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Abstract 
 
A practical application in the modelling of composite beams, for designers who are 
usually limited to standard elements, is to connect beam element components by 
using rigid connections tied to the nodes or use master-slave type kinematic 
constraints. However, due to numerical issues this type of modelling may lead to the 
weakening of the intended kinematic constraints; that is, satisfaction of the perfect 
bond condition between the components in the point-wise sense. Therefore, this type 
of multiple-point constraint application provides softer behaviour than the intended 
perfectly bonded composite beam behaviour. The variational multiscale method is 
adopted herein to recover the perfect bond between the layers in the point-wise 
sense, based on the idea that the numerical solution space in the multiple-point 
constraint application can be deemed as the superfluously extended solution space 
because of the weakening in the kinematic constraints. Therefore, intended perfectly 
bonded composite beam solution is defined as the coarse-scale solution and thus, the 
perfect bond between the composite beam layers can be recovered by excluding the 
identified fine-scale effect from the solution of the multiple point constraint 
application. The improvements in the accuracy and convergence characteristics 
based on the proposed variational multiscale approach are illustrated. 
 
Keywords: variational multiscale method; composite beams; multiple-point 
constraints; perfect bond; interpolation error. 
 
 
1  Introduction 
 
Composite beams that consist of different components juxtaposed with a shear 
connection find widespread applications. Numerous composite beam theories have 
been proposed to date to describe the kinematic behaviour and stress states of 
composite laminates. An early mathematical model for composite beams with 
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flexible shear connectors was introduced by Newmark et al. [1], in which two beams 
are connected by assuming that vertical separation does not occur between the 
components. Subsequently, several displacement-based finite element formulations 
were developed based on Newmark’s model, e.g., [2-4]. However, in many practical 
cases the interlayer connections are very stiff between the two components such that 
the interlayer slip is negligible comparison to the deformations of the composite 
beam. In such cases, displacement-based finite element formulations based on 
flexible shear connectors suffers due to locking. In order to alleviate locking for the 
cases of stiff connections the strategies developed in [5-10,] can be used. 
 
 

On the other hand, in engineering applications with stiff connections the classical 
theory, which assumes full interaction between the components [11], can also be 
adopted. A practical application in the modelling of composite beams based on 
classical theory is to use Multiple-Point Constraints (MPCs) at the nodes to bond the 
components together. However, this type of modelling does not provide perfect 
bond between the layers in the point-wise sense, and as a result full-interaction 
between the layers cannot be always imposed by applying MPC at the nodes. Gupta 
and Ma [12] pointed out this fact and noted that the source of error in MPC 
applications of this type is due to the incompatibility in the displacement field. A 
similar type of error in MPC applications for built-up plates and shells was pointed 
out by Crisfield [13].  

 
 
An interpolated displacement field can be conceived as a displacement field of an 

extended interpolation space under a constraint condition [14]. Since the MPC 
application imposes a weaker condition than the perfectly bonded case, the 
interpolation space in the MPC application can be treated as a superfluously 
extended space, in which unwanted higher order terms or bubbles are contained 
[15]. Following the ideas introduced in [15-17], this study adopts the variational 
multiscale approach to recover the perfect bond between the layers in the finite 
element analysis of composite beams by excluding the identified bubbles from the 
solution of the MPC application. The improvements in the accuracy and 
convergence characteristics based on the proposed approach are illustrated. 

 
 
The paper is organised as follows. The kinematics and the weak form of the 

equilibrium equations for composite beams are introduced in Section 2. In Section 3, 
finite element formulations are developed by using MPCs and alternatively by 
modifying the weak form of the equilibrium equations to enforce perfect bond 
between the layers in the point-wise sense. In Section 4, it is shown that by using the 
variational multiscale method the finite element formulation based on the perfect 
bond can be recovered from the formulation based on MPC application. In Sect. 5, a 
finite element formulation that provides exact values at the nodes is obtained also 
using the variational multiscale approach. Numerical examples are presented in 
Section 6 and conclusions are drawn in Section 7. 



