
Abstract

In this paper an improvement of the displacement-based nonconforming quadrilat-
eral thin plate bending finite element RPQ4 proposed by Wanji and Cheung [1] is
presented. It is found that element RPQ4 is only conditionally unisolvent. The im-
provement is achieved by adding three new interpolation base shape functions, which
reduces the nonunisolvence and decreases the stiffness matrix condition number. This
convenient property makes the element more robust and thus better suited for compu-
tations. The convergence of such an improved element is proved and the rate of con-
vergence estimated. The mathematically proof of convergence is based on Stummel’s
generalized patch test and the consideration of the element approximability condition,
which are both necessary and sufficient for convergence.

Keywords: nonconforming thin plate bending finite element, convergence, general-
ized patch test, nonconvex quadrilateral.

1 Introduction

Practical modeling of plate-like structures is often performed using displacement-
based thin plate bending finite elements. Due to the C1-continuity requirement across
the element borders their theoretical formulation is difficult. This problem could be
resolved by using a weakly continouos nonconforming plate element, yet its conver-
gence should be theoretically proved.

The element RPQ4 introduced by Wanji and Cheung [1] serves as an example of an
innovative nonconforming quadrilateral thin plate bending finite element which fulfills
the so called weak continuity conditions across the element borders. After extensive
numerical comparisons with a number of different plate elements, the authors [1] con-
cluded the high accuracy of the element. The element passes the Irons’ numerical
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patch test [2, 3, 4, 5, 6]. However it has been shown [7, 8, 9, 10] that this test is neither
a necessary nor a sufficient condition for convergence. So its convergence should be
theoretically proved.

The present paper is aimed to mathematically prove that necessary and sufficient
conditions for convergence of RPQ4 element are satisfied indeed. Our derivation of
the proof is based on Stummel’s generalized patch test and the approximability con-
dition [7, 11], but is somewhat unusual and unique regarding to [12] in order to incor-
porate the specific type of the weak continuity conditions [1]. The generalized patch
test cannot generally be applied to a broad class of elements and should normally be
performed on each particular element as also discussed by Wanji [5]. A rare example
of the convergence analysis proof according to Stummel’s generalized patch test per-
formed on a whole class of nonconforming simplex elements was presented by Wang
[4]. Due to a different element geometry and specific type of the weak continuity
conditions in [1], his findings cannot be directly reproduced here. See [13] for the
approach in this direction. In addition to the convergence proof, the error estimates
are also derived using partially the methodology of Shi [12] and Flajs and Saje [14]
and some inequalities derived by Brenner and Scott [15] and Verfürth [16].

These theoretical results show that the RPQ4 finite element is convergent even if its
shape is nonconvex, provided that its degrees of freedom are unisolvent [11]. Element
RPQ4 is thus advantageous over standard isoparametric thin plate elements due to its
capability of describing nonconvexly shaped elements.

A disadvantage of the RPQ4 elements is possible violence of the unisolvence con-
dition, being the fundamental requirement for convergence [11] which may endanger
the applicability of element RPQ4 for randomly designed and/or very dense element
meshes. In the present paper, the unisolvence problem of element RPQ4 is theoreti-
cally and practically resolved by a unique introduction of the three additional interpo-
lation base shape functions, thus turning off this drawback while introducing a minor
correction of the element. The interpolation base shape functions construction is pre-
sented in detail and the corresponding finite element degrees of freedom unisolvence
is proved.

The outline of the paper is as follows. In Section 2.1, element RPQ4 is briefly
presented and Ciarlet’s mathematical definition [11] of the finite element is set up. In
Section 3 the three new base interpolation shape functions are introduced the unisol-
vence condition is proved. The boundary problem to be solved is defined in Section
4. The error is estimated in Section 5 for both the consistency and the approximability
terms. Numerical examples are presented and discussed in Section 6. The paper ends
with Conclusions.

