
Abstract

This paper presents a novel unified Ritz-based method for reliable computation of

eigenvalues of both thick and thin, circular and annular plates with different boundary

conditions. The solution is based on an appropriate and simple formulation capable

of handling in an unified way a large variety of two-dimensional higher-order plate

theories. The formulation is also invariant with respect to the set of Ritz admissible

functions. In this work, accurate upper-bound vibration solutions are presented by

using kinematic models up to sixth order and products of Chebyshev polynomials and

boundary-compliant functions. Considering the circumferential symmetry of circular

plates and the two-dimensional nature of underlying theories, the present method is

also computationally efficient since only single series of trial functions in the radial

direction are required.

Keywords: free vibration, circular and annular plates, higher-order plate theories,

variable-kinematic Ritz method.

1 Introduction

When dealing with vibration analysis of plate-like structures, one is typically faced

with the problem of selecting the best structural model which yields system eigenval-

ues with desired accuracy and acceptable computational burden. Modeling approaches

range from fully three-dimensional (3-D) models, without any simplifying assumption

on the kinematics of deformation, to traditional plate theories, like classical plate the-

ory (CPT) and first-order shear deformation theory (FSDT), based on a reduction of

the 3-D problem to simple and economical two-dimensional (2-D) models [1].

Many attempts lying in the middle have appeared in the recent literature. They fall

into the category of so-called refined or higher-order plate theories, where the conven-

1

 
Paper 96 
 
Computation of Eigenvalues for  
Thick and Thin Circular and Annular Plates using a 
Unified Ritz-Based Formulation 
 
L. Dozio 
Department of Aerospace Engineering 
Politecnico di Milano, Milan, Italy 

©Civil-Comp Press, 2012 
Proceedings of the Eleventh International Conference 
on Computational Structures Technology,  
B.H.V. Topping, (Editor),  
Civil-Comp Press, Stirlingshire, Scotland 



tional kinematics of FSDT is enriched with various higher-order terms as power series

expansion of the thickness coordinate [2, 3, 4, 5, 6, 7, 8]. The aim of such refined

theories is to preserve the 2-D nature of the model and thus avoid the complexity and

computational inefficiency of 3-D elasticity solutions, while improving, compared to

classical theories, the capabilities of estimating the correct mechanical behavior es-

pecially when thickness-to-length ratio of the plate increases, accurate through-the-

thickness distribution of displacements and stresses is sought and discrete high fre-

quency analysis is required.

In contrast to CPT and FSDT, higher-order theories typically lead to complex math-

ematical formulations of the structural problem. Derivation and computer implemen-

tation of the corresponding models would be less cumbersome with the availability

of appropriate techniques capable of handling in an easy and efficient way arbitrary

refinements of classical theories. Furthermore, it would be highly desirable to rely

on an unified modeling framework giving the ability of performing comparisons of

different theories of increasing complexity without the need of a new modeling effort

each time.

A unified Ritz-based formulation based on an entire class of 2-D higher-order the-

ories is presented here to accurately compute eigenvalues of thick and thin isotropic

circular and annular plates with arbitrary boundary conditions. Several studies have

been devoted to free vibration analysis of circular and annular plates. Most of them

presented the natural frequencies on the basis of CPT and FSDT (see, e.g., [9, 10, 11,

12, 13]). A satisfactory number of papers appeared in the literature that carried out

a 3-D vibration analysis [14, 15, 16, 17, 18]. However, higher-order plate theories

were employed only in few works [19, 20, 21]. As reported by So and Leissa in their

paper [15]: “ [...] besides the 2-D Mindlin theory used here for comparison [...], there

are higher order 2-D plate theories proposed by numerous authors. Their governing

equations are much more complicated than those of the Mindlin theory. One wonders

how accurate their frequencies would be in representing a 3-D problem [...] ”. One

goal of this study is to contribute in providing an answer to the above question.

As a further remark, all previous works on free vibration of circular and annular

plates modeled according to 2-D theories suffer from a common shortcoming: they

rely on axiomatic models with a fixed kinematic theory. As a result, the development

of a refined theory of a certain order requires each time a new mathematical effort

along with the related code implementation. This process can be cumbersome and

prone to errors. The powerful yet simple method presented in this study overcomes

the above deficiency.