3 

2 Composite beam kinematics and finite element solution 
 
2.1 Displacements and strains 
 
The composite member is made up of a top and a bottom Euler-Bernoulli beam 
component, which are referred to as layers 1 and 2, respectively. The deformations 
of the layers can be expressed in terms of the axial displacements 1w  and 2w  of their 
centroids and the vertical displacements 1v  and 2v  of layers 1 and 2, respectively. 
Thus, the strain expression in each layer can be determined in terms of the axial 
displacement gradients 1wD  and 2wD , and the curvatures 2

1vD  and 2
2vD  due to 

bending as 
 
 2

1 1 1 1w y vε = −D D  (1) 
and 
 2

2 2 2 2w y vε = −D D  (2) 
 
in which 1ε  and 2ε  are the strains in layers 1 and 2, respectively, D ( ) = d( )/dz , and 

1y  and 2y  refer to the distance of a point on the cross-section from the centroid of 
the associated layer.  

 
 
 
 
2.2 Weak form of the equilibrium equations 
 
Employing linear elastic materials, a displacement-based finite element formulation 
can be developed by employing the principle of virtual work, i.e. 
 
 

1 2

1 1 1 2 2 2δ δ d d δ d d δ 0ext
L A L A

E A z E A zε ε ε εΠ = + − Π =∫ ∫ ∫ ∫ , (3)  

 
where the first and second integrals are the virtual work done due to the 
deformations of the layers and δ extΠ  is the virtual work done by the external forces. 
In Eq. (3), L is the span of the analysis domain, 1A  and 2A  are the cross-sectional 
areas, and 1E  and 2E  are the moduli of elasticity for layers 1 and 2 respectively. 
Routinely, by substituting Eqs. (1) and (2) into Eq. (3), the weak form of equilibrium 
equations can be written as 
 
 δ ( ) ( )d δ ( ) ( )d 0

L L

z z z z z z∂ ∂ − =∫ ∫T Tu D u u q , (4) 

 
where D  is the matrix of the cross-sectional properties, i.e. 
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1 1

1 1

2 2

2 2

0 0 0
0 0 0
0 0 0
0 0 0

E A
E I

E A
E I

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

D  (5) 

 
in which 

1

2
1 1 d

A
I y A=∫  and 

2

2
2 2d

A
I y A=∫  are the second moments of the areas of the 

cross-sections of layers 1 and 2 with respect to horizontal axes passing through their 
own centroids respectively. In Eq. (4), the displacement vector u can be written in 
terms of the axial and vertical displacement components as 

 
 T

1 1 2 2( ) ( ) ( ) ( ) ( )z w z v z w z v z=u , (6) 
 
while the deformation vector ∂u  can be written as 
 
 

T2 2
1 1 2 2( ) ( ) ( ) ( ) ( )z w z v z w z v z∂ =u D D D D , (7) 

 
In Eq. (4), ( )zq  is the vector of external actions, i.e. 
 
 T

1 1 2 2( ) ( ) ( ) ( ) ( )w v w vz q z q z q z q z=q , (8) 
 
The composite action is enforced in the next section by using two alternative 
approaches; MPC application at the nodes and enforcing perfect bond kinematics in 
the point-wise sense. 
 
 
3 Finite element solution to enforce composite action 
 
3.1 MPC application to enforce composite action 
 
For a finite element formulation, by using Eq. (4) the weak form of the equilibrium 
equations can be written as 
 

 T T T Tδ ( ) ( )d δ 0
L

z z z
⎛ ⎞

− =⎜ ⎟
⎝ ⎠
∫d N B D BN d d f , (9) 

where 
 

 
1

1

2

2

( )
( )

( )
( )

( )

z
z

z
z

z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

w 0 0 0
0 v 0 0

N
0 0 w 0
0 0 0 v

, (10) 
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and 
 

 
2

2

0 0 0
0 0 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

B

D
D

D
D

. (11) 

 
In Eq. (9), f  is the energy equivalent nodal force vector, i.e.  
 
 T( ) ( )d

L

z z z= ∫f N q  (12) 

 
and d  is the vector of nodal parameters associated with the selected interpolation 
functions 1( )zw , 2( )zw , 1( )zv  and 2( )zv  used in Eq. (10), from which the 
displacement field used in Eq. (9) can be expressed as 
 
 ( ) ( )z z=u N d  (13) 
 
and deformation field can be expressed as 
 
 ( ) ( )z z∂ =u BN d  (14) 
 
When two layers are bonded together, vertical separation between the two layers is 
prevented and the composite cross-section remains planar after the deformation. In 
the finite element modelling of composite beams, two separate elements can be 
connected conveniently at nodes by using MPCs. Assuming that the nodes of the 
second element are the master nodes, the nodal displacements of the first element 
can be obtained by using the ‘no vertical separation rule’ at the nodes, i.e. 