2 Thin plate finite element RPQ4

Finite element RPQ4 is a nonconforming thin plate bending quadrilateral element
(Figure 1), developed directly in the Cartesian coordinates and characterized by the
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satisfaction of the so called ‘weak continuity of displacements on the interelement
boundaries’. The ideas behind the formulation and the technical derivation of the
stiffness matrix are fully described in Wanji and Cheung [1] and will, thus, not be
repeated here. In what follows we somewhat generalize the geometry of the element
and include the elements with nonconvex shape.

a1 a2

a3

a4

T

µτ

µ1
µ2

x

y

∂Q
Q

Figure 1: Quadrilateral thin plate bending finite element RPQ4 [1]

In order to prove convergence and estimate the error of finite element RPQ4, we
have to recast the original equations of Wanji and Cheung [1] into the form appropriate
for our convergence analysis. For this purpose the following notations are introduced:

∂1• :=
∂•
∂x
, ∂2• :=

∂•
∂y
, ∂ij• :=

∂2•
∂xi ∂xj

, 1 ≤ i, j ≤ 2,

∂µ• :=
∂•
∂µ
, ∂τ• =

∂•
∂τ
, ∂α• ≡ ∂(α1,α2)• :=

∂(α1+α2)•
∂xα1∂yα2

,

X :=
[
1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3

]T
,

q :=
[
. . . wh(ai) ∂1wh(ai) ∂2wh(ai) . . .

]T
, 1 ≤ i ≤ 4

A :=

An(a1)
...

An(a4)

 , An((x, y)) :=

 XT

∂1X
T

∂2X
T

 . (2.1)

The derivatives in the above equations are understood in the generalized sense, see
[17]. X is the nonconforming interpolation basis of the element, and q its vector of
nodal degrees of freedom qi, i = 1 . . . 12; a1, . . . ,a4 are the position vectors of the
nodal points. Let the origin of the Cartesian coordinate system (x, y) be the geometric
center T of the quadrilateral Q. The components of the outer normal of its border
∂Q in x and y directions are denoted by µ1 and µ2, respectively (Figure 1). The area
of the quadrilateral is denoted by |Q|. Let wh|Q denote the nonconforming displace-
ment approximation described by basis X , and vh|Q the Wanji and Cheung refined
nonconforming displacement approximation on Q given by [1]

vh|Q := wh|Q + λ1
x2

2
+ λ2

y2

2
+ λ3

xy

2
= wh|Q + ΛQ = XT A−1 q + ΛQ. (2.2)
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Constants λ1, λ2 and λ3 are determined from the weak continuity conditions [1] re-
sulting inλ1

λ2

λ3

 =
1

|Q|

∫
∂Q

∂̃µwh

 µ2
1

µ2
2

2µ1µ2

 + ∂̃τwh

−µ1µ2

µ1µ2

µ2
1 − µ2

2

ds− 1

|Q|

∫
Q

 ∂11wh

∂22wh

2 ∂12wh

dx.
(2.3)

Consequently the finite element was shown numerically to pass Irons’ patch test [1].
Functions ∂̃τwh and ∂̃µwh denote a piecewise linear or parabolic interpolation of the
tangential derivative and a piecewise linear interpolation of the normal derivative on
the border ∂Q, respectively, interpolated solely by the nodal values qi, i = 1, . . . , 12.
With such a choice of constants λ1, λ2 and λ3, the approximation functions fulfill the
weak continuity conditions as introduced in [1, Equation (1)]:∫

Q

∂11vh dx−
∫

∂Q

(
∂̃µwh µ

2
1 − ∂̃τwh µ1µ2

)
ds = 0,∫

Q

∂22vh dx−
∫

∂Q

(
∂̃µwh µ

2
2 + ∂̃τwh µ1µ2

)
ds = 0,∫

Q

2 ∂12vh dx−
∫

∂Q

(
2 ∂̃µwh µ1µ2 + ∂̃τwh (µ2

1 − µ2
2)

)
ds = 0.

(2.4)

Remark 2.1. Note that the refined displacement vh is nonconforming both across the
boundaries of the elements and in the nodal points.

The Ciarlet’s mathematical definition of the finite element [11, p. 78] should be set
up in order to prove the convergence.

2.1 Finite element (Q,PQ,ΦQ)

Let Vh denote a finite element space, Vh|Q := PQ ⊂ P3(Q) ⊕ L {x3 y, x y3}, u∗h a
finite element approximation of the weak solution, u∗ the weak solution, v an arbitrary
function and Wm

2 (Q) ≡ Hm(Q) the Sobolev spaces with norms ‖ · ‖m,2,Q ≡ ‖ · ‖m,Q

and subnorms | · |m,2,Q ≡ | · |m,Q for 0 ≤ m ≤ 4.
With the help of Equations (2.2) and (2.3) it is easy to show that

∂̃αvh − ∂αvh = ∂̃αwh − ∂αwh, α ∈ {µ, τ}. (2.5)

