, an arbitrary number of accelerograms is randomly generated, repro-

ducing the joint time-frequency properties of the spectrum-compatibilised accelero-

gram. The numerical results demonstrate that the HWT can be successfully resorted

to for solving the EDS generation problem while preserving the non-stationary char-

acteristics of a given accelerogram.

2 Harmonic wavelet analysis

Wavelet analysis is a potent tool allowing a joint time-frequency representation of sig-

nals, therefore overcoming the main limitation of the classical Fourier analysis which

does not possess time domain localisation capability. However, it must be stressed

that the Heisenberg’s uncertainty principle [12] defines a limit on the precision with

which a signal can be simultaneously represented in time and frequency domain. The

more the time domain detail is enhanced, the more the frequency one becomes poor,

rising the need to find a compromise. The wavelet analysis consists of projecting the

signal on a convenient basis of orthogonal functions, called wavelets, which can be

generated by scaling and shifting a mother function (mother wavelet) [12]. In the con-

tinuous wavelet transform, the coefficient au,s at scale s and position u of the signal

f(t) is given by:

au,s =

∫ ∞

−∞

f(t)ψu,s(t)dt, (1)

where the over-bar denotes the complex conjugate, while:

ψu,s(t) =
1√
s
ψ

(

t− u

s

)

(2)

is the mother wavelet ψ(t) scaled by the parameter s ∈ R
+ (controlling the frequency

distribution) and shifted by the parameter u ∈ R (localising the function at around

t = u). The inverse continuous wavelet transform is given by:

f(t) =
1

C

∫ +∞

−∞

∫ +∞

0

1

s2
au,s ψu,s(t) ds du, (3)

in which C is a normalisation constant.

Unlike a harmonic wave, which is an ever-lasting periodic function, a wavelet is

a decaying function, and this feature gives to the wavelet analysis a time localisa-

tion capability. Interestingly, families of wavelets can be generated in a way to form
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orthogonal bases, so that the wavelet transform is bijective, giving a unique represen-

tation for any signal. This is the case, for instance, of the harmonic wavelets proposed

by Newland [13, 14], which are complex-valued functions with a box-shaped FT:

Ψ(ω) = FT〈ψ(t)〉 =

{

1/2π for 2π ≤ |ω| < 4π;

0 elsewhere.
(4)

The corresponding complex valued harmonic mother wavelet in time domain is:

ψ(t) =
ei4πt − ei2πt

i 2π t
. (5)

It should be noted here that Eqs. (4) and (5) refer, without loss of generality, to the

case of a signal of unitary time length, i.e. 0 ≤ t ≤ 1, and therefore meaningful energy

content for ω > 2π.

The first discrete scheme proposed by Newland [13] to generate the whole family

of orthogonal wavelets from the mother one is called dyadic, and comes from letting

s = 2−j , u = 2−j k, namely changing the argument in Eq. (5) from t to (2jt− k):

ψ̂j,k(t) = ψ2−jk,2−j(t) = ψ(2j t− k), (6)

where j > 0 and k ∈ [0, 2j] are integers, and the hat denotes the use of a discrete

wavelet transform. By doing this, the shape of the wavelet is not changed but its

horizontal scale is compressed by the factor 2j , being j the level of the wavelet, while

its position is translated by k units at the new scale. As we can see in Figure 1(a),

at the generic level j, the wavelet’s Fourier transform occupies the band from 2π 2j

to 4π 2j , which is j octaves higher up the frequency scale. The HWT coefficients are

given by:

âj,k = 2j

∫ +∞

−∞

f(t) ψ̂j,k(t) dt (7)

and, since seismic signals are always real, the expansion (reconstruction) formula can

be expressed as:

f(t) = 2 Re







∑

j

2j
∑

k=0

âj,k ψ̂j,k(t)







, (8)

where the first summation is intended over all j indexes. The second scheme pro-

posed by Newland [14] leads to the generalised HWT. Instead of splitting the fre-

quency axis into octave bands of increasing width, the whole set of band wavelets is

generated by:

ψ̂{m,n}(t) =
ei n 2πt − ei m 2πt

i2π (n−m) t
, (9)

which in the frequency domain corresponds to:

Ψ̂{m,n}(ω) = FT〈ψ̂{m,n}(t)〉 =

{

2π
n−m

for 2πm ≤ ω < 2π n;

0 elsewhere.
(10)
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Figure 1: Representation in the frequency domain: (a) dyadic scheme; (b) an example

of generalised scheme for harmonic wavelet base with non-overlapping intervals (ni =
mi−1) of arbitrary bandwidth (adapted from Newland [14]).