1 2(0) (0)v v=  and 1 2( ) ( )v L v L= , and the ‘plane sections remain plane rule’ at the 
nodes i.e., 1 2 2(0) (0) (0)w w h v= − D  and 1 2 2( ) ( ) ( )w L w L h v L= − D , where 1 2h y y= −  is 
the distance between the centroids of the layers. By using these nodal constraint 
conditions in Eq. (9), the weak form of the equilibrium equations can be obtained as 
 
 T Tδ δ 0− =d K d d f  (15) 
in which 
 T T T( ) ( )d

L

z z z= ∫K T N B DB N T  (16) 

and 

 T T( ) ( )d
L

z z z= ∫f T N q  (17) 

where T  is the matrix of nodal constraint conditions and d  is the vector of 
restrained nodal degrees of freedom, i.e. =d Td  and T=f T f .  
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3.2 Stiffness matrix due to MPC application based on the selected 
interpolation functions 

 
The simplest Euler-Bernoulli beam finite element can be developed by using linear 
interpolations for the axial displacement and cubic interpolation for the vertical 
displacements, i.e. 
 
 ( )1 2( ) ( ) 1z z z L z L= = −w w , (18) 
and 
 

2 3 2 3 2 3 2 3

1 2 2 3 2 2 3 2

3 2 2 3 2( ) ( ) 1 z z z z z z z zz z z
L L L L L L L L

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = − + − + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
v v . (19) 

 
The nodal displacement vector in this case can be written as 
 
 T T T T T

1 1 2 2N N N N=d w v w v . (20) 
 
where T

1 1 1(0) ( )N w w L=w , T
1 1 1 1 1(0) (0) ( ) ( )N v v v L v L′ ′=v , T

2 2 2(0) ( )N w w L=w  
and T

1 1 1 1 1(0) (0) ( ) ( )N v v v L v L′ ′=v . When the nodes of the second element are 
the master nodes, the matrix of nodal constraint conditions can be written as 
 

 

T1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 1

h

h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎣ ⎦

T , (21) 

 
and the vector of retained nodal degrees of freedom can be written as 
 
 T T T

2 2N N=d w v , (22) 
 
By substituting Eqs.(5), (7), (10), (18)  and  (19) into Eq.(16), the stiffness matrix 
can be obtained as 
 

 
11 12

12 22

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

T

K K
K

K K , (23) 

 
in which 
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1 1 2 2 1 1 2 2

11
1 1 2 2 1 1 2 2

E A E A E A E A
L L

E A E A E A E A
L L

+ +⎡ ⎤−⎢ ⎥
= ⎢ ⎥

+ +⎢ ⎥−⎢ ⎥⎣ ⎦

K , (24) 

 

 
1 1 1 1

12
1 1 1 1

0 0

0 0

E A h E A h
L L

E A h E A h
L L

⎡ ⎤−⎢ ⎥
= ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

K , (25) 

and 
 
 ( ) 2

22 1 1 2 2 1 1E I E I E A h= + +K A S , (26) 
 
where 
 

 
2 2

3

2 2

12 6 12 6
6 4 6 21
12 6 12 6

6 2 6 4

L L
L L L L

L LL
L L L L

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥−⎣ ⎦

A , (27) 

and 
 

 

0 0 0 0
0 1 0 11
0 0 0 0
0 1 0 1

L

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

S , (28) 

 
This solution will be referred herein as Multiple-Point Constraint Solution (MPCS). 
It will be shown, however, that the imposition of the MPCs at the nodes is deficient 
in that it does not inherit the kinematic properties of the continuous problem 
introduced in the next section. However, the deficiency in MPCS can be remedied 
by using the variational multiscale method as will be shown in section 4. 
 
