
Abstract

This paper deals with the isogeometric analysis using B-splines of space rods subject

to Kirchhoff-Love hypotheses. A multi-patch isogeometric approach for the numer-

ical analysis of the three-dimensional Kirchhoff-Love rod theory is developed. We

use Bezier and B-splines interpolations and we show that they are able to attain very

good accuracy for rod structures, particularly for developing a three-dimensional exact

curve element with geometric torsion. The patches in general present a Cn-continuity

in the interior and are joined with C0-continuity, so that the global tangent stiffness

operator in general is singular. In order to avoid the singularity in the stiffness operator

several continuity conditions at the joints of the patches are required. Either paramet-

ric or geometric continuity or can be imposed. In this work, we show how parametric

continuity can be imposed by means of two additional constraints.

Keywords: B-spline continuity, Bezier interpolation, Kirchhoff-Love rod theory, curved

elements.

1 Introduction

Structural models for curved space rods Model have been given by [1], [2], [3], in

the context of Kirchhoff-Love hypotheses, and by [4], [5], for the Timoshenko model.

Finite Element implementations of these models require special attention for the inter-

polation of the geometry, in order to guarantee the continuity of the intrinsic axes. In

general, they exhibit jumps at the boundaries of the elements, that have to be smoothed

in some way. In the context of standard polynomial interpolations many elements have

been proposed for effectively treating this kind of structures, generally based on mixed

or enhanced formulations [4],[5]. More recently, formulations that employ piecewise

continuous interpolations on the elements have been proposed; the interelement con-
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tinuity is imposed in a weak sense using the Discontinuous Galerkin approach [6].

Recently isogeometric analysis has gained more and more popularity in computa-

tional mechanics, and has been applied to many problems of solid and fluid mechan-

ics. In isogeometric analysis B-splines interpolations are used, which guarantee Cp−1

continuity, p being the degree of the spline, as opposite to the usual C0 continuity ob-

tained with the standard FEM discrete representations. The same interpolation is used

for the degrees of freedom that define the deformed geometry, so that an isoparametric

description is obtained. Although B-splines are not shape functions in the usual sense,

they do verify the partition of unity.

Thanks to the high continuity properties, B-splines are very useful for beams and

shells, since they can incorporate in the analysis the initial geometric curvatures with-

out discontinuities. Isogeometric analysis of shell models has been used in [7] for

polar and in [8] and [9] for non polar shells. In [10] a procedure for joining different

patches under Kirchhoff-Love hypotheses is proposed.

In the field of 1D structural theories rod models have been developed on the basis of

the theory of Simo [11]. References [12], [13] are relative to polar beams. Timoshenko

rod models are more common than Kirchhoff-Love model for finite deformation space

rods, since the continuity conditions for rotations are automatically imposed within a

C0 continuity. However, the Kirchhoff-Love model has the advantage of avoiding

shear locking phenomena that are crritical for slender elements.

In a recent paper [14] a pure displacement finite deformation B-Spline isoparamet-

ric formulation of a space rod model based on the Kirchhoff-Love model has been

proposed. A parametrization of the cross section independent from the Frenet’s triad

was introduced. The normal vectors attached to the centroid curve are mapped by a

correction angle, φ, that coincides with the torsional twist. The geometry of the axis

is defined via a uniform collocation of the control points. The tangent and normal

vectors are defined on the interpolation of the geometry. One patch was used for the

entire beam. The numerical implementation resulted very effective, with convergence

rate equal to the degree of the interpolation, thanks to the fact that the model is only

based on displacements.

In the paper it is presented an extension of the formulation to multipatch space

rods. Although in general a single patch can be used for modeling a rod, and degrees

of freedom can be added increasing the number of internal knots, there are cases when

it is necessary to discretise the beam with more than one patch. important examples

are reticulated and framed structures, composed by rods that are connected at the ends

by rigid links requiring that the tangents keep their relative orientation during the

deformation. Also in the cases of beams with sharply varying cross sections it may be

useful the use of multiple path interpolations.

The patches in general present Cp−1 continuity in the interior and are joined with

C0 continuity, so that the global tangent stiffness operator in general is singular. In

order to avoid the singularity in the stiffness operator several continuity conditions

at the joints of the patches are required. Either parametric continuity (C1 or C2) or

geometric continuity (G1 or G2) conditions can be imposed.
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Figure 1: Intrinsic reference axes on the initial geometry of the rod

The geometric continuity conditions are weaker than the parametric conditions.