Interestingly, if we put m = 2j and n = 2j+1, we obtain again the dyadic scheme.

Wavelet translation by a time step k/(n−m) is achieved by:

ψ̂{m,n},k(t) =
ei n 2π(t− k

n−m) − ei m 2π(t− k
n−m)

i2π (n−m)
(

t− k
n−m

) = ψ̂{m,n}

(

t− k

n−m

)

, (11)

and in the frequency domain corresponds to a complex phase rotation:

Ψ̂{m,n},k(ω) = FT〈ψ̂{m,n},k(t)〉 =

{

2π
n−m

exp
(

−iω
n−m

k
)

for 2πm ≤ ω < 2π n;

0 elsewhere.

(12)

Reconstruction formula is readily written (like Eq. (8)) as:

f(t) = 2 Re







∑

{m,n}

n−m
∑

k=0

a{m,n},k ψ̂{m,n},k(t)







, (13)

where the first summation is intended over all the {m,n} pair. According to Newland

[14], with this generalised scheme we can no longer talk about wavelet level j, while
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we shall use the terminology level {m,n} to denote a wavelet in the frequency band

2πm to 2π n, where n > m, as it is apparent in Figure 1(b). To form a complete

set of wavelets, adjacent levels must have box-shaped FTs touching each other but do

not overlapping, so that all values of ω are included and no one is taken twice. Apart

from this, there are no further rules about how to choose the {m,n} pairs and hence

divide the frequency axis. Importantly, while the unique scaling factor of the dyadic

scheme relate the bandwidth and the central frequency of each level, the incorporation

of an additional parameter in the generalised scheme provides more flexibility in the

treatment of the signal.

Aimed at highlighting the key advantage of the HWT in comparison with the

traditional FT, and therefore the reason for exploiting the HWT in this study, Fig. 2

offers the representation in both a joint time-frequency domain (top-row) and in the

time domain only (second row) of a complex-valued harmonic wave (left column)

and of a harmonic wavelet (right column). It can be seen that the harmonic wave is

perfectly localised in the frequency domain (Fig. 2(a)), while being a periodic function

no localisation is achieved in the time domain (Fig. 2(c)). The harmonic wavelet is

still an unbounded function, as it decades with t−1, but is well localised around t = tk
(Fig. 2(d)), and in frequency domain does not occupy a single frequency, but a band

spanning from ωm to ωn (Fig. 2(b)). When it comes to extract a component from a

signal, the advantage of the HWT becomes apparent by comparing Figs. 2(g) and 2(h).

In the first case, more harmonic waves are taken within the frequency band [ωm, ωn]
and it is not possible to localise their contribution in the time axis; in the second case,

on the contrary, considering wavelets at the same level {m,n} and centred in a given

time interval allows a joint localisation in both time and frequency domain.

3 Spectral matching method

3.1 Position of the problem

The main goal in modifying a natural record to match a target EDS should be preserv-

ing as much as possible its features affecting the structural response. Unfortunately,

depending on the type of analysis, there are many characteristics which could be con-

sidered, and the choice on which to focus is not unique. The proposed method aims to

bring little modification, in terms of overall energy content, to fit the response spec-

trum into the zone bounded by the 90% − 130% of the target EDS. The lower bound

is given by the code, prescribing spectral values to be at least 90% of the reference

EDS, while the upper bound has been assumed as 130% of the target EDS, even if no

specific provisions are given.

In order to minimise the modifications on the natural record of ground accelera-

tion, the proposed method exploits the idea that, once the maximum response value

has been reached by a single-degree-of-freedom (SDoF) oscillator of a given natural

period Tj , what happens thereafter does not affect the response spectrum ordinate, and

hence there is no reason to modify that part of the record. It follows that, to reach this
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Figure 2: Single harmonic wave (a,c) versus single wavelet (b,d); sub-signal extraction

by FT (e,g) versus HWT (f,h).
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goal, we need to localise the instant τj at which the maximum response is achieved

and then adjust the record surgically in the neighborhood of this time instant. Where

the FT-based methods may bring adjustments localised in frequency domain only, the

proposed method applies joint time-frequency localised modifications using the gen-

eralised HWT. According to Eq. (13), when the generic {m,n} band in the frequency

domain has to be modified, a set of n−m k-indexed wavelets ψ̂{m,n},k(t) are needed

to fully re-construct this frequency sub-component of the signal f(t). Letting tf be the

overall signal duration, the kth of these wavelets is centred at time k/(n−m) tf . Since

k goes from 0 to n−m, the first wavelet is centred at t = 0, while last one at t = tf .