3.3 Finite element solution satisfying kinematic constraints in the 

point-wise sense 
 
When two layers are juxtaposed, in order to enforce perfect bond between the layers 
(i.e. full interaction in the point-wise sense), the kinematic conditions can be 
modified prior to imposing finite element interpolation functions. By using the 
kinematic constraint conditions of no vertical separation (i.e. 1 2v v= ) and the cross-
section remains planar after the deformation (i.e. 1 2 2w w h v= − D ) in Eq. (3), the weak  
form of the equilibrium equations becomes  



8 

 1 1 2 2 1 1 22
2 2 2 2

1 1 1 1 1 1 2 2 2

δ δ d δ 0ext
L

E A E A E A h w
w v z

E A h E A h E I E I v
⎛ ⎞+ −⎡ ⎤ ⎧ ⎫

− Π =⎜ ⎟⎨ ⎬⎢ ⎥− + +⎣ ⎦ ⎩ ⎭⎝ ⎠
∫

D
D D

D
, (29) 

 
Similarly to the MPCS in section 3.1, a finite element solution can be developed by 
using linear interpolation for the axial displacement field 2w  and cubic interpolation 
for the vertical displacement field 2v , i.e. 
 
 T Tδ δ 0− =d K d d f , (30) 
 
in which 
 
 T T T( ) ( )d

L

z z z= ∫K N B T D TBN , (31) 

 
and 
 
 T T( ) ( )d

L

z z z= ∫f N t q , (32) 

 
where f  is the energy equivalent nodal force vector. In Eqs. (31) and (32), 
 

 
T1 0 1 0

1 0 1h
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
T , (33) 

 

 
2

0
0

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

B
D

D
, (34) 

 

 2

2

( ) 0
( )

0 ( )
z

z
z

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

w
N

v
, (35) 

and 
 

 
T1 0 1 0

1 0 1h
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
t

D
, (36) 

 
are used. By substituting Eqs. (5), (7), (10), (18) and (19) into Eq. (16), the stiffness 
matrix can be obtained as 
 

 
11 12

12 22

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

T

K K
K

K K
, (37) 
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in which 11 11=K K , 12 12=K K  and 22K  can be written as 
 
 ( )2

22 1 1 2 2 1 1E I E I E A h= + +K A , (38) 
 
This solution will be referred herein as Perfect-Bond Kinematics Finite element 
Solution (PBKFS). 
 
 
4  Enforcement of perfect bond kinematics 
 
4.1 Variational multiscale approach 
 
In this section, by using the variational multiscale approach, the finite element 
formulation of the perfectly bonded case in section 3.3 will be produced by using the 
finite element formulation based on MPC application introduced in section 3.2. In 
the variational multiscale approach [16], the displacement field vector u  is 
decomposed into coarse and fine-scale displacement fields, u  and ′u  respectively, 
i.e. ′= +u u u . The fine-scale displacement field vanishes at the element boundaries, 
i.e. (0) ( )L′ ′= =u u 0  and the spaces of the course- and fine-scale functions are 
linearly independent. Likewise, the deformation field is decomposed herein into two 
linearly independent components, i.e. ′∂ =∂ +∂u u u  where the coarse-scale 
deformation field is ( )z∂ =u TBN d , in which T , B  and ( )zN  are as shown in Eqs. 
(33), (34) and (35), respectively. The fine-scale displacement field can in general be 
expressed as ( )z′ ′ ′=u N d , where ′N  denotes the vector of fine-scale interpolation 
functions such as bubble functions or p-refinements, and ′d  denotes the vector of 
fine-scale nodal parameters. From the fine-scale displacement field, the fine-scale 
deformation field can be obtained as ( )z′ ′ ′∂ =u BN d . The aim is to recover the finite 
element formulation based on perfect bond between the composite beam layers in 
the point-wise sense by excluding the fine-scale effect from the finite element 
formulation based on MPC application. For this purpose, Eq. (15) is split into two 
interacting forms by using the variational multiscale approach, i.e.  
 