The above relations hold true for both linear and parabolic interpolation of ∂αwh on the
element border. Consequently, we have λi(wh) = λi(vh), 1 ≤ i ≤ 3. We introduce
two sets of linear functionals, ΣQ := {ϕi ≡ ϕQ

i , i = 1, ..., 12} and ΦQ := {φi ≡
φQ

i , i = 1, ..., 12}, as

ϕ3 i−2(wh) := wh(ai) = q3 i−2 = vh(ai)− ΛQ(ai) =: φ3 i−2(vh), 1 ≤ i ≤ 4,

ϕ3 i−1(wh) := ∂1wh(ai) = q3 i−1 = ∂1vh(ai)− ∂1ΛQ(ai) =: φ3 i−1(vh), 1 ≤ i ≤ 4,

ϕ3 i(wh) := ∂2wh(ai) = q3 i = ∂2vh(ai)− ∂2ΛQ(ai) =: φ3 i(vh), 1 ≤ i ≤ 4.

4



By Ciarlet’s definition of a finite element [11], the set ΦQ must be PQ–unisolvent in
the following sense: given any real scalars αi, i = 1, . . . , 12, there exists a unique
function p ∈ PQ which satisfies the conditions

φi(p) = αi, 1 ≤ i ≤ 12 (2.6)

[11, p. 78].
The proof of unisolvence becomes straightforward, if the following lemma is pro-

ved first. This lemma will convert the PQ–unisolvence problem of the set ΦQ into the
PQ–unisolvence problem of the set ΣQ, which is equivalent to requiring the regularity
of the interpolation matrix A.

Lemma 2.2. Let the space P ′Q denote an algebraic dual of space PQ. The set ΦQ is
the base for P ′Q, if and only if the set ΣQ is the base for P ′Q.

Element RPQ4 of convex shape (rhombus) and nonconvex shape [1] is inherently
prone to singularity of the interpolation matrix A.

In order to exclude triangles, we require

Condition 2.3. Let us denote hQ the diameter of the quadrilateral Q. Assuming the
existence of a constant c1 > 0, such that for every quadrilateral Q the inequality

min(|∆1|, |∆2|, |∆3|, |∆4|) ≥ c1h
2
Q. (2.7)

holds.

1

2

3

4

∆1

∆3

x

y

1

2

3

4

∆2

∆4

x

y

Figure 2: Divisons of quadrilateral into triangles

In the convergence proof we will need a constant γ introduced by

Condition 2.4. Let hQ and `Q denote the diameter of quadrilateral Q and the length
of the shortest side on the border ∂Q, respectively. Suppose thatQ is star–shaped with
respect to the ball BQ with radius ρQ := sup{diam(ball S),
S ⊂ Q, ∀x ∈ Q∀y ∈ S ∀λ ∈ [0, 1] ⇒ (1 − λ) x + λy ∈ Q}. Then we can de-
fine the chunkiness parameter cρ :=

hQ

ρQ
and parameter c` :=

hQ

`Q
. We assume that

some constant γ exists for which the following inequality holds

max (∪Q∈Qh
max(cρ, c`)) ≤ γ.
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LetNh, Qh, Qh(a) and Q1(a) denote the set of all vertices, the set of all quadrilat-
erals, the set of quadrilaterals with common vertex a and the first quadrilateral from
the setQh(a), respectively. For a quadrilateralQwith nodes a1,a2,a3,a4, we rewrite
the set of linear functionals as ΦQ =: {φQ

aj ,k, j = 1, . . . , 4, k = 1, . . . , 3}. We can
now define the finite element space

Xh :=

{
vh ∈

∏
Q∈Qh

PQ,∀a ∈ Nh,∀Qi, Qj ∈ Qh(a),∀k, φQi

a,k(vh|Qi
) = φ

Qj

a,k(vh|Qj
)

}

and the related set of linear functionals

Φh := {φa,k = φ
Q1(a)
a,k ,a ∈ Nh, 1 ≤ k ≤ 3}.

Next we employ the dual functions pa,k from Vh for functionals φa,k, on the open set
Ωh = Ω− ∪Q∈Qh

∂Q, and define the interpolation operator

Ih : v 7→
∑

a∈Nh,1≤k≤3

φa,k(v) pa,k.

3 Finite element improvements

The finite element degrees of freedom are Vh unisolvent [11, p. 100] when the interpo-
lation matrix A in Equation (2.2) is nonsingular. The unisolvence can not be achieved
with one interpolation shape function. In order to assure that the unisolvence for all
quadrilaterals fulfil Condition 2.3, three different sets of interpolation base functions,
Equations (3.1a), (3.1b) and (3.1c), are proposed. It is easy to determine the appro-
priate set of interpolation base functions, usually one with the greatest value of the
determinant of the interpolation matrix, see Equations (3.7).