The present formulation can be considered as an extension to circular plates of

the variable-kinematic Ritz method developed in [22], which was focused on straight-

sided quadrilateral plates. The formulation is invariant with respect to both the specific

plate theory and the set of admissible functions. In other words, a unified modeling

framework is derived in terms of simple modeling kernels, called Ritz fundamental

nuclei, which are properly expanded to yield the mass and stiffness matrices of the

model. In this work, products of Chebyshev polynomials and boundary-compliant
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Figure 1: Geometry of an annular plate.

functions are chosen as Ritz trial set. Upper-bound vibration solutions based on dif-

ferent 2-D models are shown and compared with various thin and thick cases available

in the literature.

Considering the circumferential symmetry of circular plates and the 2-D nature of

underlying theories, the present method is computationally efficient since only single

series of trial functions in the radial direction are required. In addition, relying on a

global approximation, the method has a high spectral accuracy and converges faster

than local methods such as finite elements. As a result, the formulation derived in

this work is accurate in providing benchmark values yet efficient to be used for design

purposes and parametric analysis.

2 Theoretical formulation

An annular isotropic plate of outer radius Ro and inner radius Ri is considered as

shown in Figure 1. The plate has uniform thickness h. An orthogonal cylindrical

coordinate system is defined with radial direction r (Ri ≤ r ≤ Ro), circumferential

direction θ (0 ≤ θ ≤ 2π) and thickness direction z (−h/2 ≤ z ≤ h/2).

For generality and convenience, the present formulation is derived using a dimen-

sionless coordinate ξ (−1 ≤ ξ ≤ 1) for the radial direction defined as follows

ξ =
r

γ
− δ (1)

where

γ =
Ro − Ri

2
(2)

δ =
Ro + Ri

Ro − Ri

(3)
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The displacement vector u = u(ξ, θ, z, t) of a generic point of the plate is given by

u(ξ, θ, z, t) =







uξ(ξ, θ, z, t)
uθ(ξ, θ, z, t)
uz(ξ, θ, z, t)







(4)

Strain components can be grouped into an in-plane strain vector εp and out-of-plane

(normal) strain vector εn as follows

εp =







εξξ

εθθ

γξθ







εn =







γξz

γθz

εzz







(5)

Within the framework of linear, small strain, elasticity theory, strain vectors are related

to displacements through the following equations

εp = Dpu (6)

εn = Dnu + Dzu (7)

where

Dp =

























(

1

γ

)

∂

∂ξ
0 0

(

1

γ

)

1

ξ + δ

(

1

γ

)

1

ξ + δ

∂

∂θ
0

(

1

γ

)

1

ξ + δ

∂

∂θ

(

1

γ

) [

∂

∂ξ
−

1

ξ + δ

]

0

























(8)

Dn =





















0 0

(

1

γ

)

∂

∂ξ

0 0

(

1

γ

)

1

ξ + δ

∂

∂θ

0 0 0





















(9)

and

Dz = diag

[

∂

∂z

]

(10)

Accordingly, the stress vector can be partitioned into in-plane σp and out-of-plane

σn components. Using Eqs. (6) and (7), the three-dimensional Hooke’s law can be

written as
σp = CppDpu + CpnDnu + CpnDzu

σn = CnpDpu + CnnDnu + CnnDzu
(11)
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where the following matrices of stiffness coefficients are introduced:

Cpp =





C11 C12 0
C12 C22 0
0 0 C66



 , Cpn =





0 0 C13

0 0 C23

0 0 0





Cnp =





0 0 0
0 0 0

C13 C23 0



 , Cnn =





C55 0 0
0 C44 0
0 0 C33





(12)

In the case of isotropic materials, the elastic coefficients are given by

C11 = C22 = C33 =
E(1 − ν)

(1 + ν)(1 − 2ν)

C12 = C13 = C23 =
Eν

(1 + ν)(1 − 2ν)

C44 = C55 = C66 = G =
E

2(1 + ν)

(13)

in which E is the Young’s modulus, ν is the Poisson’s ratio, and G is the shear modu-

lus.

According to the approach developed by Carrera [23], an entire class of two-

dimensional higher-order plate theories can be compactly described through the fol-

lowing indicial notation:

u(ξ, θ, z, t) = Fτ (z)uτ (ξ, θ, t) (τ = 0, 1, . . . , N) (14)

where uτ (ξ, θ, t) is the displacement vector containing the unknown kinematic vari-

ables related to the specific plate theory, τ is an integer index related to the order N
of the theory and Fτ (z) are selected functions in the thickness direction. The summa-

tion convention on indices appearing twice is implied in Eq. (14). In this work, the z
expansion is implemented via Taylor polynomials. For the sake of brevity, a higher-

order theory of order N will be indicated in the following by HOTN . For example,

HOT3 is a plate theory of order 3 based on the following assumed kinematic field:

uξ = uξ0 + zuξ1 + z2uξ2 + z3uξ3

uθ = uθ0 + zuθ1 + z2uθ2 + z3uθ3

uz = uz0 + zuz1 + z2uz2 + z3uz3

The total number of kinematic degrees of freedom for a given HOTN is 3 (N + 1).