The continuity conditions in the CAD -literature are known as the β-constraints and

represent constraint conditions for the positions of the control points where the scalar

β-quantity represents additional unknowns [9]. In this work, we don’t impose the con-

tinuity conditions via β-constraints but directly by means of the Lagrange multipliers

method.

2 Space rod model

In this section it is given a short summary of the Kirchhoff-Love space rod model

described in [14]. The rod is defined by a pair A, n̂ where A = ]0, L0[ is an open set of

R, that is the parametric domain of the curve P(S) : A → R
3 and n̂0(S) : A → R

3 is

a unit vector field everywhere orthogonal to that curve. An index ’0’ denotes the initial

undeformed configuration. The arc-length along the original rod axis id indicated by

S. The tangent vector to the reference configuration of the curve is then the unit vector

field t̂0 : A → R
3 with t̂0 = dp

0

dS
(a hat indicates a unit vector).

The orientation of the normal vector n̂0 to the beam is obtained by means of the

combination of two rotations. The first, Λ, is the rotation around t̂0(0) that transforms

t̂0(0) in t̂0(S) without drilling rotation, and is totally defined by the curve geometry.

The second is a pure torsional rotation φ0 around the unit tangent t̂0(S), so that

n̂0(S) = R(t̂0(S), φ0(S))n̂♭
0(S) = R(t̂0(S), φ0(S))Λ(t̂0(0), t̂0(S)) n̂0(0). (1)

The unit local triad is completed by the unit vector

ν̂0(S) = t̂0(S) × n̂0(S) (2)

The space rod is thus defined by the position vector p0(S) and by the initial twist

angle φ0(S). (see figure 1).
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2.1 Kinematics of the Kirchhoff Love rod

The current centroid curve is indicated by p(S) : [0, L0] → R
3 and is given by

p(S) = p0(S) + u(S), (3)

The Lagrangian arc-length parametrization of the current tangent vector field t(S)
is

t̂(S) =
t(S)

‖t(S)‖
=

1

‖t(S)‖

dp

dS
. (4)

The rotation of the cross section is given by two isometric operators, Λ(t̂0(S), t̂(S)),
a rotation without drilling rotation around the vector t̂0(S), and R(t̂(S), φ(S)) that

gives the drilling rotation φ(S) : [0, L0] → R around the vector t̂(S). The two opera-

tors are obtained particularizing Euler-Rodriguez formula

R = ê ⊗ ê + cos[ϕ](I − ê ⊗ ê) + sin[ϕ]ê × I. (5)

The unitary axial vector of the first rotation is ê = t̂0×t̂

‖t̂0×t̂‖
while cos[ϕ] = t̂0 · t̂ and

sin[ϕ] = ‖t̂0 × t̂‖, therefore the formula (5) gives the representation

Λ(t̂0, t̂) = (t̂0 · t̂)I + [t̂0 × t̂] × I +
1

1 + t̂0 · t̂
(t̂0 × t̂) ⊗ (t̂0 × t̂) (6)

.

The axial vector of the second rotation operator is ê = t̂. Setting ϕ = φ and using

the properties of the double cross product: the Rodriguez operator (5) assumes the

form

R(t̂, φ) = I + sin[φ] t̂ × I + (1 − cos[φ]) t̂ × [t̂ × I]. (7)

.

The Lagrangian parametrization of the current directors n̂(S) and ν̂(S) are then

n̂(S) = R(t̂, φ)Λ(t̂0, t̂)n̂0(S), ν̂(S) = R(t̂, φ)Λ(t̂0, t̂)ν̂0(S). (8)

The construction described satisfies Kirchhoff-Love hypotheses t̂ · n̂ = t̂ · ν̂ = 0.