3.1 Interpolation base functions

Employing the interpolation base function coefficient vector ααα and the interpolation
function bases

XXX1(x, y) :=
[
1 x y x2 x y y2 x3 x2 y x y2 y3 x3 y x4

]T
, (3.1a)

XXX2(x, y) :=
[
1 x y x2 x y y2 x3 x2 y x y2 y3 y3 x y4

]T
, (3.1b)

XXX3(x, y) :=
[
1 x y x2 x y y2 x3 x2 y x y2 y3 x (y + x)3 y (y + x)3

]T

(3.1c)

the thin plate displacement interpolation functions could be defined by equations

whi(x, y)|Q :=XXXT
i (x, y) ·ααα, 1 ≤ i ≤ 3. (3.2)
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3.2 Interpolation matrices

According to Equation (2.1) the interpolation matrices Ai, (1 ≤ i ≤ 3) are expressed
by

Ai =
[
. . . XXX i(xj, yj) ∂xXXX i(xj, yj) ∂yXXX i(xj, yj) . . .

]T
, 1 ≤ j ≤ 4. (3.3)

Since the base of the space P3 is determined with the first ten functions from (3.1)
and the remaining two functions from (3.1) are the members of space P4 and, con-
sequently, the determinants of interpolation matrices Ai, (1 ≤ i ≤ 3) are translation
invariant, the origin of the coordinate system can be moved into (x1, y1) (see Figure
2). Employing the temporary abbreviations zi := xi +yi, si := yi +4xi, ti := 4yi +xi

for 2 ≤ i ≤ 4 and using Equations (3.1a), (3.1b), (3.1c) and (2.1) we get

A1 =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 x2 y2 x2

2 x2 y2 y2
2 x3

2 x2
2 y2 x2 y

2
2 y3

2 x3
2 y2 x4

2

0 1 0 2x2 y2 0 3x2
2 2x2 y2 y2

2 0 3x2
2 y2 4x3

2

0 0 1 0 x2 2 y2 0 x2
2 2x2 y2 3 y2

2 x3
2 0

1 x3 y3 x2
3 x3 y3 y2

3 x3
3 x2

3 y3 x3 y
2
3 y3

3 x3
3 y3 x4

3

0 1 0 2x3 y3 0 3x2
3 2x3 y3 y2

3 0 3x2
3 y3 4x3

3

0 0 1 0 x3 2 y3 0 x2
3 2x3 y3 3 y2

3 x3
3 0

1 x4 y4 x2
4 x4 y4 y2

4 x3
4 x2

4 y4 x4 y
2
4 y3

4 x3
4 y4 x4

4

0 1 0 2x4 y4 0 3x2
4 2x4 y4 y2

4 0 3x2
4 y4 4x3

4

0 0 1 0 x4 2 y4 0 x2
4 2x4 y4 3 y2

4 x3
4 0



,

(3.4a)

A2 =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 x2 y2 x2

2 x2 y2 y2
2 x3

2 x2
2 y2 x2 y

2
2 y3

2 x2 y
3
2 y4

2

0 1 0 2x2 y2 0 3x2
2 2x2 y2 y2

2 0 y3
2 0

0 0 1 0 x2 2 y2 0 x2
2 2x2 y2 3 y2

2 3x2 y
2
2 4 y3

2

1 x3 y3 x2
3 x3 y3 y2

3 x3
3 x2

3 y3 x3 y
2
3 y3

3 x3 y
3
3 y4

3

0 1 0 2x3 y3 0 3x2
3 2x3 y3 y2

3 0 y3
3 0

0 0 1 0 x3 2 y3 0 x2
3 2x3 y3 3 y2

3 3x3 y
2
3 4 y3

3

1 x4 y4 x2
4 x4 y4 y2

4 x3
4 x2

4 y4 x4 y
2
4 y3

4 x4 y
3
4 y4

4

0 1 0 2x4 y4 0 3x2
4 2x4 y4 y2

4 0 y3
4 0

0 0 1 0 x4 2 y4 0 x2
4 2x4 y4 3 y2

4 3x4 y
2
4 4 y3

4



,

(3.4b)
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A3 =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 x2 y2 x2