Assuming a harmonic motion and considering the circumferential symmetry of the

plate about the coordinate θ, the displacements can be expressed as

u(ξ, θ, z, t) = Fτ (z)







ûξτ (ξ) cos (nθ)
ûθτ (ξ) sin (nθ)
ûzτ (ξ) cos (nθ)







ejωt (15)
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Boundary condition f inn
ξτ f inn

θτ f inn
zτ f out

ξτ f out
θτ f out

zτ

Clamped 1 + ξ 1 + ξ 1 + ξ 1 − ξ 1 − ξ 1 − ξ
Simply-supported 1 1 + ξ 1 + ξ 1 1 − ξ 1 − ξ
Free 1 1 1 1 1 1

Table 1: Boundary functions.

or, in matrix form,

u(ξ, θ, z, t) = Fτ (z)Θ(nθ)ûτ (ξ)e
jωt (16)

where û’s are amplitude functions of the dimensionless radial coordinate, n = 0, 1, 2, . . .
is the circumferential wavenumber and Θ(nθ) = diag(cos nθ, sin nθ, cos nθ). Note

that n = 0 in Eq. (15) yields axisymmetric vibration which involves only uξ and uz. A

complementary displacement field can be also used by replacing cos(nθ) by sin(nθ),
and conversely, in Eq. (15). In this case, torsional vibration modes are obtained when

n = 0.

A standard Ritz solution is sought for each component of the displacement vector

ûτ (ξ) as follows

ûξτ (ξ) = φξτi(ξ)cξτi

ûθτ (ξ) = φθτi(ξ)cθτi (i = 1, 2, . . . ,M) (17)

ûzτ (ξ) = φzτi(ξ)czτi

where M is the order of the Ritz expansion, cατi (α = ξ, θ, z) are the unknown Ritz

coefficients, and φατi are the corresponding Ritz trial functions. Note that, as before

for the theory-related index τ in Eq. (14), Ritz-related dummy index i in Eq. (17) im-

plies summation. The i-th admissible function φατi(ξ) is chosen here as the product of

boundary-compliant functions and the one-dimensional Chebyshev polynomial [17]:

φατi(ξ) = f inn
ατ (ξ)f out

ατ (ξ) cos [(i − 1) arccos(ξ)] (18)

where f inn
ατ (ξ) and f out

ατ (ξ) enable the displacement component uατ to satisfy the ge-

ometric boundary conditions at the inner (ξ = −1) and outer (ξ = +1) edges of

the plate, respectively. The boundary functions corresponding to the most common

boundary conditions are reported in Table 1. It is clear that f inn
ατ (ξ) = 1 in the case

of a solid circular plate. Chebyshev polynomials form a complete and orthogonal set

in the interval [−1, +1]. As such, good convergence and numerical stability of the

method are expected.

For the sake of compact notation, Eq. (17) is rearranged in matrix form as follows

ûτ (ξ) = Φτi(ξ)cτi (19)

where Φτi(ξ) = diag(φξτi, φθτi, φzτi) and cτi = {cξτi cθτi czτi}
T

. Therefore, the

displacement vector in Eq. (16) is given by

u(ξ, θ, z, t) = Fτ (z)Θ(nθ)Φτi(ξ)cτie
jωt (20)
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The potential and kinetic energy of the plate are expressed, respectively, as

U =
1

2
γ2

+1
∫

−1

2π
∫

0

+h
2

∫

−

h
2

(

ε
T
p Cppεp + ε

T
p Cpnεn + ε

T
n Cnpεp + ε

T
n Cnnεn

)

(ξ + δ) dzdθdξ

(21)

and

T =
1

2
γ2

+1
∫

−1

2π
∫

0

+h
2

∫

−

h
2

ρ

[

(

∂uξ

∂t

)2

+

(

∂uθ

∂t

)2

+

(

∂uz

∂t

)2
]

(ξ + δ)dzdθdξ (22)

where ρ is the mass density of the plate. Substituting Eq. (20) into Eqs. (6) and (7) and

using Hooke’s law in Eq. (11), the expressions of the maximum potential and kinetic

energy of the plate vibrating harmonically can be compactly written as follows:

Umax =
1

2
c

T
τiKτsijcsj (23)

and

Tmax =
1

2
ω2

c
T
τiMτsijcsj (24)

where s and j are other theory-related and Ritz-related dummy indices, respectively.