It must be noticed that uncertainty principle holds, and thus the more precise localisa-

tion we have in the frequency domain by means of a narrow band, the less resolution

we have in the time domain, with a longer time distance between the centres of two

consecutive wavelets. Knowing when the maximum response is achieved by a SDoF

system with a certain natural circular frequency ωj = 2π/Tj , the proposed procedure

consists in modifying the coefficients of the two wavelets centred after and before that

instant, along with the preceding coefficients covering the assumed time for the oscil-

lator to reach its steady state response (or, if the maximum instant comes too close to

the beginning of the record, all the coefficients coming before the maximum instant).

For this purpose we will refer in the following to a time-of-(response)maximum (ToM)

spectrum SToM(Tj), defined as the time instant at which the generic SDoF oscillator

of natural period T and a reference value of the viscous damping ratio ζ0 takes the

absolute maximum value.

Considering a SDoF with natural frequency ωj and displacement uj(t), the equa-

tion of motion reads:

üj(t) + 2ζ0 ωj u̇j(t) + ω2
j uj(t) = −f(t). (14)

where f(t) is the ground acceleration and ζ0 is the relative damping which will be

taken hereafter always equal to 5%. The ERS in terms of pseudo-acceleration (PA) is

given by:

SPA(Tj) = ω2
j max

0≤ℓ≤Nt

{|uj(tℓ)|}, (15)

and we define the ToM spectrum as:

SToM(Tj) = τj ⇔ SPA(Tj) = ω2
j |uj(τj)|. (16)

where tℓ = ℓ∆t is the ℓth the Nt = tf/∆t discrete time instants at which the response

is computed, ∆t being the sampling interval. The ERS and the ToM spectrum are cal-

culated for NT frequencies, taken from the discrete frequencies of the signal, which

are ωj = j∆ω with j going from 1 to Nt/2, in the range of periods where compati-

bility is of interest (0.1 ≤ Tj ≤ 4.0s in this study) and ∆ω = 2π/(tf ). We assume

the duration of the transient response of the SDoF oscillator to be ended when its

contribution is less then 5% of the stationary response amplitude [15], namely when

t > ∆τ(ωj) = 3/(ζ0ωj).
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3.2 Proposed algorithm

The first step of the proposed matching procedure is to scale the natural accelerogram

by a convenient factor [16] given by:

α(0) = arg min
α>0







√

√

√

√

1

NT

NT
∑

j=1

(

αS
(0)
PA (Tj) − SED(Tj)

SED(Tj)

)2






, (17)

which leads to minimise the root mean square (RMS) discrepancy between EDS given

by the code, SED, and the ERS of the selected accelerogram, SPA, at the 0th iteration.

The method then proceeds with iterations until the code specifications of spectrum

compatibility are met. The generic rth iteration requires the following five steps:

1. The current/target spectral ratios are computed:

R
(r)
j = min

{

S
(r)
PA (Tj)

S♭
ED(Tj)

,
S♯

ED(Tj)

S
(r)
PA (Tj)

}

(18)

where S♭
ED(Tj) and S♯

ED(Tj) are the target EDS, multiplied respectively by 0.9

and 1.3 to obtain the compatibility zone boundaries, and S
(r)
PA (Tj) is the ERS

related to the signal at the current iteration. If all R
(r)
j ≥ 1, then the spectrum-

compatibility is achieved and no further iterations are needed. If not, the worst

point in terms of bounded spectral compatibility in the range of interest is found

as:

j∗ = arg min
1≤j≤NT

{R(r)
j }. (19)

In this way the iteration will be focused on the point having the biggest relative

distance from the bounded zone, and the intervention in the rth iteration will

be localised in both time domain around t = τ (r) = τj∗, and frequency domain

around ω = Ω(r) = ωj∗.