2 x2 y2 y2
2 x3

2 x2
2 y2 x2 y

2
2 y3

2 x2 z
3
2 y2 z

3
2

0 1 0 2x2 y2 0 3x2
2 2x2 y2 y2

2 0 s2 z
2
2 3 y2 z

2
2

0 0 1 0 x2 2 y2 0 x2
2 2x2 y2 3 y2

2 3x2 z
2
2 t2 z

2
2

1 x3 y3 x2
3 x3 y3 y2

3 x3
3 x2

3 y3 x3 y
2
3 y3

3 x3 z
3
3 y3 z

3
3

0 1 0 2x3 y3 0 3x2
3 2x3 y3 y2

3 0 s3 z
2
3 3 y3 z

2
3

0 0 1 0 x3 2 y3 0 x2
3 2x3 y3 3 y2

3 3x3 z
2
3 t3 z

2
3

1 x4 y4 x2
4 x4 y4 y2

4 x3
4 x2

4 y4 x4 y
2
4 y3

4 x4 z
3
4 y4 z

3
4

0 1 0 2x4 y4 0 3x2
4 2x4 y4 y2

4 0 s4 z
2
4 3 y4 z

2
4

0 0 1 0 x4 2 y4 0 x2
4 2x4 y4 3 y2

4 3x4 z
2
4 t4 z

2
4



.

(3.4c)

3.3 Determinants of interpolation matrices

From Figure 2 it is easy to check the following indentities:

(x2 y3 − x3 y2) = 2 ∆2, (3.5a)
(x4 y2 − x2 y4) = −2 ∆1, (3.5b)
(x3 y4 − x4 y3) = 2 ∆4, (3.5c)

(x3 y4 − x2 y4 − x4 y3 + x2 y3 + x4 y2 − x3 y2) = 2 (∆4 −∆1 + ∆2) = 2 ∆3.
(3.5d)

Using wxMaxima and the abbreviations

FA := −16 ∆1 ∆2 ∆3 ∆4, (3.6a)
FXY := 2 (x2 y2 ∆4 − x3 y3 ∆1 + x4 y4 ∆2) , (3.6b)

FX := 2
(
x2

2 ∆4 − x2
3 ∆1 + x2

4 ∆2

)
, (3.6c)

FY := 2
(
y2

2 ∆4 − y2
3 ∆1 + y2

4 ∆2

)
(3.6d)

the determinants of the interpolation matrices Ai read

D1 := |A1| = FA F
3
X , (3.7a)

D2 := |A2| = −FA F
3
Y , (3.7b)

D3 := |A3| = −FA (FX + FY + 2FXY )3 . (3.7c)

3.4 Elimination of singularity of the interpolation matrix

According to Condition 2.3 the coefficient FA does not vanish, so all the determinants
in Equation (3.7) vanish only when all factors FX , FY and FXY vanish. However,
according to Condition 2.3 this is impossible.
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Proof. Equations (3.6b), (3.6c) in (3.6d) can be expressed in a matrix formx2 y2 −x3 y3 x4 y4

x2
2 −x2

3 x2
4

y2
2 −y2

3 y2
4

 ·
∆4

∆1

∆2

 =
1

2

FXY

FX

FY

 =

0
0
0

 . (3.8)

Since the determinant of the matrix, −∆1 ∆2 ∆4, does not vanish, the only solution of
the system of linear equations is trivial one ∆1 = 0, ∆2 = 0, ∆4 = 0, which cannot
fulfil Condition 2.3.

3.5 Singular cases

• D1 = D2 = 0: Square with nodes (0, 0), (1, 0), (1, 1) and (0, 1).

• D1 = D3 = 0: Quadrilateral with nodes (0, 0), (−1, 0), (−3,−3) and (6,−21).

• D2 = D3 = 0: Quadrilateral with nodes (0, 0), (−21, 6), (−3,−3) and (0,−1).

3.6 Preconditioning of the iterpolation matrix

Employing the different interpolations could improve and optimize the element stiff-
ness condition number. We know that all determinants in Equation (3.7) cannot vanish
simultaneously. Let us suppose that all of them can be arbitrary small. We prove that
this is also impossible, showing that the greatest one is bounded bellow by the vector
norm ‖∆‖ :=

√
∆2

1 + ∆2
1 + ∆2

4.