In the above equations, when n 6= 0, Kτsij and Mτsij are 3 × 3 matrices given by

Kτsij = γ2

+1
∫

−1

2π
∫

0

{

[DpΘ(nθ)Φτi(ξ)]
T [Zpp

τsDp + Z
pn
τsDn

+Z
pn
τs,z

]

Θ(nθ)Φsj(ξ) + [DnΘ(nθ)Φτi(ξ)]
T [Znp

τsDp

+Z
nn
τsDn + Z

nn
τs,z

]

Θ(nθ)Φsj(ξ) + [Θ(nθ)Φτi(ξ)]
T

[

Z
np
τ,zsDp

+Z
nn
τ,zsDn + Z

nn
τ,zs,z

]

Θ(nθ)Φsj(ξ)
}

(ξ + δ) dθdξ

(25)

and

Mτsij = γ2

+1
∫

−1

2π
∫

0

[Θ(nθ)Φτi(ξ)]
T
Z

ρ
τsΘ(nθ)Φsj(ξ) (ξ + δ) dθdξ (26)

where Z
pp
τs , . . . ,Z

ρ
τs are matrices of thickness integrals whose expression is given in

Appendix A. Matrices in Eqs. (25) and (26) represent modeling kernels and are called

Ritz fundamental nuclei of the present formulation. Indeed, they are invariant with re-

spect to both the underlying kinematic theory and the set of Ritz admissible functions.

In the case of axisymmetric modes, the condition n = 0 yields fundamental nuclei

Kτsij and Mτsij of dimension 2 × 2 since only uξ and uz are involved. In the case of
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torsional vibration, the fundamental nuclei reduce to scalar quantities. The elements

of Kτsij and Mτsij are explicitly reported in Appendix B.

The stiffness and mass matrices of the plate are built from the above nuclei through

an assembly-like procedure. The nuclei are first expanded to 3(N + 1) × 3(N + 1)
matrices by varying the theory-related indices τ and s from 0 to N . This expansion

yields

Kij =





K00ij K0rij K0Nij

Kr0ij Krrij KrNij

KN0ij KNrij KNNij



 (27)

Mij =





M00ij M0rij M0Nij

Mr0ij Mrrij MrNij

MN0ij MNrij MNNij



 (28)

where r = 1, . . . , N − 1. Then, the final matrices K and M of dimensions 3M(N +
1) × 3M(N + 1) are generated accordingly through variation of Ritz-related inde-

ces i and j in the above quantities Kij and Mij and by applying the same assembly

operations adopted for the nuclei expansion.

The extremization of the energy functional Π = Umax − Tmax with respect to the

coefficients cτi yields the following generalized eigenvalue problem:

(

K − ω2
M

)

c = 0 (29)

where c is the vector containing the unknown coefficients csj .

3 Convergence and stability analysis

The mathematically complete set of admissible functions in Eq. (18) yields upper-

bound frequency values with increasing accuracy towards exact solutions as the num-

ber of terms M retained in the series of Eq. (19) increases. However, nothing can be

said in advance with regard to the efficiency of the present method in terms of rate of

convergence. Furthermore, possible numerical issues associated with ill-conditioned

eigenvalue problems in Eq. (29) when an high number of terms are taken should be

pointed out.

The convergence and numerical stability of the method are studied in this section

with respect to a clamped solid circular plate (Ro = R) with various thickness-to-

radius h/R ratios. Clamping boundary conditions have been selected since conver-

gence of such solutions is expected to be slower than for other edge conditions, even

for the lowest frequency parameters [15, 22]. This is mainly due to the difficulty

of global trial function in approximating the actual displacement field near the fixed

boundary. Three cases are considered corresponding to a thin plate (h/R = 0.01), a

moderately thick plate (h/R = 0.1), and a very thick plate (h/R = 0.5). The first six

non-dimensional frequencies λ = ωR2
√

ρh/D, where D = Eh3/12(1 − ν2) is the

plate bending stiffness, are listed in Table 2 for three different kinematic theories of
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increasing complexity. Numerical results are shown as functions of increasing value

of order M for the Ritz expansion in the radial direction. Frequency values with su-

perscripts a and t denote axisymmetric and torsional vibration modes, respectively,

corresponding to n = 0.