We observe that the Lagrangian description of the internal state of the rod is defined

by means of the two field {u(S), φ(S)}, so that it has four degrees of freedom. In-

troducing the Lagrangian coordinates along the normal axes, the position of a generic

point in the cross section is identified by the vector

∗

p(S, ϑn, ϑν) = p(S) + ξ = p(S) + ϑnn̂(S) + ϑνν̂(S). (9)

The tangent vectors at the generic fibre of the rod are obtained differentiating equa-

tion (9)
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∗

t :=
∂

∗

p

∂S
=
∂p

∂S
+ ϑν ∂ν̂

∂S
+ ϑn∂n̂

∂S
,

∗

n :=
∂

∗

p

∂ϑn
= n̂,

∗

ν :=
∂

∗

p

∂ϑν
= ν̂ (10)

By means of equations (10) we define the push forward operator from the centroid

line of the rod to the generic fibre,

z =
∗
gα ⊗ g♮α,

∗
gα = {

∗

t, n̂, ν̂}, gα = {t, n̂, ν̂} (11)

and the index ♮ indicates the contravariant base vectors.

In order to simplify the notations, it is useful to introduce the definitions of the

geometric curvatures of the beam in a generic configuration, 1
Rn

= 1
‖t‖

dn̂

dS
· t̂, 1

Rν
=

1
‖t‖

dν̂

dS
· t̂, 1

τ
= 1

‖t‖
dn̂

dS
· ν̂. The latter is the torsional curvature. Note that in a non

geodetic rod it is

n̂ ·
∗

t = −
ϑν

τ
, ν̂ ·

∗

t =
ϑn

τ
(12)

2.2 Tangent operator

The internal tangent operator and the velocity of deformation tensors are derived in

detail in [14]. For the sake of completeness we summarize the main results.

The velocity of a generic point of the beam is

∗̇

p = u̇ + ϑn ˙̂n + ϑν ˙̂ν (13)

so that it is necessary to characterize the motion of the intrinsic triad. Since

{t̂, n̂, ν̂} = Q{t̂0, n̂0, ν̂0} ⇒ {˙̂t, ˙̂n, ˙̂ν} = Q̇{t̂0, n̂0, ν̂0} = Q̇Q−1{t̂, n̂, ν̂} (14)

it is necessary to evaluate the variation of the unit Q-operator. It is possible to prove

that [14]

Q̇ = Λ̇ + Ṙ =
(
˙̂t ⊗ t̂ − t̂ ⊗ ˙̂t

)

+ φ̇ t̂ × I. (15)

The spin vector ω(S) : [0, L0] → R
3 associated to Q̇ is:

ω = φ̇t̂ + ωnn̂ + ωνν̂ (16)

with

ωn = ˙̂ν · t̂ = −
1

‖t‖

du̇

dS
· ν̂; ων = − ˙̂n · t̂ =

1

‖t‖

du̇

dS
· n̂. (17)
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With the aid of the rotation vector ω, the velocity of the intrinsic triad takes the

form

˙̂t = ωνn̂ − ωnν̂

˙̂n = −ων t̂ + φ̇ν̂

˙̂ν = ωnt̂ − φ̇n̂.

(18)

We observe, for later use, that the continuity of the beam is guaranteed if the veloc-

ities of the torsional rotation φ̇ and of the bending rotations ωn, ων are continuous. In

particular, the continuity of the bending rotations requires the continuity of the norm

‖t‖ of the tangent vector, and the continuity of the normal components of the line

gradient of the velocity.

The derivative along the arc length of ω is the curvature vector

1

‖t‖

dω

dS
= χ̇tt̂ + χ̇nn̂ + χ̇νν̂ (19)

χ̇t =
1

‖t‖

dφ̇

dS
+
ωn

Rn

+
ων

Rν

χ̇n =
1

‖t‖

dωn

dS
−
ων

τ
−

φ̇

Rn

χ̇ν =
1

‖t‖

dων

dS
+
ωn

τ
−

φ̇

Rν

.

(20)

The bending velocity of curvature can be related to the second covariant derivative

of the velocity of displacement vector, 1
‖t‖2

d2u̇

dS2 = 1
‖t‖

d
dS

(
1
‖t‖

du̇

dS

)

, in the form

χ̇n = −
1

‖t‖2

d2u̇

dS2
· ν̂ −

φ̇

Rn

−
1

‖t‖2
ṫ · t

1

Rν

χ̇ν =
1

‖t‖2

d2u̇

dS2
· n̂ −

φ̇

Rν

+
1

‖t‖2
ṫ · t

1

Rn

.

