
Abstract

In this paper the deformations of simply supported isotropic and orthotropic beams

subjected to thermal loadings are analysed. The governing equations are derived from

the principle of virtual displacements accounting for the temperature as an external

laod only. The required temperature field is not assumed a priori, but is determined

solving Fourier’s heat conduction equation. Numerical results for temperature, dis-

placemnts and stress distributions are provided for different beam slenderness ratios.

Comparison with three-dimensional finit element models is given.

Keywords: thermal load, beam structure, refined models, closed form solution, uni-

fied formulation, principle of virtual displacements.

1 Introduction

Many tipical aeronautical and space structures concern isotropic and composite beam-

like structures that must operate in complex environment. In particular the severe tem-

perature loads involved in many engineering applications require the development of

refined models for their analysis. Several application of the theory of thermoelasticity

can be found in the book of Hetnarski and Eslami [1]. In particular, the thermal stress

analysis of beams based on Euler-Bernoulli assumptions was presented. The thermo-

elastic stress analysis of multilayered beams was carried out by Carpinteri and Poggi

in [2]. Analytical solution were given under the Euler-Bernoulli hypotheses, when

rigid interfaces between the layers were taken into account. A finite element semi-

discretisation for composite beams was presented by Ghiringhelli [3]. The tempera-

ture distribution within the beam cross-section was computed by a two-dimensional

finite element procedure. The structural thermo-elastic problem was discussed and

comparison with three-dimensional finite element analysis were presented. Beams
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with variable thickness and subjected to thermo-mechanical loads were investigated

in the work of Xu and Zhou [4]. The non-linear temperature profile along the beam’s

thickness was computed solving the heat conduction equation. Results were compared

with those obtained from the commercial finite element software ANSYS. A three-

noded thermomechanical beam finire element for the analysis of laminated beam was

derived by Vidal and Polit [5]. Kapuria et al. [6] preented a higher order zigzag theory

for thermal stress analysis of laminated beams under thermal loads. The thermal field

is approximated as piecewise linear across the thickness. The governing equations are

derived using the principle of virtual work and Fourier series solutions are obtained for

simply-supported beams. Tanigawa et al. [7] consider the transient thermal stress anal-

ysis of a laminated beam. The heat conduction problem is treated as one-dimensional

in the thickness direction. The thermal stress distributions was obtained using the ele-

mentary beam theory and Airy’s thermal stress function method. Sayman [8] studied

the elasto-plastic thermal behavior of steel fiber-reinforced aluminium metal-matrix

composite beams. Linear variation of the temperature is taken into account. The ther-

mal response of orthotropic laminated plates was investivated by Carrera [9], through

the comparison between theories formulated on the basis of the principle of virtual

displacements (PVD) and mixed theories based on the Reissner mixed variational the-

orem (RMVT). The effect of the through-the-thickness temperature profile on the ac-

curacy of classical and advanced plate theories was studied by Carrera in [10]. A

thermal analysis of isotropic and composite beams via refined models is addressed in

this paper. Models are derived via a Unified Formulation (UF) that has been previ-

ously formulated for plates and shells, (see Carrera [11]) and extended to solid and

composite beams (see Carrera et al. [12] and Catapano et al. [13]). In the Unified

Formulation the dislacements’ assumptions are written in a compact form. The gov-

erning equations variationally consistent with the made hypothesis are derived through

the Principle of Virtual Displacements, in terms of fundamental nucleo. This is a free

parameter of the formulation, since it does not depend upon the order of expansion.

As a result, an exhaustive variable kinematic model can be obtained that accounts for

transverse shear deformability and cross-section in- and out-of-plane warping. The

temperature field is descibed in the same way as the displacements, or rather splitted

in a set of cross-section functions and the relative terms depending on the beam axis x
coordinate only. Governing differential equations are solved via a Navier, closed form

solution. Slender and deep beams, as well as isotropic and orthotropic materials, are

investigated. The results obtained through the proposed formulation have been com-

pared with three-dimensional FEM models. When the appropriate expansion order is

considered, achieved results are in agreement with the FEM’s one.