 T T Tδ δ δ 0′ ′+ − =d K d d K d d f , (39) 
and 
 
 T T T Tδ δ δ 0′ ′ ′ ′′ ′ ′ ′+ − =d K d d K d d f , (40) 
 
where 
 
 T T( ) ( )d

L

z z z′′ ′ ′= ∫K N B D BN , (41) 

and 
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 T T T( ) ( )d

L

z z z′ ′= ∫K N B T DB N , (42) 

 
It should be noted that in obtaining Eqs. (39) and (40) from Eq. (15), an additive 
split for the weighting functions was also introduced, i.e. δ δ δ ′= +u u u . In between 
the above two interacting equations, the fine-scale nodal parameters, i.e. ′d  in Eq. 
(39) can be eliminated in order to be left with a problem entirely in terms of the 
coarse-scale solution. The elimination of ′d  can be achieved by using the usual 
static condensation, and thus from Eq. (40) the vector of fine scale nodal parameters 
′d  can be calculated as 

 
 1 T−′ ′′ ′⎡ ⎤= −⎣ ⎦d K f K d , (43) 
 
By substituting Eq. (43) into Eq. (39), the equilibrium equations that consider the 
effect of the fine-scale solution can be written as 
 
 =Kd f , (44) 
 
in which 1 T−′ ′′ ′= −K K K K K and 1−′ ′′ ′= −f f K K f . From the results based on Eq. 
(15), by substituting into Eq. (44) the coarse scale solution can be extracted as  
 
 1 T−′ ′′ ′= +K K K K K , (45) 
and 
 1−′ ′′ ′= +f f K K f , (46) 
where 
 T( ) ( )d

L

z z z′ ′= ∫f N q , (47) 

 
By using Eqs. (45) and (46), the equilibrium equations for the composite beam with 
perfect bond in Eq. (30) can be recovered. In the next section, the interpolation space 
of the fine-scale displacement field is identified. 
 
 
 
 

 
4.2 Fine-scale displacement field and the associated Green’s 

function 
 
The displacement field used in MPCS, i.e. =u NTd , is based on linear 
interpolations for both the axial displacement fields 1w  and 2w , and cubic 
interpolations for both the vertical displacements fields 1v  and 2v . On the other 
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hand, the displacement field in PBKFS, i.e. =u tNd  , is based on a quadratic axial 
displacement field for 1w  because the vertical displacement field 2v  is cubic, i.e. 

1 2 2w w h v= − D . Considering the difference in the interpolation spaces of the two 
solutions, the vector of the fine-scale interpolation functions can be determined as  
 

 

1

0( )
0
0

z z
L L

z

⎧ ⎫⎛ ⎞−⎜ ⎟⎪ ⎪⎝ ⎠⎪ ⎪⎪ ⎪′ = ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

N , (48) 

 
Despite the fact that it contains higher order terms PBKFS is identified herein as the 
coarse-scale solution, which may seem initially counter-intuitive. Therefore, in order 
to clarify why PBKFS is the coarse scale solution, an argument based on the 
hierarchical enrichment procedure and static condensation of the associated 
hierarchical degrees-of-freedom [6] is presented in the following. For this purpose, it 
is crucial to note that in PBKFS the quadratic bubble is enforced without having its 
own associated hierarchical degree-of-freedom, which prevents PBKFS from 
attaining the optimal solution considering the space of all interpolations of the axial 
displacement field 1w  up to quadratic order. Comparison to PBKFS, MPCS is the 
optimal solution in the sense that when the axial displacement fields 1w are enriched 
using quadratic bubble functions with associated hierarchical degrees-of-freedom, 

i.e. 
1 1

T
1( ) ( ) 1N

z zw z z b
L L
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

w w , degrees-of-freedom associated with the 

quadratic bubble, i.e. b  will not be activated. This means, MPCS is the optimal 
solution within the space of all interpolations of the axial displacement field 1w   up 
to quadratic order. When the extra degrees-of-freedom, i.e. b  is condensed out, 
there will be no change in the MPCS stiffness matrix K . This is because there is no 
coupling between the hierarchical degrees of freedom b  and those based on the 
linear interpolation 

1

T
Nw , i.e. 