(21)

2.3 The velocity of deformation operator for a Kirchhoff-Love rod

Denoting with F the gradient of deformation from the reference configuration of the

axis to its current configuration i.e. F = gα ⊗ g♮α = t ⊗ t0 + n̂ ⊗ n̂ + ν̂ ⊗ ν̂ and

with
∗

G =
∗
gα ⊗

∗
g

♮α
=

∗

t ⊗
∗

t
♮

+ n̂ ⊗
∗
n

♮
+ ν ⊗

∗
ν

♮
the metric tensor at the generic

fibre, its pull back on the centroid axis of the reference configuration is ψ∗(
∗

G) =
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F T zT
∗

GzF , whose components on the triad t̂0, n̂0, ν̂0, after enforcing the Kirchhoff-

Love constraints, and using expressions (12), are






∗

t ·
∗

t −ϑν

τ
‖t‖ ϑn

τ
‖t‖

−ϑν

τ
‖t‖ 1 0

ϑn

τ
‖t‖ 0 1




 (22)

The pull-back of the velocity of deformation on the reference configuration Ė =

Ėαβg
♮α
0 ⊗ g

♮
0β = sym

(

(zF )T ˙
zF
)

has the components

Ė =
1

2








2
∗̇

t ·
∗

t −ϑν
(

d ˙̂n
dS

· ν̂ + dn̂

dS
· ˙̂ν
)

ϑn
(

d ˙̂n
dS

· ν̂ + dn̂

dS
· ˙̂ν
)

−ϑν
(

d ˙̂n
dS

· ν̂ + dn̂

dS
· ˙̂ν
)

0 0

ϑn
(

d ˙̂n
dS

· ν̂ + dn̂

dS
· ˙̂ν
)

0 0








(23)

The components of the velocity of deformation are readily found performing the

derivatives in (23). The components of the shear deformation velocity are given by

the off-diagonal terms of tensor (23). Since

(

d ˙̂n

dS
· ν̂ +

dn̂

dS
· ˙̂ν

)

=
1

‖t‖

dφ̇

dS
+
ωn

Rn

+
ων

Rν

= χ̇t (24)

one has

γ̇
n̂

∗

t
= −ϑνχ̇t γ̇

ν̂
∗

t
= ϑnχ̇t (25)

The result (20) and definitions (17) and the identity

t̂ ×
dt̂

dS
= ‖t‖

(

−
n̂

Rν

+
ν̂

Rn

)

(26)

allow to get a representation of χ̇t in terms of the Lagrangian generalized velocity

vector q̇ = {u̇, φ̇}:

χ̇t =
1

‖t‖

(

t̂ ×
dt̂

dS

)

·
du̇

dS
+
dφ̇

dS
. (27)

Using expression (10) and disregarding the terms quadratic in the normal coordi-

nates, the Lagrangian axial deformation of the generic fibre can be written as

∗

t ·
∗

t ≈ t · t + 2‖t‖2 ϑ
n

Rn

+ 2‖t‖2 ϑ
ν

Rν

(28)

The axial velocity is then given by
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∗̇

t ·
∗

t = ṫ · t + ϑn

(

−
dων

dS
‖t‖ +

φ̇

Rν

‖t‖2 −
ωn

τ
‖t‖ +

ṫ · t

Rn

)

+ ϑν

(

dωn

dS
‖t‖ −

φ̇

Rn

‖t‖2 −
ων

τ
‖t‖ +

ṫ · t

Rν

) (29)

that can be cast in the form:

∗̇

t ·
∗

t = ε̇r + χ̇⊥ · ξ‖t‖ (30)

with the notations

ε̇r = ṫ · t

(

1 +
θn

Rn

+
θν

Rν

)

= ṫ · t

(

1 − ξ ·
dt̂

dS

1

‖t‖

)

χ̇⊥ = t̂ × χ̇

ξ = θnn̂ + θνν̂

(31)

An alternative expression for the axial velocity of deformation, using equation (21) is

∗̇

t ·
∗

t = ε̇+ ξ · χ̇r
⊥‖t‖

ε̇ = ṫ · t ‖t‖χ̇r
⊥ = −

d2u̇

dS2
+

(

t̂ ×
dt

dS

)

‖t‖φ̇.
(32)

3 Equilibrium operator for Kirchhoff-Love rod

3.1 Virtual Power Identity

The equilibrium operator is obtained from the principle of virtual power. The repre-

sentation of the internal power on the reference configuration is:

Pint =

∫

L0

(∫

A

S : Ė dA

)

dS, (33)

with S = Sαβg0α ⊗ g0β the second Piola-Kirchhoff stress tensor, given by

S = det(zF )(zF )−1
∗

Σ(zF )−T (34)

Its components on the reference unitary centroid triads are

S =





Stt Stn Stν

Snt 0 0
Sνt 0 0



 . (35)
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Substituting the components of the velocity of deformation, one has

Pint =

∫

L0

(∫

A

Stt(ε̇− ϑnχ̇ν‖t‖ + ϑνχ̇n)‖t‖ + (Sνtϑn − Sntϑν)χ̇t dA

)

dS

=

∫

L0

(Nε̇+ M · χ̇r‖t‖ +Mtχ̇t) dS

=

∫

L0

(

N

(
du̇

dS
· t

)

+Mn

(

−
d2u̇

dS2
· ν̂ −

‖t‖2

Rn

φ̇

))

+

Mν

(
d2u̇

dS2
· n̂ −

‖t‖2

Rν

φ̇

)

+Mt

(

dφ̇

dS
+

1

‖t‖

du̇

dS

(

t̂ ×
dt̂

dS

))

dS,

(36)

where the following definitions have been introduced:

N =

∫

A

SttdA,

M =

∫

A

ξ × (Sttt̂) dA,

Mt =

∫

A

(Sνtϑn − Sntϑν) dA.

(37)

3.2 Constitutive operator of the rod

We assume that the rod remains elastic, and denote by

Ṡ = Ct : Ė (38)

the tangent constitutive relationship between the increment of the second Piola-Kirchhoff

stress tensor and the convective velocity of deformation. In this work we employ the

approximation that the tangent elastic coefficients be constant, and according to [11],

[10], we assume that

Ṡtt = E (
∗̇

t ·
∗

t ) = E

[

ε̇

(

1 +
ϑn

Rn

+
ϑν

Rν

)

− ϑnχ̇ν‖t‖ + ϑνχ̇n‖t‖

]

= E

[

ṫ · t + ϑn

(

−
d2u̇

dS2
· n̂ + ‖t‖2 φ̇

Rν

)

+ ϑν

(

−
d2u̇

dS2
· ν̂ − ‖t‖2 φ̇

Rn

)]

Ṡtn = −Gϑν χ̇t Ṡtν = Gϑn χ̇t.

(39)
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4 Numerical Formulation

4.1 B-Spline interpolation

A B-Spline curve of degree p is defined as

C(λ) =
n∑

i=1

Ni,p(λ)Pi (40)

where Pi = {Pix, Piy, Piz} are the cartesian components of n control points, and Ni,p

are the n B-Spline basis functions of degree p defined on a non periodic knot vec-

tor. The knot vector is a non decreasing sequence of m real numbers, the parametric

coordinate λj, j = 1, ...,m, with m = n+ p+ 1,

Ξ = {a, ..., a
︸ ︷︷ ︸

p+1

, λp+2, ..., λm−(p+2)
︸ ︷︷ ︸

m−2(p+1)

, b, ..., b
︸ ︷︷ ︸

p+1

}

The global interval [a, b] is called the patch. A knot vector is said open if the

first and last knots have multiplicity p + 1; in this work only non periodic open knot

vectors are considered, with multiplicity equal to 1 for each internal knot, so that we

have Cp−1 parametric continuity in each patch.

If in the knot vector there aren’t internal knots the basis functions reduce to the

Bernstein polynomials, so that the B-Spline interpolation is a generalization of the

Bezier’s interpolation. An interesting property of the B-Spline interpolation of a curve

with an open knot vector is that the interpolated curve is tangent to the control polygon

at the ends.