2 Preliminaries

A beam is a structure whose axial extension (l) is predominant if compared to any

other dimension orthogonal to it. The cross-section (Ω) is identified by intersecting

the beam with planes that are orthogonal to its axis. A Cartesian reference system is
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Figure 1: Beam cross-section geometry and reference system.

adopted: y- and z-axis are two orthogonal directions laying on Ω. The x coordinate is

coincident to the axis of the beam. It is bounded such that 0 ≤ x ≤ l. Cross-section

geometry and reference system are reported in Figure 1.

The cross-section is considered to be constant along x. The displacement field is:

u
T (x, y, z) =

{
ux (x, y, z) uy (x, y, z) uz (x, y, z)

}
(1)

in which ux, uy and uz are the displacement components along x-, y- and z-axes.

Superscript ‘T ’ represents the transposition operator. Stress, σ, and strain, ε, vectors

are grouped into vectors σn, εn that lay on the cross-section:

σ
T
n =

{
σxx σxy σxz

}
ε

T
n =

{
εxx εxy εxz

}
(2)

and σp, εp laying on planes orthogonal to Ω:

σ
T
p =

{
σyy σzz σyz

}
ε

T
p =

{
εyy εzz εyz

}
(3)

Under the hypothesis of linear analysis, the following total strain-displacement geo-

metrical relations hold:

ε
T
n =

{
ux,x ux,y + uy,x ux,z + uz,x

}

ε
T
p =

{
uy,y uz,z uy,z + uz,y

} (4)

Subscripts ‘x’, ‘y’ and ‘z’, when preceded by comma, represent derivation versus the

corresponding spatial coordinate. A compact vectorial notation can be adopted for

Equation (4):

εn = Dnpu + Dnxu

εp = Dpu
(5)
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where Dnp, Dnx, and Dp are the following differential matrix operators:

Dnp =




0 0 0

∂

∂y
0 0

∂

∂z
0 0




Dnx = I
∂

∂x
Dp =




0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y




(6)

I is the unit matrix. In the case of thermo-mechanical problems, the constitutive equa-

tions are given as:

σp = σpd − σpt = C̃ppεp + C̃pnεn − λ̃p(y, z)T

σn = σnd − σnt = C̃npεp + C̃nnεn − λ̃n(y, z)T
(7)

where suscript d and t refer to the mechanical and the thermal contributions, respec-

tively. Matrices C̃pp, C̃pn, C̃np and C̃nn in Eqs. (7) are:

C̃pp =




C̃22 C̃23 0

C̃23 C̃33 0

0 0 C̃44


 C̃pn = C̃

T
np =




C̃12 0 0

C̃13 0 0
0 0 0




C̃nn =




C̃11 0 0

0 C̃66 0

0 0 C̃55




(8)

The material stiffness coefficents C̃ij are rotated in order to consider the fiber orienta-

tion respect to the x, y plane. The temperature is here seen as:

T (x, y, z) = Θn(x)ΘΩ(y, z) (9)

where Θn(x) is the temperature variation respect to the beam axis coordinate x and

ΘΩ(y, z) is the temperature variation respect to the beam cross-sections coordinates

y, z. The coefficients λ̃p(y, z) and λ̃n(y, z) are:

λ̃
T

n =
{

λ̃xx λ̃xy λ̃xz

}
λ̃

T

p =
{

λ̃yy λ̃zz λ̃yz

}
(10)

and are linked to the coefficients of thermal expansion α̃p and α̃n:

α̃
T
n =

{
α̃xx α̃xy α̃xz

}
α̃

T
p =

{
α̃yy α̃zz

˜̃αyz

}
(11)

through the following Equations:

λ̃p = C̃ppα̃p + C̃pnα̃n

λ̃n = C̃npα̃p + C̃nnα̃n

(12)

In the present model, the temperature is seen as an external loading, once its variation

on the beam has been obtained by solving Fourier’s heat conduction equation.
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3 Hierarchical beam theories

The variation of the displacement field over the cross-section can be postulated a-

priori. Several displacement-based theories can be formulated on the basis of the

following generic kinematic field:

u (x, y, z) = Fτ (y, z)uτ (x) with τ = 1, 2, . . . , Nu (13)