Table 2: Convergence of the first six frequency parameters

λ = ωR2
√

ρh/D for solid clamped circular plates.

Mode

Theory h/R M 1 2 3 4 5 6

HOT1 0.01 8 11.304a 23.518 38.568 43.976a 56.410 67.232

10 11.304 23.518 38.568 43.976 56.409 67.229

20 11.304 23.518 38.568 43.976 56.409 67.229

0.1 8 11.000a 22.324 35.625 40.354a 50.625 59.557

10 11.000 22.324 35.625 40.354 50.624 59.556

20 11.000 22.324 35.625 40.354 50.624 59.556

0.5 8 7.3607a 12.364 13.720 15.705t 17.387 19.102a

10 7.3607 12.364 13.720 15.705 17.387 19.102

18 7.3607 12.364 13.720 15.705 17.387 19.102

HOT2 0.01 8 10.259a 21.345 35.006 39.916a 51.201 61.022

10 10.244 21.314 34.955 39.858 51.129 60.938

20 10.222 21.269 34.881 39.773 51.019 60.808

30 10.218 21.260 34.867 39.757 50.999 60.783

40 10.217 21.257 34.862 39.752 50.992 60.775

0.1 8 10.030a 20.426 32.713 37.085a 46.647 54.963

10 10.019 20.404 32.679 37.048 46.602 54.912

20 10.010 20.386 32.652 37.018 46.566 54.870

30 10.010 20.386 32.652 37.018 46.565 54.869

0.5 8 7.0527a 11.955 13.684 15.705t 16.864 18.548a

10 7.0525 11.955 13.684 15.705 16.864 18.547

16 7.0525 11.955 13.684 15.705 16.864 18.547

18 7.0525 11.955 13.684 15.705 16.864 18.547

HOT6 0.01 8 10.258a 21.343 35.003 39.912a 51.194 61.013

10 10.243 21.312 34.952 39.853 51.122 60.928

20 10.222 21.267 34.877 39.768 51.012 60.798

30 10.217 21.258 34.863 39.752 50.991 60.773

40 10.216 21.255 34.858 39.747 50.984 60.765

Table 2 – (continued on next page)
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Table 2 – (continued)

Mode

Theory h/R M 1 2 3 4 5 6

0.1 8 9.9973a 20.310 32.449 36.766a 46.167 54.340

10 9.9862 20.288 32.416 36.728 46.121 54.286

20 9.9746 20.265 32.381 36.689 46.073 54.230

30 9.9735 20.263 32.377 36.685 46.068 54.224

0.5 8 6.8094a 11.501 13.659 15.705t 16.234 17.829a

10 6.8075 11.498 13.657 15.705 16.231 17.827

16 6.8060 11.497 13.657 15.705 16.230 17.825

18 6.8060 11.497 13.657 15.705 16.230 17.825

As expected, all the frequency parameters monotonically decrease with the increase

in the number of admissible functions, regardless of the thickness-to-radius ratio and

the order of the kinematic model.

For each thickness-to-radius ratio, the rate of convergence of the method is very

similar for HOT2 and HOT6. Although corresponding results are not shown here due

to brevity reasons, the same can be said for kinematic models of intermediate order.

From Table 2, it can be seen that fewer terms are needed for the frequency values

to converge when the thickness dimension becomes significant. Indeed, all the first

six frequency parameters converged to five-digit upper-bound values with M = 16
in the case of h/R = 0.5. When thinner plates are considered, the same frequencies

are of only three- or four-digit accuracy even when the order M raises up to 30. A

more rapid convergence as the plate thickness ratio increases has been also observed

in 3-D Ritz-based vibration studies [16]. Moreover, the substantial invariance of the

convergence behavior with respect to the assumed kinematic theory was also found in

a previous work on quadrilateral straight-sided plate [22].

By further comparing solutions based on HOT2 with those based on HOT6, it is

noted that, except for the thin case (h/R = 0.01) and the results corresponding to

torsional modes, all the natural frequencies converged to different values according

to the adopted theory. As shown in the next section, the accuracy of the solution for

moderately thick and very thick plates is largely affected by the underlying kinematic

model. In the case of thin plates, frequency values computed by plate theories of

increasing order are all very close to each other and completely consistent with results

obtained from the classical 2-D Kirchhoff theory (see Table 2.1 in [9]).