The degrees of freedom of the model, i.e., the displacement u and the torsional

rotation φ are interpolated by means of B-splines:

q(λ) = {px(λ), py(λ), pz(λ), φ(λ)}

pα(λ) =
n∑

i=1

Ni,pPαi = M̂P α φ(λ) =
n∑

i=1

Ni,pΦi = M̂Φ
(41)

so that p(λ) = MP with

M =





M̂ 0 0

0 M̂ 0

0 0 M̂



 (42)

where the matrix M̂ = [N1,p, ..., Nn,p]. The first and the second derivatives of the basis

functions are

B =
dM

dλ
D =

d2
M

dλ2
. (43)
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while the interpolation of the second gradient along the arc-length, according to ex-

pression (21) is

d2•

dS2
=

1

‖t0‖

d

dλ

(
1

‖t0‖

d•

dλ

)

−
1

‖t0‖2

1

‖t‖2

(
dt

dλ
· t

)
d•

dλ
=

1

‖t0‖2
D −

DP · BP

‖t‖2‖t0‖2
B = X

(44)

The cartesian components of the sectional axes n̂, ν̂ are given by expressions (8),

and will be indicated as

n = N(P) ν = V(P). (45)

4.2 Material Stiffness Matrix

The material (tangent) stiffness matrix of the rod is derived from the virtual power

expression (36) using the definitions (37) of the stress resultants and the constitutive

equations (39) for the stress components. We have three additive contributions to the

internal power.

The axial stiffness is obtained from the following integral, where a tilde denotes

virtual deformations:

∫

L0

EAε̇ε̃dS =

∫ L0

0

EA

(

t ·
u̇

dS

)(

t ·
ũ

dS

)

‖t0‖dλ (46)

Using the approximation t = BP
‖t0‖

, the axial stiffness matrix gets the form

Kax =

[
∫ L0

0
EA

(B
T

BP)
T

(B
T

BP)
‖t0‖3 dλ 0

0 0

] [
∆P

∆Φ

]

(47)

Since the axes n̂, ν̂ have been chosen principal of inertia, the bending material

stiffness is obtained from the expression

∫ L0

0

EIν

(
d2u̇

dS2
· n̂ + ν̂ ·

dt̂

dS
‖t‖φ̇

)(
d2ũ

dS2
· n̂ + ν̂ ·

dt̂

dS
‖t‖φ̃

)

+

∫ L0

0

EIn

(

−
d2u̇

dS2
· ν̂ + n̂ ·

dt̂

dS
‖t‖φ̇

)(

−
d2ũ

dS2
· ν̂ + n̂ ·

dt̂

dS
‖t‖φ̃

) (48)

The geometric curvatures are interpolated as follows
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ν̂ ·
dt̂

dS
‖t‖ =

1

‖t0‖
V

T

(

I3×3 −
BP ⊗ BP

‖t‖2

)

DP = ρν

n̂ ·
dt̂

dS
‖t‖ =

1

‖t0‖
N

T

(

I3×3 −
BP ⊗ BP

‖t‖2

)

DP = ρn

(49)

The material bending stiffness is therefore given by the sum of the two matrices:

Kn̂ = EIν

∫ L0

0

[
X

T
NN

T
X ρνX

T
NM̂

ρνM̂
T
N

T
X ρ2

νM̂
T
M̂

] [
∆P

∆Φ

]

(50)

Kν̂ = EIn

∫ L0

0

[
X

T
VV

T
X −ρnX

T
VM̂

−ρnM̂
T
V

T
X ρ2

nM̂
T
M̂

] [
∆P

∆Φ

]

(51)

The torsional internal power is

∫ L0

0

GJ χ̇tχ̃t‖t0‖dλ (52)

The interpolation of the torsional velocity of curvature is

1

‖t‖

(

t̂ ×
dt̂

dS

)

·
du̇

dS
+
dφ̇

dS
=

1

‖t‖

(

−ν̂ ·
dt̂

dS

du̇

dS
· n̂ + n̂ ·

dt̂

dS

du̇

dS
· ν̂

)

+
dφ̇

dS

=
1

‖t0‖

1

‖t‖2

(
−ρνN

T + ρnV
T
)

BṖ +
1

‖t0‖
B̂Φ̇ =

1

‖t0‖
XtṖ +

1

‖t0‖
B̂Φ̇.

(53)

The torsional stiffness matrix is therefore

Kt = GJ

∫ L0

0

1

‖t0‖2

[
X

T
t Xt X

T
t B̂

B̂
T
Xt B̂

T
B̂

] [
∆P

∆Φ

]

(54)

As it is evident, the degrees of freedom are the displacements of the control point,

and their torsional rotations. Rotations about the normal axes are not included in the

model, and are calculated according to equations (17). From their construction, it can

be seen that only the first two B-spline bases have non vanishing derivative at the first

end (resp. only the last two at the second end), so that a boundary condition on the

rotation only affects the position of the first two control points. Indeed, in the case the

end point of the beam is fixed, so that the first control point doesn’t move, the zero

rotation condition requires that the normal components of the velocity of the second

control point be zero.