2. The frequency band [ω
(r)
m , ω

(r)
n ] to be modified in the current iteration is defined

by means of its central frequency Ω(r) and its bandwidth B(r), given by:

B(r) = (N (r)
ω − 1)∆ω, (20)

and therefore:

ω(r)
m = Ω(r) −B(r)/2; ω(r)

n = Ω(r) +B(r)/2, (21)

with the conditions:

N (r)
ω ≥ Nω,min;

2π

ω
(r)
m

− 2π

ω
(r)
n

≥ ∆Tmin, (22)

leading to have a minimum bandwidth of Nω,min discrete frequencies or a min-

imum size ∆Tmin in terms of natural periods. The two parameters have to be

chosen properly to improve the effectiveness of the iterative scheme, and more

details are offered in the following.
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3. The sub-signal on which the correction factor will be applied is localised in

both time and frequency domains. Firstly, the wavelet transform coefficients

â
(r)

{m(r),n(r)},k
are calculated by a discrete convolution of the signal f (r)(t) with

the modifying band wavelets ψ̂{m(r),n(r)},k(t/tf ):

â
(r)

{m(r),n(r)},k
=

Nt
∑

ℓ=0

f
(r)
ℓ ψ̂{m(r),n(r)},k

(

tℓ
tf

)

; k = 1, ..., (n−m), (23)

then the sub-signal is obtained as:

f̃ (r)(t) = 2 Re











k
(r)
2
∑

k=k
(r)
1

â
(r)

{m(r),n(r)},k
ψ̂{m(r),n(r)},k

(

t

tf

)











(24)

which is a summation of the wavelets weighted with the HWT coefficients

â
(r)

{m(r),n(r)},k
, and limited for k in the interval [k

(r)
1 , k

(r)
2 ]. It is worth noting that

k
(r)
2 ≤ n(r) −m(r) and k

(r)
1 ≥ 0, and they can be evaluated as:

k
(r)
2 = int

{

τ (r)

tf
(n(r) −m(r))

}

+ 1; (25)

k
(r)
1 = k

(r)
2 − int

{

∆τ (r)

tf
(n(r) −m(r))

}

+ 1; (26)

meaning that the time interval in which the bulk of the modification occurs

ideally ends at the first k index after the time of maximum response τ (r) =
SToM(2π/Ω(r)) and begins at the first k index before it, minus the conventional

transient duration ∆τ (r) = ∆τ(Ω(r)) (see Fig. 3).

4. The displacement response ũ
(r)
j∗ (t) can be evaluated by solving the equation:

¨̃u
(r)
j∗ (t) + 2 ζ0 ωj∗

˙̃u
(r)
j∗ (t) + ω2

j∗ũ
(r)
j∗ (t) = −f̃ (r)(t), (27)
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which rules the seismic vibration of a SDoF linear oscillator having the natural

circular frequency Ω(r) and subjected to the sub-signal f̃ (r)(t). Then a product

function is defined by:

P
(r)
ℓ = u

(r)
j∗,ℓ ũ

(r)
j∗,ℓ, (28)

whose maximum value is sought as:

ℓ∗ = arg max
0≤ℓ≤Nt

{P (r)
ℓ } (29)

which therefore delivers the value ℓ∗ for which the product function between the

response to the current signal, f (r)(t), and the response to the current sub-signal,

f̃ (r)(t) takes the maximum.

5. The correction factor for the rth iteration is calculated by:

α(r) =
D(r) − u

(r)
j∗,ℓ∗

ũ
(r)
j∗,ℓ∗

, (30)

where:

D(r) =
1

(Ω(r))2

{

1.05S♭
ED(T

(r)
j∗ ) if SED(T

(r)
j∗ ) > S

(r)
PA (T

(r)
j∗ );

0.95S♯
ED(T

(r)
j∗ ) if SED(T

(r)
j∗ ) < S

(r)
PA (T

(r)
j∗ );

(31)

with T
(r)
j∗ = 2π/(Ω(r)). The modified signal at the present iteration is finally

found as:

f (r+1)(t) = f (r)(t) + α(r) f̃ (r)(t), (32)

and the next iteration can begin.