Tabulated results corresponding to a first-order HOT1 kinematic theory show that

the rate of convergence of the method is very fast in that case, regardless of the

thickness-to-radius ratio. All the frequency parameters converged to five-digit upper-

bound values with M = 10. However, it is observed that convergent results are all
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significantly higher than those obtained with more refined theories. This behavior is

due to a locking mechanism, known as thickness locking (TL), which occurs when

the kinematic model exhibits a constant distribution of the transverse normal strain

εzz [22]. Note that TL effects are more distinct for thin plates and slightly decrease

with increasing thickness.

As far as the numerical stability of the method is concerned, it can be noticed that

the ill-conditioning of the eigenvalue problem is avoided even when a high number M
of terms is taken to compute the frequency solutions. It is shown that stable numerical

analysis can still be carried out when M = 40. Numerical tests involving up to 100

terms in the radial direction have been performed without reaching the upper limit

yet. Such immunity against ill-conditioned behavior can be of great importance in

improving the accuracy of the eigenfrequencies of higher order.

As a final remark, it can be observed that, from an engineering point of view, well-

converged values are attained with M = 20 in all cases.

Similar analysis has been carried out on annular plates having different Ro/Ri ra-

tios. The computed results, not shown here for brevity, have confirmed the above

outlined conclusions.

4 Comparison results

The variable-kinematic Ritz formulation derived in Section 2 is here validated against

some reference solutions available in the literature. In particular, the following analy-

sis is focused on comparing eigenfrequencies of different annular plates obtained on

the basis of higher-order 2-D theories with those computed using a fully 3-D approach.

Results are given in tabulated form, so that listed solutions may serve as benchmark

values for future comparison.

The first analysis is referred to annular plates with Ro = (10/3)Ri and h/Ro = 0.2.

Three cases with different combinations of boundary conditions at the inner and outer

edges are considered. The first six frequency parameters λ = ωR2
o

√

ρh/D are sorted

in Table 3 as a result of the adoption of kinematic models of order 2, 4, and 6.

Present Ritz-based solutions are computed with M = 30 and compared with those

obtained from three-dimensional analysis using orthogonally generated polynomial

functions [16] and Chebyshev polynomials [17]. Note that the missing term with both

the inner and outer edges clamped is related to a torsional mode, which was not com-

puted in Ref. [16]. It is clear from Table 3 that frequency values arising from 2-D

models converge towards 3-D based accurate solutions reported in [17] as the order

N of the underlying theory increases. The agreement is excellent when computations

are performed using a kinematic model of order 6. The accuracy is slightly worse,

but still very good, for models of lower order. This shows that, using the variable-

kinematic formulation presented in this work, one can easily select the theory refine-

ment needed to achieve a desired accuracy without any further development effort

and without the complexity and computational inefficiency associated to 3-D models.
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Table 3: Frequency parameters λ = ωR2
o

√

ρh/D for the first eight modes of annular

plates with Ro = (10/3)Ri, h/Ro = 0.2 and various boundary conditions.

Mode

BC Method 1 2 3 4 5 6

FF Present (HOT2) 4.6393 7.9075 11.222 15.389 15.662 19.030

Present (HOT4) 4.6196 7.8939 11.143 15.187 15.661 18.826

Present (HOT6) 4.6195 7.8939 11.143 15.187 15.661 18.826

3D-Ritz [16] 4.6198 7.8939 11.143 15.189 15.662 18.826

FC Present (HOT2) 10.553 16.323 26.210 37.101 38.249 39.627

Present (HOT4) 10.442 16.020 25.645 36.214 37.339 39.598

Present (HOT6) 10.438 16.013 25.634 36.197 37.313 39.592

3D-Ritz [16] 10.448 16.026 25.650 36.220 37.346 39.602

3D-Ritz [17] 10.437 16.012 25.632 36.194 37.309 39.591

CC Present (HOT2) 31.822 32.548 35.451 41.442 48.220 50.147

Present (HOT4) 30.741 31.473 34.371 40.271 48.220 48.745

Present (HOT6) 30.696 31.430 34.333 40.238 48.220 48.713

3D-Ritz [16] 30.743 31.474 34.370 40.266 − 48.736

3D-Ritz [17] 30.688 31.422 34.325 40.231 48.220 48.707
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Note also that upper-bound results obtained by the present method using HOT4 and

HOT6 are slightly lower than those obtained in [16] from a 3-D analysis. This is prob-

ably due to the relatively low number of Ritz terms taken in the radial and thickness

directions in the 3-D case.

Table 4: Frequency parameters λ = ωRo

√

ρ/G for the first

four antisymmetric modes of completely free annular plates

with Ro = 2Ri.