Nu stands for the number of unknowns. It depends on the approximation order N that

is a free parameter of the formulation. The compact expression is based on Einstein’s

notation: subscript τ indicates summation. Thanks to this notation, problem’s govern-

ing differential equations and boundary conditions can be derived in terms of a single

‘fundamental nucleo’. The complexity related to higher than classical approximation

terms is tackled and the theoretical formulation is valid for the generic approximation

order and approximating functions Fτ (y, z). In this paper, the functions Fτ are as-

sumed to be Mac Laurin’s polynomials. This choice is inspired by the classical beam

models. The actual governing differential equations and boundary conditions due to

a fixed approximation order and polynomials type are obtained straightforwardly via

summation of the nucleo corresponding to each term of the expansion. The generic

N -order displacement field is:

ux = ux1 + ux2y + ux3z + · · · + u
x

(N2+N+2)
2

yN + · · · + u
x

(N+1)(N+2)
2

zN

uy = uy1 + uy2y + uy3z + · · · + u
y

(N2+N+2)
2

yN + · · · + u
y

(N+1)(N+2)
2

zN

uz = uz1 + uz2y + uz3z + · · · + u
z
(N2+N+2)

2

yN + · · · + u
z

(N+1)(N+2)
2

zN

(14)

Classical models, such as Timoshenko beam theory (TB) and Euler-Bernoulli beam

theory (EB) are straightforwardly derived from the first-order approximation model.

In TB, no shear correction coefficient is considered, since it depends upon several

parameters, such as the geometry of the cross-section (see, for instance, Cowper [14]

and Murty [15]). Higher order models yield a more detailed description of the shear

mechanics (no shear correction coefficient is required), of the in- and out-of-section

deformations, of the coupling of the spatial directions due to Poisson’s effect and

of the torsional mechanics than classical models do. EB theory neglects them all,

since it was formulated to describe the bending mechanics. TB model accounts for

constant shear stress and strain components. In the case of classical models and first-

order approximation, the material stiffness coefficients should be corrected in order

to contrast a phenomenon known in literature as Poisson’s locking (see Carrera and

Brischetto [16, 17]).

4 Governing equations

The derivation of the governing equations and the boundary conditions is based on the

principle of virtual displacements (PVD):

δLi = 0 (15)
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δ stands for a virtual variation. Li represents the strain energy. No external work is

considered.

4.1 Virtual variation of the strain energy

According to the grouping of the stress and strain components in Equations (2) and (3),

the virtual variation of the strain energy is considered as sum of two contributes:

δLi =

∫

l

∫

Ω

[
δǫT

nσn + δǫT
p σp

]
dΩdx (16)

For the thermo-mechanical case, it reads:

δLi =

∫

l

∫

Ω

[
δǫT

n (σnd − σnt) + δǫT
p (σpd − σpt)

]
dΩdx (17)

By substitution of the geometrical relations (5), the constitutive equations (7), and the

unified hierarchical approximation of the displacements ((13), and after integration by

parts, Equation (17) becomes:

δLi =

∫

l

δuT
τ

∫

Ω

[
(DnpFτ )

T
C̃np (DpFs) + (DnpFτ )

T
C̃nn (DnpFs) +

+ (DnpFτ )
T
C̃nnFsDnx + (DpFτ )

T
C̃pp (DpFs) + (DpFτ )

T
C̃pn (DnpFs) +

+ (DpFτ )
T
C̃pnFsDnx − D

T
nxC̃npFτ (DpFs) − D

T
nxC̃nnFτ (DnpFs)−

−D
T
nxC̃nnFτFsDnx

]
dΩ us dx −

∫

l

δuT
τ

∫

Ω

[
(DnpFτ )

T
(
λ̃nΘΩI

)
+

+ (DpFτ )
T

(
λ̃pΘΩI

)
− D

T
nxFτ

(
λ̃nΘΩI

)]
dΩ Θn dx

+ δuT
τ

∫

Ω

Fτ

[
C̃np (DpFs) + C̃nn (DnpFs) + C̃nnFsDnx

]
dΩ us

∣∣∣∣∣∣

x=l

x=0

−

− δuT
τ

∫

Ω

Fτ

(
λ̃nΘΩI

)
dΩ Θn

∣∣∣∣∣∣

x=l

x=0

(18)