It is worth noting here that the last step is based on the superposition principle, as at

the generic time instant the total response will be given by the summation of the re-

sponses to the two separate inputs, the signal and its time-frequency jointly-localised

component. Since the latter component has been related to the spectral value being

adjusted both in time and frequency domain, it is likely the best correlation between

the two separate responses is achieved at the instant of maximum product. Computing

the product function P
(r)
ℓ is therefore necessary to ensure that the modification will

have the desired effect on the signal. It happens that up-modification always works,

while the down-modification sometimes fails to reduce the spectral value to the de-

sired level. In fact, while the response peak affecting the spectral value is reduced,

there could be another peak located somewhere else on the time axis. Nonetheless,

by numerical testing, we found a satisfactory rate of success in down-modification,

of about 95%. It may be worth emphasising here that in Eq. (30) we do not take

into account the difference between the target spectrum value and the current itera-

tion spectrum value, but we consider the response absolute value of the related SDoF

oscillator at the instant of maximum product ℓ∗ and generally, in terms of displace-

ment spectrum, S
(r)
D (T

(r)
j∗ ) = S

(r)
PA (T

(r)
j∗ )/(Ω(r))2 > u

(r)
j∗,ℓ∗ . During extensive numerical

testing this scheme has been proved to be very effective.
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3.3 Discussion

The presented algorithm can effectively adjust spectral response values by means of

modifications localised both in the time and in frequency domain. Despite that, its

capability of matching a spectral bounded zone on a range of periods of interest does

not follow trivially, especially as ideally the EDS matching should be achieved with

a reasonable number of iterations. The fact is that, because of the dispersion of the

dynamic amplification function around the natural frequency of the SDoF oscillator,

the adjustment brought to a value on the spectrum affects significantly those in its

neighborhood too.

Moreover, focusing on time domain, we notice that, despite harmonic wavelets

have localisation capabilities, these functions are centred on discrete points which

usually do not match with the points where the original signal needs to be modified.

As a result, when the original ERS presents sharp peaks, the procedure may encounter

difficulties to fit it in a bounded zone on a wide range of periods. Stalling in con-

vergence may sometimes be caused by a sort of ping-pong effect, i.e. the algorithm

spends several iterations attempting to fit the spectrum in a certain range: every time

it does an up-modification, a down-modification is necessary in the next iteration for

a very close value, almost nullifying the effect of the preceding adjustment, and so on.

This problem can be overcome by a proper choice of the parametersNω,min and ∆Tmin,

which rule the size of the band subjected to modification (see step (2) above). It should

be noted that these two parameters affect different ranges: because of the constant an-

gular frequency discretisation scheme (ωj = j∆ω), Nω,min limits the bandwidth in the

long periods range, while ∆Tmin affects the shorts periods range.

Bearing in mind that a compromise between time and frequency domain localisa-

tion must be accepted, several schemes were tested for the definition of the frequency

band for the generic modification. The idea of the worst band rather then the worst

value (sought in step (1)) was also considered, attempting to adjust the widest possible

band at every step. While it was potentially capable of reducing the number of iter-

ations needed, the drawbacks associated with this approach were the implementation

complexity and the lack of a meaningful central frequency for the computation of the

modification factor, which eventually let us prefer the scheme of steps (1-2) above.

3.4 Numerical examples

In order to assess the effectiveness of the proposed procedure, several recorded ac-

celerograms were studied to cover different scenarios. The proposed HWT-based

method was used to fit them on the Eurocode (EC8) spectral shapes for a peak ground

acceleration (PGA) of 0.36 g, considering the best and the worst initial matching in

terms of RMS discrepancy (Eq. (17)). As a term of comparison, a FT-based method

was implemented by means of the same algorithm described in the preceding section,

but modified in step (3) letting k1 = 0, k2 = Nt/(n − m), which means that all k-

indexed coefficients of a wavelets train are used, and hence no time localisation is

achieved. By doing this, we can quantify the advantages of the time localisation capa-
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Figure 4: Elcentro, matching with EC8 soil B spectral shape (best matching)

bilities of the HWT over the FT, in bringing the minimum modification to the original

record.