Mode

h/Ro n Method 1 2 3 4

0.4 0a Present (HOT1) 1.470 9.106 9.983 16.631

Present (HOT3) 1.388 8.344 9.167 14.498

Present (HOT6) 1.388 8.321 9.127 14.133

3D-Ritz [17] 1.388 8.321 9.127 14.133

3D-Ritz [15] 1.388 8.321 9.127 14.133

1 Present (HOT3) 1.944 8.049 8.554 8.974

Present (HOT6) 1.943 8.039 8.534 8.945

3D-Ritz [17] 1.943 8.039 8.534 8.945

3D-Ritz [15] 1.943 8.039 8.534 8.945

2 Present (HOT3) 0.691 3.127 8.422 8.814

Present (HOT6) 0.691 3.123 8.400 8.793

3D-Ritz [17] 0.691 3.123 8.400 8.793

3D-Ritz [15] 0.691 3.123 8.400 8.793

3 Present (HOT3) 1.681 4.459 8.834 9.007

Present (HOT6) 1.680 4.450 8.808 8.986

3D-Ritz [17] 1.680 4.450 8.808 8.986

3D-Ritz [15] 1.680 4.450 8.808 8.986

1 0a Present (HOT1) 2.102 7.177 10.903 14.104

Present (HOT3) 1.984 6.129 9.360 10.411

Present (HOT6) 1.984 5.775 8.329 9.355

3D-Ritz [17] 1.984 5.772 8.258 9.084

3D-Ritz [15] 1.984 5.772 8.258 9.084

1 Present (HOT3) 2.002 3.939 6.145 7.959

Present (HOT6) 1.999 3.930 5.842 7.719

3D-Ritz [17] 1.999 3.930 5.839 7.706

3D-Ritz [15] 1.999 3.930 5.839 7.706

Table 4 – (continued on next page)
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Table 4 – (continued)

Mode

h/Ro n Method 1 2 3 4

2 Present (HOT3) 1.040 2.858 5.213 6.424

Present (HOT6) 1.039 2.846 5.173 6.160

3D-Ritz [17] 1.039 2.846 5.172 6.157

3D-Ritz [15] 1.039 2.846 5.172 6.157

3 Present (HOT3) 2.326 3.975 6.521 7.072

Present (HOT6) 2.320 3.947 6.393 6.808

3D-Ritz [17] 2.320 3.946 6.392 6.805

3D-Ritz [15] 2.320 3.946 6.392 6.805

Another illustrative example is referred to a completely free annular plate with

Ro/Ri = 2 and two different thickness-to-outer-radius ratios, h/Ro = 0.4 and h/Ro =
1. The first four non-dimensional frequencies λ = ωRo

√

ρ/G corresponding to an-

tisymmetric modes are shown in Table 4 for circumferential wavenumber n ranging

from 0 to 3. Present solutions, computed with M = 30 and based on kinematic the-

ories of increasing order, are compared with the 3-D Ritz series solutions available

in [17] and [15]. By looking at results corresponding to axisymmetric modes when

h/Ro = 0.4, it is confirmed that HOT1 suffer from thickness locking. Therefore,

it must be used along with the enforcement of null normal transverse stress condi-

tion [22]. It can be also observed that, except for a few higher-order axisymmetric

modes in the very thick case (h/Ro = 1), the frequency solutions obtained with a 2-D

sixth-order theory are all in excellent agreement with those from a 3-D analysis. The

accuracy of the lowest modes is still very good in the case of h/Ro = 0.4 when HOT3

is adopted. However, it is seen that, when relatively high-order modes of very thick

plates are of interest, a kinematic theory of high refinement is required.

5 Conclusions

A novel variable-kinematic Ritz formulation capable of handling in an unified way an

entire class of 2-D higher-order kinematic theories for accurate vibration analysis of

circular and annular plates of any thickness has been derived. The method relies on

suitable expansion of invariant kernels of the mass and stiffness matrix. The invariance

is to be intended with respect to both the order of the theory and the type of Ritz trial

functions. Considering the circumferential symmetric of the problem under study, the

present method is also computationally efficient.