In a compact vectorial form:

δLi =
∫
l

δuT
τ K

τs

uu us dx −
∫
l

δuT
τ K

τ

uθ Θn dx+

+
[
δuT

τ Π
τs

uu us

]x=l

x=0
−

[
δuT

τ Π
τ

uθ Θn

]x=l

x=0

(19)
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The components of the differential linear stiffness matrix K
τs

uu are:

K
τs

uuxx
= J66

τ,ys,y
+ J55

τ,zs,z
− J11

τs

∂2

∂x2
K

τs

uuxy
=

(
J66

τ,ys − J12
τs,y

) ∂

∂x

K
τs

uuyy
= J22

τ,ys,y
+ J44

τ,zs,z
− J66

τs

∂2

∂x2
K

τs

uuyx
=

(
J12

τ,ys − J66
τs,y

) ∂

∂x

K
τs

uuzz
= J44

τ,ys,y
+ J33

τ,zs,z
− J55

τs

∂2

∂x2
K

τs

uuzx
=

(
J13

τ,zs − J55
τs,z

) ∂

∂x

K
τs

uuxz
=

(
J55

τ,zs − J13
τs,z

) ∂

∂x
K

τs

uuyz
= J23

τ,ys,z
+ J44

τ,zs,y

K
τs

uuzy
= J23

τ,zs,y
+ J44

τ,ys,z

(20)

The generic term Jgh
τ(,φ)s(,ξ)

is a cross-section moment:

Jgh
τ(,φ)s(,ξ)

=

∫

Ω

C̃ghFτ(,φ)
Fs(,ξ)

dΩ (21)

and it is obtained via Gauss’ integration.

The components of the differential linear stiffness vector K
τ

uθ are:

K
τ

uθxx
= J6

τ,y
+ J5

τ,z
− J1

τ

∂

∂x

K
τ

uθyy
= J4

τ,z
+ J2

τ,y
− J6

τ

∂

∂x

K
τ

uθzz
= J3

τ,z
+ J4

τ,y
− J5

τ

∂

∂x

(22)

The generic term J
g

τ(,φ)
is:

J
g

τ(,φ)
=

∫

Ω

Fτ(,φ)
λ̃

g
ΘΩ dΩ (23)

As far as the boundary conditions are concerned, the components of Π
τs

uu are:

Π
τs

uuxx
= J11

τs

∂

∂x
Π

τs

uuxy
= J12

τs,y
Π

τs

uuxz
= J13

τs,z

Π
τs

uuyy
= J66

τs

∂

∂x
Π

τs

uuyx
= J66

τs,y
Π

τs

uuyz
= 0

Π
τs

uuzz
= J55

τs

∂

∂x
Π

τs

uuzx
= J55

τs,z
Π

τs

uuzy
= 0

(24)

The components of Π
τ

uθ are:

Π
τ

uθxx
= J1

τ

Π
τ

uθyy
= J6

τ

Π
τ

uθzz
= J5

τ

(25)
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4.2 Governing equations’ fundamental nuclei

The fundamental nucleo of the governing equations in a compact vectorial form is:

δuT
τ : K

τs

uu us − K
τ

uθ Θn = 0 (26)

The thermal load can be moved to the right terms:

δuT
τ : K

τs

uu us = K
τ

uθ Θn (27)

In explicit form:

δuxτ :

−J11
τsuxs,xx

+
(
J55

τ,zs,z
+ J66

τ,ys,y

)
uxs +

(
J66

τ,ys − J12
τs,y

)
uys,x+

+
(
J55

τ,zs − J13
τs,z

)
uzs,x = J6

τ,y
Θn + J5

τ,z
Θn − J1

τ Θn,x

δuyτ :(
J12

τ,ys − J66
τs,y

)
uxs,x − J66

τsuys,xx
+

(
J22

τ,ys,y
+ J44

τ,zs,z

)
uys+

+
(
J23

τ,ys,z
+ J44

τ,zs,y

)
uzs = J4

τ,z
Θn + J2

τ,y
Θn − J6

τ Θn,x

δuzτ :(
J13

τ,zs − J55
τs,z

)
uxs,x +

(
J23

τ,zs,y
+ J44

τ,ys,z

)
uys − J55

τsuzs,xx
+

+
(
J33

τ,zs,z
+ J44

τ,ys,y

)
uzs = J3

τ,z
Θn + J4

τ,y
Θn − J5

τ Θn,x

(28)