Due to the space limitation, the results are presented herein for just three accelero-

grams, whose main characteristics (sample interval, moment magnitude, focal depth

and Joyner-Boore distance, PGA) are listed in Table 1. The El Centro record has been

considered because its ERS closely resembles the EC8 EDS shapes. The best in terms

of initial RMS matching (Eq. (17)) with EC8 spectral shapes is the soil type B (see

Table 2 and Fig. 4), and the advantage of the proposed HWT-based procedure over

an FT-based approach is apparent considering that the energy content rise due to the

modification (∆E) is less than a half. The Erzincan accelerogram has been chosen as

earthquake site/component ∆t[s] Mw depth/dist[km] PGA[g]

Imperial Valley 1940 ElCentro/N-S 0.010 7.0 8.80 / 6.09 0.258

Erzincan 1992 Erzincan/E-W 0.005 6.7 27.00 / 0.00 0.495

Irpinia 1980 Calitri /E-W 0.005 6.9 15.00 / 13.30 0.175

Table 1: Cases of study
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Figure 5: Erzincan, matching with EC8 soil D spectral shape (best matching)

an example of near-fault record, characterised by an impulse in terms of ground ve-

locity and displacement and also in this case the best initial RMS matching (with EC8

soil type D) has been considered. Finally, the Irpinia record has been selected because

of its peculiar nature showing a double intense phase, due to a two-stage fault rupture.

In this case the results are shown for the worst matching spectral shape (A), providing

an example of the effectiveness of the procedure in the most challenging scenario.

In all the three cases, the performance of the proposed HWT-based correction, due

to its joint localisation in time and frequency, is better than the FT-based correction,

for which the increase in the total energy of the signal, ∆E, is doubled, meaning

that more modifications have been introduced to achieve the spectrum-compatibility

requirement, and hence the original characteristics of the accelerograms have been

more heavily affected. This clearly emerges also from a close look at the time histo-

ries reported in sub-graphs (a) of Figs. 4 to 6, showing that the iterations are much

more localised in the HWT-based procedure, and in sub-graphs (c) as well, plotting

the cumulated energy of the signal, which raises further for the FT-based procedure.

Sub-graphs (b) show that both HWT and FT allow achieving the compatibility with

the target spectrum, even if the original ERS (recorded/scaled) and the EDS supplied

by the building code have very different shapes (see in particular Fig. 6(b)). Sub-
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Figure 6: Irpinia, matching with EC8 soil A spectral shape (worst matching)

graphs (d) show the ToM spectra, and once again the HWT has to be preferred since

the FT tends to disturb much more the original distribution of the times of response

maximum. From a close look at Figs. 4 to 6(a), it is apparent how the correction ap-

plied to the signal (difference) is localised in the case of the proposed method, while it

is spread over the overall duration for the FT-based procedure. As a result the energy

increase is much smaller (Figs. 4 to 6(c)). Figs. 4 to 6(b) show how both methods

manage to fit the spectrum in the target zone, while from Figs. (d) it can be seen that

the proposed method brings a smaller modification in terms of time instants when the

maxima of the response are experienced.

FT HWT

earthquake target shape α0 RMS0 ∆E RMSf ∆E RMSf

ElCentro B (best) 1.361 0.162 +36.4% 0.132 +16.9% 0.152

Erzincan D (best) 1.106 0.237 +107.1% 0.137 +46.3% 0.140

Irpinia A (worst) 1.017 0.208 +201.9% 0.157 +68.7% 0.136

Table 2: matching details
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4 Stochastic generation procedure

In the field of stochastic time history generation, a typical approach is to: firstly, as-

sess a function capable of describing the features of interest about the phenomenon

being simulated, in terms of time-evolving frequency and amplitude; secondly, use a

generation procedure to obtain the needed samples. The main difficulty is to describe

with the same function both time and frequency domain features, which inevitably

need a compromise due to the Heisenberg’s uncertainty principle. In the case of seis-

mic ground motions other difficulties arise because of the lack of records in such a

quantity to do statistically reliable assessment on the phenomenon. For this reason we

propose a stochastic generation procedure that allows generating the samples without

the need to formulate a spectral function. A common practice (see [5] and [17]) for

generating a sample of a stationary Gaussian process is summing a great number N
of cosine wave with random phases:

f(t) =
√

2
N
∑

j=1

√

2Sf f (ωj) ∆ω cos(ωjt+ φj), (33)

where Sff (ω) is the power spectral density of the random process, φj are a set of inde-

pendent random variables uniformly distributed on [0, 2π), j = 1, 2, ..., N , ωj = j∆ω,

and f(t) is a generated sample. Note that the simulated process is asymptotically gaus-

sian as N becomes large due to the central limit theorem. The samples can be modu-

lated afterwards by using a deterministic function A(t), but the frequency content will

remain stationary. A straightforward extension of the (33) to the non-stationary case

is provided by:

f(t) =
√

2
N
∑

j=1

√

2A2(t, ωj)Sff (ωj) ∆ω cos(ωjt+ φj), (34)

where A2(t, ω) is the the non-stationary amplitude and frequency content.