Upper-bound frequency values have been presented using products of boundary-

compliant functions and Chebyshev polynomials. It has been shown that the method

14



exhibits good convergence properties and a high numerical stability. As expected,

increasing accuracy towards 3-D values in terms of frequency parameters has been

found with theory refinement. Further, kinematic plate models of lower order are more

sensitive to thickness-to-radius ratio, whereas accuracy is substantially independent

from plate thickness when a highly refined theory is adopted.
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Appendix A

By introducing the following thickness integrals

Eτs =

+h/2
∫

−h/2

Fτ (z)Fs(z)dz Eτs,z
=

+h/2
∫

−h/2

Fτ (z)
dFs(z)

dz
dz

Eτ,zs =

+h/2
∫

−h/2

dFτ (z)

dz
Fs(z)dz Eτ,zs,z

=

+h/2
∫

−h/2

dFτ (z)

dz

dFs(z)

dz
dz
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the matrices Z
pp
τs , . . . ,Z

ρ
τs in Eqs. (25) and (26) are defined as follows:

Z
pp
τs = EτsCpp Z

pn
τs = EτsCpn

Z
np
τs = EτsCnp Z

nn
τs = EτsCnn

Z
pn
τs,z

= Eτs,z
Cpn Z

nn
τs,z

= Eτs,z
Cnn

Z
np
τ,zs = Eτ,zsCnp Z

nn
τ,zs = Eτ,zsCnn

Z
nn
τ,zs,z

= Eτ,zs,z
Cnn Z

ρ
τs = Eτsρ

Appendix B

After introducing the quantities

Γc =

2π
∫

0

cos2(nθ)dθ (n = 0, 1, 2, . . . )

Γs =

2π
∫

0

sin2(nθ)dθ (n = 0, 1, 2, . . . )

and defining the following integrals

Iabc
αβ =

+1
∫

−1

daφατi

dξa

dbφβsj

dξb
(ξ + δ)c dξ

the elements of the stiffness fundamental nucleus Kτsij can be explicitly written as

follows:

Kτsij(1, 1) = EτsC11 ΓcI
111
ξξ + EτsC22 ΓcI

00−1
ξξ + EτsC12 Γc

(

I100
ξξ + I010

ξξ

)

+ EτsC66 n2 ΓsI
00−1
ξξ + Eτ,zs,z

C55 γ2 ΓcI
001
ξξ

Kτsij(1, 2) = EτsC12 n ΓcI
100
ξθ + EτsC22 n ΓcI

00−1
ξθ + EτsC66 n Γs

(

I00−1
ξθ − I010

ξθ

)

Kτsij(1, 3) = Eτs,z
C13 γ ΓcI

101
ξz + Eτs,z

C23 γ ΓcI
000
ξz + Eτ,zsC55 γ ΓcI

011
ξz

Kτsij(2, 1) = EτsC12 n ΓcI
010
θξ + EτsC22 n ΓcI

00−1
θξ + EτsC66 n Γs

(

I00−1
θξ − I100

θξ

)

Kτsij(2, 2) = EτsC22 n2 ΓcI
00−1
θθ + EτsC66 Γs

(

I111
θθ − I100

θθ − I010
θθ + I00−1

θθ

)

+ Eτ,zs,z
C44 γ2 ΓsI

001
θθ

Kτsij(2, 3) = Eτs,z
C23 nγ ΓcI

000
θz − Eτ,zsC44 nγ ΓsI

000
θz

Kτsij(3, 1) = Eτ,zsC13 γ ΓcI
011
zξ + Eτ,zsC23 γ ΓcI

000
zξ + Eτs,z

C55 γ ΓcI
101
zξ

Kτsij(3, 2) = Eτ,zsC23 nγ ΓcI
000
zθ − Eτs,z

C44 nγ ΓsI
000
zθ

Kτsij(3, 3) = EτsC55 ΓcI
111
zz + EτsC44 n2 ΓsI

00−1
zz + Eτ,zs,z

C33 γ2 ΓcI
001
zz
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The non-null elements of the mass fundamental nucleus Mτsij are given by

Mτsij(1, 1) = Eτsρ γ2 ΓcI
001
ξξ

Mτsij(2, 2) = Eτsρ γ2 ΓsI
001
θθ

Mτsij(3, 3) = Eτsρ γ2 ΓcI
001
zz

By setting n = 0 in the above equations, axisymmetric modes are obtained. Note

that, in this case, Kτsij(1, 2) = Kτsij(2, 1) = Kτsij(2, 2) = Kτsij(2, 3) = Kτsij(3, 2) =
0 and Mτsij(2, 2) = 0.

In the case of torsional modes, the circumferential is once again null, but now Γc is

replaced by Γs and conversely. Therefore, the only non-zero terms are the following:

Kτsij = EτsC66 Γc

(

I111
θθ − I100

θθ − I010
θθ + I00−1

θθ

)

+ Eτ,zs,z
C44 γ2 ΓcI

001
θθ

Mτsij = Eτsρ γ2 ΓcI
001
θθ
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