The boundary conditions are:

δuxτ

(
J11

τsuxs,x + J12
τs,y

uys + J13
τs,z

uzs − J1
τ Θn

)∣∣∣
x=l

x=0
= 0

δuyτ

(
J66

τs,y
uxs + J66

τsuys,x − J6
τ Θn

)∣∣∣
x=l

x=0
= 0

δuzτ

(
J55

τs,z
uxs + J55

τsuzs,x − J5
τ Θn

)∣∣x=l

x=0
= 0

(29)

For a fixed approximation order, the nuclei have to be expanded versus the indexes τ
and s in order to obtain the governing equations and the boundary conditions of the

desired model.

5 Solution of Fourier’s heat conduction equation

If the considered beam is subjected to a sinusoidal thermal load at the top surface

(z = +b/2) and at the bottom surface (z = −b/2), the thermal boundary conditions

are:
T = 0 at x = 0, l

T = Tb sin
(mπx

l

)
at z = −b/2 with b:bottom

T = Tt sin
(mπx

l

)
at z = +b/2 with t:top

(30)
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where m is the half-wave number along the axis direction x. l is the lenght of the

beam and a is the side dimension of the cross-scetion. Tb and Tt are the amplitudes of

the temperature at the bottom and top, respectively. We do not consider variation of

the temperature respect to the y direction.

In the case of multi-layered structures, continuity conditions for the temperature T
and the heat flux qz hold in the z−direction at each k−th layer interface:

T k
t = T k+1

b qk
zt = qk+1

zb for k = 1, . . . , Nl − 1 (31)

where Nl is the number of layers of the beam. The relationship between the heat flux

and the temperature is:

qk
z = Kk

3

∂T k

∂z
(32)

In general for the k−th homogeneous orthotropic layer, the differential Fourier equa-

tion of heat conduction is:

Kk
1

∂2T

∂x2
+ Kk

3

∂2T

∂z2
= 0 (33)

considering T = T (x, z). Kk
1 and Kk

3 are the thermal conductivities along the x and

z beam directions. For each layer, both governing equations and boundary conditions

are satisfied assuming the following temperature field:

T (x, z) = ΘΩ(z) sin
(mπx

l

)
(34)

with ΘΩ(z) = T0 exp
(
skz

)
.

T0 is a constant and sk a parameter. Substituting Equation (34) in Equation(33) and

solving for sk, we obtain:

sk
1,2 = ±

√
Kk

1

Kk
3

·
mπ

l
(35)

when the material is isotropic the thermal conductivities can be simplified and s1,2 =

±
mπ

l
. ΘΩ(z) becomes:

ΘΩ(z) = T k
01 exp

(
sk
1z

)
+ T k

02 exp
(
−sk

1z
)

or ΘΩ(z) = Ck
1 cosh

(
sk
1z

)
+ Ck

2 sinh
(
sk
1z

) (36)

The solution ca be written as:

T (x, z) =
[
Ck

1 cosh
(
sk
1z

)
+ Ck

2 sinh
(
sk
1z

) ]
sin

(mπx

l

)
(37)

where the unknown coefficients Ck
1 and Ck

2 are constant for each layer k. If Nl is

the number of layer, we have 2Nl unknowns and we need 2Nl eqautions to determine
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them. The temperature at the top and bottom surfaces is known and therefore we have

the following two conditions:

Tb = C1
1 cosh

(
s1
1zb

)
+ C1

2 sinh
(
s1
1zb

)

Tt = CNl

1 cosh
(
sNl

1 zt

)
+ CNl

2 sinh
(
sNl

1 zt

) (38)