As a natural extension of this traditional procedure, in this study the performance

of a phase angle rotation of the harmonic wavelets to achieve the randomisation of the

present signal has been investigated. To do this, 2,000 samples have been generated

starting from the spectrum-compatibilised El Centro 1940 accelerogram by using the

dyadic (see Eqs. (6) to (8)) phase randomisation procedure. Fig. 7(a) compares the

parent signal (gray line) and a generic sample (black line), and the magnified time in-

terval shows that the two time histories are quite similar, meaning that the HWT-based

generation method adopted for this accelerogram has not altered characteristically the

parent time history, therefore preserving most of its non-stationary characteristic. This

consideration is confirmed by the standard deviation of the 2,000 samples (Fig. 7(c)),

which mirrors quite closely the envelope of the parent signal, and average of the cor-

responding 2,000 FT spectra (Fig. 7(d)), which shows a peculiar piece-wise constant

distribution, i.e. the HWT-based randomisation tends to uniformly distribute the en-

ergy level in each frequency band determined by the Newland’s dyadic scheme (see
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Figure 7: HWT dyadic phase randomisation

Fig. 1(a)). It can be also observed that the 2,000 samples compare very well with the

target EDS in terms of average (solid line in Fig. 7(b)), while showing their statistical

dispersion (dashed line in Fig. 7(b)) can be perceived as acceptable (at least within

the linear range) for earthquake engineering applications. Further investigations, how-

ever, will be required to assess the effects on different types of non-linear structural

behaviour.

It is worth stressing here that the proposed HWT-based procedure can be seen as

a sort of optimal compromise, in terms of the emphasis in preserving the parent’s in-

formation in either time domain or frequency domain. As a matter of fact, adopting

an extreme approach, focused on just one of the two domain, is not able of deliver

useful results for seismic design purposes. To further highlight this point, Figs. 8 and

9 show the results obtained by preserving untouched the available information either

in the frequency domain or in the time domain, respectively. In the first case, the

2,000 samples show a deterministic FT spectrum (Fig. 8(d)), i.e. the frequency con-

tent is perfectly preserved, by they become realisation of a stationary random process

(Fig. 8(c)). The opposite happens in the second case, where the time history of the

parent ground acceleration is used as a deterministic modulating function of random

white noise (Fig. 8(d)). Interestingly, in both cases the average ERS fails to satisfy
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Figure 8: FT phase randomisation

the spectrum-compatibility requirement, which is a further proof that both time and

frequency domain bear useful information for the purpose of the seismic analysis of

structures.

5 Concluding remarks

In this paper, the HWT was found to be a very powerful tool for dealing with seismic

signals and their inherent non-stationarity, both in terms of amplitude and frequency

content, which in turn may play a crucial role for the purposes of analysis and de-

sign of earthquake-resistant structures. Since the HWT allows a joint time-frequency

representation and manipulation of signals, two new procedures have been proposed,

which can be readily used: first, a deterministic modification method, aimed at achiev-

ing the spectral matching of a given accelerogram to a target EDS; second, a stochastic

generation procedure, which randomises a parent signal to get an arbitrary number of

samples with similar non-stationary characteristics.

It has been shown that the spectral matching method, working in an iterative way,

brings modifications to the signal which are localised both in time and frequency do-
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Figure 9: WN multiplication

main, and for this reason is able to achieve the required spectral compatibility with

minimum modification in terms of additional energy content. It has been also shown

that the randomisation method, consisting of a phase angle rotation of the wavelets,

allows generating the required number of fully non-stationary samples without the

need of defying the evolutionary power spectral density of the ground acceleration,

and provides an effective compromise while retaining information from both time and

frequency domain.

Extensive numerical investigations have demonstrated the excellent performance

of the proposed methods, particularly in comparison with the results achievable with

a traditional FT-based approach. Further study will be required to ascertain the effects

of the HWT-based modification and generation on the seismic response of non-linear

structures.
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