 

1

1

2

2 2
T 1 1

1 1 1 1 2
0

d
d ( ) ( ) (0)d 0

d d

L

N
L

z z
z L L w L w z zE A b z E A b

z z L L L

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟ ⎡ ⎤⎛ ⎞−⎛ ⎞⎝ ⎠⎜ ⎟ ⎢ ⎥= × − =⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎜ ⎟⎜ ⎟

⎝ ⎠

∫
w

w

 

(49) 

 
Among those solutions where multiple-point constraints are applied to connect 
composite beam layers, PBKFS is prevented from attaining the optimal solution due 
to further enforcement of the perfect bond in the point-wise sense, and therefore it is 
considered herein as the coarse-scale solution. 
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4.3 Green’s function associated with the fine-scale field 
 
From Eq. (43), the fine-scale displacement field, i.e. ′ ′ ′=u N d ,  can be expressed as 
 
 ( ) ( ) T, d

L

z zς ς′ ′ ′ ′⎡ ⎤= − −⎣ ⎦∫u g K d f , (50) 

in which ( ), zς′g  is the fine-scale Green’s function, i.e. 
 
 ( ) 1, ( ) ( )z z zς δ ς −′ ′ ′′= −g N K , (51) 
 
where δ  denotes the Dirac delta function and matrix the ′′K  can be obtained by 
substituting Eq. (48) into Eq. (41) as 
 

 1 1

3
E A

L
′′ =K , (52) 

 
By substituting Eqs. (35) and (48) into Eq. (42), matrix ′K can be obtained as 
 

 1 1 1 1 1 1 1 1
2 2

2 20 0 E A h E A h E A h E A h
L L L L

′= −
T

K , (53) 

 
 
 
4.4 Fine-scale effect on the stiffness matrix and the load vector 
 
By using Eqs. (52) and (53) in Eq. (45), the difference between the stiffness 
matrices, i.e. −K K can be calculated as 
 

 1 T
2 2

1 1 1 1E A h E A h
− ⎡ ⎤

′ ′′ ′ = ⎢ ⎥−⎣ ⎦

0 0
K K K 0 A S

, (54) 

 
From Eqs. (26) and (38) it can be verified that the difference between the stiffness 
matrix that provides perfect bond in the point-wise sense ( i.e. K ) and the stiffness 
matrix of the multiple-point constraint application (i.e. K ) can be obtained by using 
the variational multiscale method. On the other hand, the difference in the energy 
equivalent load vector ( −f f  in Eq. (46)) for the vector of external actions given in 
Eq. (8) can be calculated as 
 

 1
1

6 6( ) 1 d 0 0 3 3w
L

z z h hq z z h h
L L L L

− ⎛ ⎞′ ′′ ′ = − −⎜ ⎟
⎝ ⎠∫

T

K K f , (55) 
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From Eqs. (17)  and (32) it can be verified that the difference is between the two 
vectors is as given in Eq. (55). It should be noted that for a directly applied nodal 
load P, i.e. 1( ) ( )wq z z Pδ= and/or 1( ) ( )wq z z L Pδ= − , Eq. (55) vanishes, i.e. =f f . 
 
 
 
5  Exact solution at the nodes 
 
5.1 Differential equations and interpolation functions 
 
From Eq.(29), by using integration by parts, the weak form of the differential 
equilibrium equations are obtained as 
 

 
( )

( )
2 3

1 1 2 2 1 1 2
2 2 3 2 4 0

21 1 1 1 1 1 2 2

δ δ d δ δ 0L
ext Boun

L

E A E A E A h w
w v z

vE A h E A h E I E I

⎛ ⎞⎡ ⎤+ − ⎧ ⎫⎜ ⎟⎢ ⎥ − Π − Π =⎨ ⎬⎜ ⎟− + +⎢ ⎥⎩ ⎭⎣ ⎦⎝ ⎠
∫

D D
D D

,(56) 

 
The boundary conditions are satisfied at 0z =  and z L= , thus the last term in Eq. 
(56), i.e. 

0
δ L

BounΠ  vanishes. The solution of the above differential equations 
contained in Eq. (56) can be obtained as 
 

 222

222
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ph
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= + = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

N d u , (57) 

 
in which the first and second terms are the homogenous and particular solutions, 
respectively. In Eq. (57), ( )e zN  can be written as 
 

 
*1 1

2 2
1 1 2 2

2

( ) ( ) ( )
( )

0 ( )
e

E A hz z z
E A E Az

z

⎡ ⎤⎡ ⎤−⎢ ⎥⎣ ⎦+= ⎢ ⎥
⎢ ⎥⎣ ⎦

w v M
N

v

D
, (58) 

 
in which  
 ( )*( ) 0 1 0= −z z L z LM , (59) 
 
is used. By using the homogenous solution of Eq. (56) as the interpolation, and thus 
replacing ( )e zN  with ( )zN  in Eq.(31), the stiffness matrix of the finite element 
formulation can be obtained as  
 