Others Nl − 1 equations can be obtained from the continuity of temperature at each

interface, whereas Nl − 1 equations result from the continuity of the heat flux through

the interfaces, as writeen in Equation (31). We can write:

Ck
1 cosh

(
sk
1z

k
t

)
+ Ck

2 sinh
(
sk
1z

k
t

)
− Ck+1

1 cosh
(
sk+1
1 zk+1

b

)
+ Ck+l

2 sinh
(
sk+l
1 zk+1

b

)
= 0

Kk
3 Ck

1 sk
1 sinh

(
sk
1z

k
t

)
+ Kk

3 Ck
2 sk

1 cosh
(
sk
1z

k
t

)
− Kk+1

3 Ck+1
1 sk+1

1 sinh
(
sk+1
1 zk+1

b

)
+

−Kk+1
3 Ck+1

2 sk+1
1 sinh

(
sk+l
1 zk+1

b

)
= 0

(39)

In Equation (39), zk
t and zk+1

b represent the top of the k−th layer and the bottom of the

(k + 1)−th layer, respectively. Solving the system given by Equations (38) and (39)

we obtain the Nl coeficients Ck
1 and Ck

2 . Therefore we can compute the temperature

at different values of z and x coordinates.

6 Closed form analytical solution

Once the temperature on the beam is computed, the differential equations are solved

via a Navier-type solution. Simply supported beams are, therefore, investigated. The

following harmonic displacement field is adopted:

ux = FτUxτ cos (αx)
uy = FτUyτ sin (αx)
uz = FτUzτ sin (αx)
Θ = ΘΩ sin (αx)

(40)

where α is:

α =
mπ

l
(41)

m ∈ N
+ represents the half-wave number along the beam axis. {Uiτ : i = x, y, z}

are the maximal amplitudes of the displacement components. Upon substitution of
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Equations (40) into Equations (28), the fundamental algebraic nucleo is obtained:

δUxτ :(
α2J11

τs + J55
τ,zs,z

+ J66
τ,ys,y

)
Uxs + α

(
J66

τ,ys − J12
τs,y

)
Uys+

+α
(
J55

τ,zs − J13
τs,z

)
Uzs = J6

τ,y
+ J5

τ,z
− αJ1

τ

δUyτ :

α
(
J66

τs,y
− J12

τ,ys

)
Uxs +

(
α2J66

τs + J22
τ,ys,y

+ J44
τ,zs,z

)
Uys+

+
(
J23

τ,ys,z
+ J44

τ,zs,y

)
Uzs = J4

τ,z
+ J2

τ,y
− αJ6

τ

δUzτ :

α
(
J55

τs,z
− J13

τ,zs

)
Uxs +

(
J23

τ,zs,y
+ J44

τ,ys,z

)
Uys+

+
(
α2J55

τs + J33
τ,zs,z

+ J44
τ,ys,y

)
Uzs = J3

τ,z
+ J4

τ,y
− αJ5

τ

(42)

7 Numerical results and discussion

7.1 Isotropic material

Isotropic beams made of an alluminium alloy are first considered. The mechanical

properties are: E = 72 GPa, ν = 0.3, K = 121 W/m◦C, α̃ = 23 · 10−6 ◦C−1.

Square cross-sections are considered. The sides of the cross-section are a = b = 0.1
m. The length-to-side ratio l/b is equal to 100, ten and five. Slender and deep beams

are, therefore, investigated. The half-wave number m in Equation (41) is assumed

equal to one. The thermal boundary conditions are: Tb = 25◦C and Tt = 500◦C.

Displacements and stresses are evaluated in the following points:

ux at (l,−a/2, b/2) uy at (l/2, 0, b/2) uz at (l/2, a/2, b/2)

σxx at (l/2, 0, a/2) σxz at (0,−a/2, 0) σzz at (l/2,−a/2, 0)
(43)

Results are reported in Tables 1- 5 and in Figures 2- 6.
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uz ux ×−102 uy × 104

FEM 3Da 1.1074 3.6608 5.7491
FEM 3Db 1.1074 3.6608 5.7480
N ≥ 6 1.1074 3.6608 5.7499
N = 3 − 5 1.1074 3.6608 5.7498
N = 2 1.1074 3.6607 5.7496
TB 2.4480 8.0953 −
EB 2.4480 8.0951 −
a: mesh 50x20x20

b: mesh 50x10x10

Table 1: Displacements ([m]), isotropic beam, l/b = 100

(a) (b)