12



5 Multi-patch analysis

Let’s examine the simplest case of a single beam that we wish to divide in many

patches. Concentrated loads may be applied at the joints. The general case of beams

matching with different orientation at the joints can be treated in a similar way.

We assume that the initial positioning of the patches satisfy parametric C1 continu-

ity at the joints, that guarantees that the tangent vector t is everywhere continuous, in

direction and norm. The last two control points of the adjoint patches are so aligned,

and their distance from the joint is the same. This can be obtained in several ways,

and will not be discussed here.

The scheme discussed in the previous sections can not be applied directly to the

case of a multipatch beam. Indeed, since, as has been observed, only the displacements

are used as degrees of freedom, rotations around the normal axes at the joints are not

constrained, so that a kinematically undetermined structure is obtained, leading to a

singular stiffness matrix after assemblage. Additional constraints have to be enforced,

specifically, the continuity of the rotations ωn, ων . Recalling expressions (17), the

continuity requires that both ‖t‖ and the normal components of the velocity gradient,
du̇

dS
· n̂ = ṫ · n̂, du̇

dS
· ν̂ = ṫ · ν̂ be continuous. Since

˙
‖t‖ = ṫ · t̂ (55)

interpatch continuity is ensured imposing the continuity of the tangent vector t, or,

numerically, BP + = BP−, since the initial tangent is assumed to be continuous

within numerical errors. However, it is noticed that the term (55) is also equal to

‖t‖ε, so, if the initial tangent vector is assumed to be continuous, the continuity of

the tangent norm is implied by the equilibrium equations enforced with the stiffness

matrix. Therefore it is sufficient to add as constraint the continuity of the normal

components of the velocity of the tangent,

[[ṫ · n̂]] = 0 [[ṫ · ν̂]] = 0 (56)

The continuity of the tangent component of the gradient of the velocity can in any case

be enforced as supplementary constraint in order to minimize the numerical errors.

6 Examples

6.1 Bezier’s multipatch pretwisted beam

The first example concerns a benchmark proposed by McNeal [15] on a pretwisted

cantilever, with linear variation of the twist angle, with two loading conditions, see

figures 2(a), 2(b). The data are L = 12, E = 29 ∗ 106, hn = 1.1, hν = 0.32
φ(S) = π

2
λ
L

, with λ ∈ [0, 1].
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In figures 2(c), 2(d) is reported the convergence of the error of the tip displace-

ments dual of the applied load with respect to the exact value for increasing number

of patches (in these figures as well as in the following, on the abscissa is reported the

number of degrees of freedom, function of the number of patches. For each patch a

Bezier interpolation is used). The convergence rate is function of the degree of the

polynomial interpolation, as happens with single patch isogeometric models. No in-

fluence of the reduced interpatch continuity appears in this example, since the initial

(continuous) tangent vectors are not affected by the deformation process.
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Figure 2: 3D cantilever pre-twisted beam; 2(a) initial geometry load case-1;2(b) initial

geometry load case-2; 2(c) convergence’s error for the uz(L) at the free end; 2(d)

convergence’s error for the ux(L) at the free end (p=2 green, p=3 blue, p=4 orange,

and p=5 red, p is the polynomial degree).

6.2 Bezier’s multipatch 3D-cantilever arch with a point force

The next example concerns a geodetic horizontal arch loaded at the tip by a verti-

cal force F = {0, 0,−1}, [kN ]. The radius of the centroid curve is R = 1 [m]
the section is rectangular with hn = 0.1 and hν = 0.01 [m] respectively, and E =

14



1.999 ∗ 108 [kN/m2], figure 3(a). Figures 3(b) and subsequent show the convergence

error on the tip displacement and rotation, and for the bending moment, twisting mo-

ment and shear force at the constrained end. It is interesting to note that while for few

patches the convergence rate is equal to the splines degree p, as in the case of single

patch analysis, for larger number of patches the convergence rate becomes smaller,

tending to p− 1.