 T T T( ) ( )de e e

L

z z z= ∫K N B T DTBN , (60) 

where 
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11 12

T
12 22

K K
K

K K
e

e

⎡ ⎤
⎢ ⎥=
⎢ ⎥
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, (61) 

 
Comparison to the matrix components in Eq. (37), the difference is only due to the 
sub-matrix 22eK  which can be written as 
 

 
2 2

21 1 2 2 1 1 2 2
22 1 1 2 2 1 1

1 1 2 2 1 1 2 2

e
E A E A h E A E A hE I E I E A h
E A E A E A E A

⎡ ⎤ ⎡ ⎤
= + + + −⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

K A S , (62) 

 
On the other hand, by using Eq. (58), the energy equivalent force vector can be 
obtained as  
 
 T T( ) ( )de e

L

z z z= ∫f N t q , (63) 

 
This solution will be referred herein as Perfect-Bond Kinematics Exact element 
Solution (PBKES). It should be noted that regardless of the load vector ( )zq , the 

nodal displacement values obtained by using eK  and ef  are exact. A proof of 
exactness can be found in [15].  
 
5.2 Variational multiscale approach to derive exact element 

stiffness matrix and the load vector 
 
By using the variational multi-scale approach it can be shown that PBKFS can be 
modified to obtain the stiffness matrix and the energy equivalent load vector of 
PBKES which is an improved solution due to enriched interpolation space however, 
based on the same perfect-bond kinematics that is satisfied in the point-wise sense. 
Considering the interpolation spaces of PBKFS which is based on linear 
interpolations for the axial displacement field 2w , and cubic interpolations for both 
the vertical displacements field 2v  and PBKES which is based on the quadratic 
interpolation of the axial displacement field 2w , and cubic interpolations of the 
vertical displacements field 2v , the vector of the fine-scale interpolation functions 
can be determined as  
 

 1
( )

0
e

z z
z L L

⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟′ = ⎝ ⎠⎨ ⎬
⎪ ⎪⎩ ⎭

N , (64) 

 

In the variational multiscale approach, by considering PBKFS as the coarse-scale 
solution and using ( )e z′N  introduced in Eq. (64) as the vector of fine-scale 
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interpolation functions, it can be verified that the stiffness matrix eK and the energy 
equivalent load vector of PBKES given in Eqs. (60) and (63), respectively can be 
obtained as 
 
 1 T

e e e
−′ ′′ ′= −K K K K K , (65) 

 
and 
 1

e e e e
−′ ′′ ′= −f f K K f , (66) 

 
in which 
 T T T( ) ( )de e e

L

z z z′′ ′ ′= ∫K N B T DTBN , (67) 

 
 T T T( ) ( )de e

L

z z z′ ′= ∫K N B T DTB N , (68) 

 
and 
 T T( ) ( )de e

L

z z z′ ′= ∫f N t q , (69) 

 
were used. It is noted that PBKFS is the coarse-scale solution in both kinematic 
models, i.e. the models in Section 3.1 and Section 3.3. Originality of this study is in 
the identification of the perfectly-bonded finite element solution PBKFS as the 
coarse scale solution based on the model in Section 3.1.  On the other hand, PBKFS 
can also be identified as the coarse scale solution as in Section 5.1 when obtaining 
PBKES. In order to further clarify the differences between MPCS and PBKES, it 
should be noted that when a finite element formulation is developed according to 
MPCS formulation axial displacement fields of both layers are interpolated, whereas 
according to the model PBKES formulation only the axial displacement field 2( )zw  
is interpolated. The flow of these relationships is presented in Fig.1. 
 

Figure 1: Flow of the relationships 
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6  Applications 
 
6.1 Numerical performances of the finite element solutions 
 
In order to illustrate the numerical performance of the solutions discussed herein, a 2 
m span composite cantilever beam is analysed. As shown in Fig. 2, the top 
component of the composite beam has a modulus of elasticity of E1=200×103 MPa, 
cross-sectional area of A1=6×103 mm2 and second moment of area of I1=112.2×103 

mm4. The bottom component has a modulus of elasticity of E2=26×103 MPa, cross-
sectional area of A2=7.1×103 mm2 and second moment of area of I2=124×106 mm4. 
For the MPCS the master nodes are selected as the nodes of the bottom component 
and slave nodes are the nodes of the top component, i.e. h = 163 mm. The beam is 
analysed under different loading cases in order to illustrate the effect of the loading 
on the numerical error and deflections are plotted at the centroidal axis of the bottom 
component.  
 