Figure 2: Axial displacement ux ([m]), isotropic beam, l/b = 10 via (a) FEM 3-D

solution and (b) N = 8 model

As far as validation is concerned, results are compared with three-dimensional FEM

solutions obtained via the commercial code ANSYS R©. The accuracy of the three-

dimensional FEM solution depends upon the FEM numerical approximation. In or-

der to present the convergence of the three-dimensional reference solution, for each

case two different meshes are considered. Acronym FEM 3Da stand for a three-

dimensional FEM model with 50 elements along the axial direction and 20 elements

along y and z directions. A coarser solution FEM 3Db (50× 10× 10 elements) is also

considered. Although the three-dimensional FEM solution and the analytical one are

different in nature, some considerations about computational time and effort can be

addressed. For the reference FEM simulations, the computational time is as high as

about 20 minutes (refined mesh) and as low as 5 minutes (coarsest mesh). In the case

of the proposed analytical solutions, the computational time is few second regardless

the considered approximation order. For slender beams, low expansion orders results

match already the FEM solutions for displeacements, whereas for stresses, higher ex-
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uz × 102 ux ×−103 uy × 104

FEM 3Da 1.1511 3.6847 5.7362
FEM 3Db 1.1511 3.6847 5.7362
N ≥ 9 1.1511 3.6847 5.7362
N = 8 1.1511 3.6848 5.7362
N = 7 1.1511 3.6848 5.7361
N = 6 1.1511 3.6845 5.7356
N = 5 1.1511 3.6845 5.7349
N = 4 1.1513 3.6868 5.7337
N = 3 1.1513 3.6868 5.7330
N = 2 1.1501 3.6757 5.7111
TB 2.4440 8.0546 −
EB 2.4440 8.0546 −
a: mesh 50x20x20

b: mesh 50x10x10

Table 2: Displacements ([m]), isotropic beam, l/b = 10

pansion orders are required. This behavior becomes more evident for deep beams.

N = 9 or 11 is necessary to obtain good results for displacements when l/b is 10 and

5. For stresses, the higher expansion orders are necessary even for deep beams. Classi-

cal theories provide very poor results if compared with those obteined via higher-order

models.

(a) (b)

Figure 3: Transverse displacement uy ([m]), isotropic beam, l/b = 10 via (a) FEM

3-D solution and (b) N = 8 model
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(a) (b)

Figure 4: Transverse displacement uz ([m]), isotropic beam, l/b = 10 via (a) FEM

3-D solution and (b) N = 8 model

(a) (b)

Figure 5: Axial stress σxx ([GPa]), isotropic beam, l/b = 10 via (a) FEM 3-D solution

and (b) N = 8 model
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σxx ×−10−6 σxz ×−10−7 σzz ×−10−6

FEM 3Da 3.1717 1.4860 1.6574
FEM 3Db 3.2093 1.4745 1.6333
N = 13 3.1560 1.4898 1.6657
N = 12 3.1620 1.4920 1.6690
N = 11 3.1664 1.4920 1.6690
N = 10 3.1627 1.4812 1.6753
N = 9 3.1642 1.4813 1.6755
N = 8 3.1342 1.4859 1.6844
N = 7 3.1106 1.4860 1.6841
N = 6 3.2221 1.5843 1.5441
N = 5 2.9749 1.5841 1.5398
N = 4 3.3527 1.3100 1.0496
N = 3 4.1150 1.3100 1.0518
N = 2 8.0406 1.1822 −5.4328
TB −993.90 − −
EB −993.90 − −
a: mesh 50x20x20