6.3 Bezier’s multipatch 2D-cantilever arch with a couple

R = 1 [m], hn = 0.1 [m], hν = 0.01 [m], E = 1.999 ∗ 108 [KN/m2]. In figure-7

we consider the influence of the slenderness ratio R/h on the solution for a couple

Mh =
(

h
R

)3
applied at the tip. in this manner the vertical displacement for different

value of Mh is h-independent, so that the horizontal line represent the exact solution

for different Mh values. The example shows the existence of locking phenomena

in the isogeometric interpolation. However the energy converges to the exact value

(figure 6(b)).

6.4 Bezier’s multipatch 2D-cantilever arch with a point force

R = 1 [m], hn = 0.1 [m], hν = 0.01 [m], E = 1.999 ∗ 108 [KN/m2]. In figure-6.4 we

consider the influence of the slenderness ratio R
h

on the vertical displacement of the

free end, for a fixed number of degree of freedom and for a fixed F = 1 [KN ]. Again

a kind of locking is observed.

(a)

5 10 20 40 60 100 200 300
1.´10-11

1.´10-10

1.´10-9

1.´10-8

1.´10-7

1.´10-6

1.´10-5

1.´10-4

1.´10-3

1.´10-2

1.´10-1

Log10HdofL

L
o

g
1
0
ÈU

e
x
HL
L-

U
HL
LÈ

(b)

Figure 3: 3D cantilever arch with a point force at the end; 3(a) initial geometry, 3(b)

convergence’s error for the vertical displacement at the free end uz(L), for R/hn =
100 (p=2 green, p=3 blue, p=4 orange, p=5 red, and p=6 brown, p is the polynomial

degree).
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Figure 4: Figure-4(a) error’s convergence for the free end rotation φ(L), Figure-4(b)

error’s convergence for the bending moment at the constrained end, for R/hn = 100
(p=2 green, p=3 blue, p=4 orange, p=5 red, and p=6 brown, p is the polynomial de-

gree).

5 10 20 40 60 100 200 300
1.´10-9

1.´10-8

1.´10-7

1.´10-6

1.´10-5

1.´10-4

1.´10-3

1.´10-2

1.´10-1

1

Log10HdofL

L
o

g
1
0
ÈT

e
x
H0
L-

T
H0
LÈ

(a)

5 10 20 40 60 100 200 300
1.´10-6

1.´10-5

1.´10-4

1.´10-3

1.´10-2

1.´10-1

1

10

100

Log10HdofL

L
o

g
1
0
ÈV

e
x
H0
L-

V
H0
LÈ

(b)

Figure 5: Figure-5(a) error’s convergence for the twisting moment at the constrained

end, Figure-5(b) error’s convergence for the shear force at the constrained end, for

R/hn = 100 (p=2 green, p=3 blue, p=4 orange, p=5 red, and p=6 brown, p is the

polynomial degree).
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Figure 6: 3D cantilever arch with a couple at the end; 6(a) initial geometry, 6(b)

convergence’s error in energy, for R/hn = 100 (p=2 green, p=3 blue, p=4 orange,

p=5 red, p=6 brown and p=7 black, p is the polynomial degree).
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Figure 7: Influence of the slenderness ratio on the vertical displacement of the free

end, (p=2 green, p=3 blue, p=4 orange, p=5 red, p is the polynomial degree).
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Figure 8: 2D cantilever arch with a point force at the end; 8(a) initial geometry, 8(b)

convergence’s error in energy, forR/hn = 100 (p=2 green, p=3 blue, p=4 orange, p=5

red, and p=6 brown, p is the polynomial degree).
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Figure 9: Influence of the slenderness ratio on the vertical displacement of the free

end, (p=2 green, p=3 blue, p=4 orange, p=5 red, p is the polynomial degree).
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7 Conclusions

The main findings of the paper are as follows:

• a model for Kirchhoff-Lovespace rods has been presented, that employs as de-

grees of freedom the position vector of the point of the rod axis and the torsional

rotation around the current tangent;

• the model has been implemented in a numerical scheme based on B-splines

interpolation;

• two strategies have been compared, one that employs a single patch for the

whole rod, and the other that employs a multiple patch discretization with C1

geometric continuity at the joints;

• convergence analyses have been carried out on a number of examples, which

have shown that with single patch interpolation the rate of convergence equals

the degree p of the B-splines, while with multiple patches the rate of conver-

gence at most reaches p− 1.

In addition, some preliminary results on membrane locking have been presented,

that will be object of future works.
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