Figure 2: Cantilever beam with two layers 
 
Under a uniform bending moment, which is imposed by applying a 100 kNm 
moment at the tip, the vertical deflection of the beam is as shown in Fig. 3.a and the 
axial deflection of the at the centroid of layer 2 is as shown in Fig. 3.b, from which it 
can be observed that both the MPCS and PBKFS are in perfect agreement with 
PBKES which is the exact solution. Thus, it can also be concluded that under 
uniform bending moment, perfect bond between the layers is satisfied in the point-
wise sense in both finite element solutions. 

 

 
Figure 3: Deflections under uniform bending moment 

 

    
 (a) Vertical deflection                                                  (b) Axial deflection 
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Under a vertical tip load of 50 kN which causes a uniform internal shear force 
distribution along the beam, the vertical and the axial deflection at the centroid of 
layer 2 are as shown in Fig. 4.a and Fig. 4.b respectively. The differences in the 
solutions due to numerical errors are clear when beam carries shear load. From Fig. 
4.a it can be observed that one-element MPCS is softer than both PBKFS and 
PBKES; On the other hand, the finite element behaviour based on the perfect bond 
kinematics, i.e. PBKFS, is stiffer than the exact solution, i.e. PBKES due to 
interpolation errors. However, for the four-element solutions the interpolation errors 
reduce significantly and the results converge to the exact solution. As shown in 4.b. 
linear axial deflection curves in both based on both MPCS and PBKFS converge to 
the parabolic exact solution when element numbers are increased from one to four.  
 

Figure 4: Deflections under tip load 
 

The accuracies of the numerical solutions are evaluated based on the normalised 
error according to the strain energy due to exact solution. The convergence rate (i.e. 
p in p

en
e Ca=  where C is an arbitrary constant and a is the element size) can be 

obtained from the slope of the log-log error curve shown in Fig. 5, from which it can 
be verified that both the accuracy and convergence rate of PBKFS are better than 
those of MPCS. The slope for MPCS is 9.4, whereas the slope for PBKFS is 10.5. 
 

Figure 5: Convergence rate of the elements under tip load 
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applied to the composite cantilever beam. Compared to the previous case, the 
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observed from Fig. 6. From the slope of Fig. 6, the rate of the convergence for 
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MPCS and PBKFS can be determined as 7.7 and 8.8 respectively. Thus, it can be 
verified that the convergence rates reduce in comparison to the previous case of tip 
load.  
 

 
Figure 6: Convergence rate of the elements under uniformly distributed load 

 
Vertical deflections in this case are shown in Fig. 7.a from which it can be verified 
that due to numerical errors one-element MPCS is softer and one-element PBKFS is 
stiffer than the exact solution. Fig. 7.b shows the axial displacement at the centroid 
of layer 2, from which it can be verified that the nodal values are in perfect 
agreement however, the curves converge when the number of elements is increased. 
  

Figure 7: Deflections under uniformly distributed load 
 
 

7  Conclusions 
 
In finite element analysis, when composite beams are formed by using multiple-
point constraints at the nodes, perfect bond between the layers cannot be satisfied in 
the point-wise sense in some cases, and thus the behaviour of the beam can be 
overly flexible comparison to the behaviour of the perfectly bonded composite 
beam. In this study, the weakening in the kinematic constraints was considered as 
being due to the superfluous extension of the interpolation space. By considering 
this extension in the interpolation space, the numerical solution for the perfectly 
bonded composite beam could be obtained by using the results of the multiple-point 
constraint application within the frame work of the variational multiscale approach. 
By excluding the fine-scale effects, the correction terms in the stiffness matrix and 
the energy equivalent load vector could be obtained. A finite element formulation 
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that provides exact values at the nodes was also developed using the variational 
multiscale approach. Effects of external load types on the numerical error in 
multiple-point constraints applications were illustrated.  
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