b: mesh 50x10x10

Table 3: Stresses ([Gpa]), isotropic beam, l/b = 10

uz × 103 ux ×−103 uy × 104

FEM 3Da 3.2029 1.8774 5.6949
FEM 3Db 3.2029 1.8774 5.6949
N ≥ 11 3.2029 1.8774 5.6949
N = 10 3.2029 1.8774 5.6948
N = 9 3.2029 1.8774 5.6948
N = 8 3.2029 1.8775 5.6946
N = 7 3.2029 1.8775 5.6942
N = 6 3.2029 1.8770 5.6922
N = 5 3.2030 1.8770 5.6894
N = 4 3.2044 1.8813 5.6846
N = 3 3.2046 1.8813 5.6818
N = 2 3.1910 1.8599 5.5971
TB 6.0802 3.9679 −
EB 6.0802 3.9679 −
a: mesh 50x20x20

b: mesh 50x10x10

Table 4: Displacements ([m]), isotropic beam, l/b = 5
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σxx × 10−7 σxz × 10−7 σzz × 10−6

FEM 3Da 1.2257 2.9092 6.3141
FEM 3Db 1.2401 2.8857 6.2204
N = 13 1.2197 2.9168 6.3462
N = 12 1.2221 2.9214 6.3588
N = 11 1.2239 2.9214 6.3587
N = 10 1.2225 2.8999 6.3826
N = 9 1.2228 2.9000 6.3859
N = 8 1.2111 2.9096 6.4232
N = 7 1.2012 2.9102 6.4186
N = 6 1.2425 3.1042 5.9066
N = 5 1.1526 3.1025 5.8409
N = 4 1.3072 2.5603 3.9693
N = 3 1.6096 2.5605 4.0041
N = 2 3.0914 2.3297 −20.949
TB 96.706 − −
EB 96.706 − −
a: mesh 50x20x20

b: mesh 50x10x10

Table 5: Stresses ([Gpa]), isotropic beam, l/b = 5

(a) (b)

Figure 6: Shear stress σxz ([GPa]), isotropic beam, l/b = 10 via (a) FEM 3-D solution

and (b) N = 8 model

Figures 2- 6 show the displacements and stresses fields at the beam cross-section

in x = 0 or x = l/2. The considered expansion order is N = 8 and the slenderness

ratio is l/b = 10. In general, N = 8 is sufficient to achieve a good overall solution

along the cross-section of the beam, while in tables there is a set set of punctul values,

and then higher orders of expansion are necessary to reduce the error.
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Figure 7: Deformation of the beam, l/b = 10

7.2 Orthotropic material

Composite beams are considered in this section. The mechanical properties are: EL =
172.72 × 109 Pa, ET = 6.91 × 109 Pa, GLT = 3.45 × 109 Pa, GTT = 1.38 × 109 Pa,

νLT = νTT = 0.25, KL = 36.42 W/mK, KT = 0.96 W/mK, α̃L = 0.57 · 10−6K−1,

α̃T = 35.60 · 10−6K−1. A two layers [0/90] lamination, starting from the bottom, is

considered. Square cross-sections are considered. The sides of the cross-section are

a = b = 1 m. The length-to-side ratio l/b is equal to ten. The thermal boundary

conditions are: Tb = 0 K and Tt = 1 K. In Figure 7 is reported the deformed shape

of the beam. The behavior after deformation is due to the 90 ◦ layer that is on the

top of the beam and has a small value of α̃L. Results for displacements and stresses

are presented in Figure 8. Higher-order models result necessary when we consider

composite beams. From the pictures we notice that at the interface of the two layers

we have the higher errors, compared to the FEM3D solution. A layer-wise approach

could better identify the behavior of the beam.

8 Conclusions

A unified formulation of one-dimensional beam models has been proposed for the

thermal analysis of isotropic and composite beams. Results have been validated through

comparison with three-dimensional FEM solutions obtained via the commercial code

ANSYS. On the basis of the presented results, it can be concluded that the proposed

formulation allows obtaining results as accurate as desired through an appropriate

choice of the approximation order. The efficiency of the proposed models is very high

since the computational time is few second for the highest considered approximation

order, whereas the three-dimensional FEM solution can require 20 minutes.
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(a) uy (m), FEM3D solution (b) uy (m), N=15

(c) uz (m), FEM3D solution (d) uz (m), N=15

(e) σxx (Pa), FEM3D solution (f) σxx (Pa), N=20

Figure 8: Composite beam, l/b = 10
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