Proof. Changing the right side of Equation (3.8) we getx2 y2 −x3 y3 x4 y4

x2
2 −x2

3 x2
4

y2
2 −y2

3 y2
4

 ·
∆4

∆1

∆2

 =
1

2

FXY

FX

FY

 =

δxy

δx
δy

 . (3.9)

or shortly
B∆ = δ. (3.9’)

Since matrix B is nonsigular we can use the matrix inverse

B−1 δ = ∆, (3.10)

estimate
‖∆‖ ≤ ‖B−1‖ ‖δ‖ (3.11)

and derive inequality

‖δ‖ ≥ ‖∆‖
‖B−1‖

, (3.12)
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as a simplied form of the general inequality (2.3) [19, p. 50]. In estimate (3.12) the
Frobenius matrix norm ‖ ‖ : B ≡ [bij] 7→

√∑
|bij|2 is used. The inverse of matrix B

is

B−1 =
1

4


−x3 y4 + x4 y3

∆1∆2

y3 y4

∆1∆2

x3 x4

∆1∆2

−x2 y4 + x4 y2

∆2∆4

y2 y4

∆2∆4

x2 x4

∆2∆4

−x2 y3 + x3 y2

∆1∆4

y2 y3

∆1∆4

x2 x3

∆1∆4

 . (3.13)

Employing the abbreviations L3 and L4 marking the lengths of the border lines 13 and
14, using the estimate

(x3 y4 + x4 y3)
2 + (y3 y4)

2 + (x3 x4)
2 = 2x3 y3 x4 y4 +

(
x2

3 + y2
3

) (
x2

4 + y2
4

)
≤ 3

2

(
x2

3 + y2
3

) (
x2

4 + y2
4

)
=

3

2
L2

3 L
2
4,

(3.14)

and Condition 2.3 one estimates the matrix inverse as (3.13)

‖B−1‖ ≤
√

3

32

√(
L2

3 L
2
4

∆1 ∆2

)2

+

(
L2

2 L
2
4

∆2 ∆4

)2

+

(
L2

2 L
2
3

∆1 ∆4

)2

≤
√

3

32
h4

Q

√(
1

∆1 ∆2

)2

+

(
1

∆2 ∆4

)2

+

(
1

∆1 ∆4

)2

≤
√

3

32
h4

Q

√
3

1(
c21 h

4
Q

)2 ≤ c−2
1 .

(3.15)

Combining Equations (3.12) and (3.15) yields the final estimate

‖δ‖ ≥ ‖∆‖
‖B−1‖

≥ c21 ‖∆‖. (3.16)

4 Boundary value problem

We seek the weak solution u∗ for the deflection of the thin clamped plate subjected to
a given surface load f

a(u∗, v) = (f, v), u∗, v ∈ V := H2
0 (Ω),

where

a(u, v) =

∫
Ω

(
ν∆u∆v + (1− ν)

2∑
i=1,j=1

∂iju ∂ijv
)
dx,

(f, v) =

∫
Ω

f v dx, f ∈ L2(Ω).
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Its nonconforming approximation

u∗h ∈ Vh := X00h := {vh ∈ Xh,∀a ∈ ∂Ω, φa,k(vh) = 0, 1 ≤ k ≤ 3}

is obtained by the solution of the variational equation

ah(u
∗
h, vh) = (f, vh), u∗h, vh ∈ Vh,

where

ah(uh, vh) =
∑

Q∈Qh

∫
Q

(
ν∆uh∆vh + (1− ν)

2∑
i=1,j=1

∂ijuh∂ijvh

)
dx,

(f, vh) =

∫
Ω

f vh dx, f ∈ L2(Ω).

Here, ν ∈ [0, 1
2
] is Poisson’s coefficient of material.

5 Convergence and error estimate

According to the second Strang Lemma [11]

‖u∗ − u∗h‖2,h ≤ c

(
inf

vh∈Vh

‖u∗ − vh‖2,h+ + sup
vh∈Vh

|(f, vh)− ah(u
∗, vh)|

‖vh‖2,h

)
,

the error of the weak nonconforming solution consists of two parts, i.e. the error of
approximation and the error of the consistency term. In what follows each part will
be estimated separately. The error of the consistency term will be estimated with the
help of Stummel’s generalized patch test [7]. Since the main steps of the proof are
independent of the particular choice of the interpolation base functions and the proof
thus coincides with the one already presented in [18], only some definitions and main
steps will be outlined.

Let h denote the largest diameter of all quadrilaterals in quasi-uniform quadrian-
gulation Qh of polygonal domain Ω. Let c denote a generic constant independent on
h, which may have different values at different places. For each quadrilateral Q we
introduce the quadrilateral Q̂ with the same shape, yet with the diameter hQ̂ being
equal to 1.

5.1 Error estimate of the consistency term

According to [7, 4] the sequence {Vh} ∪ H2
0 (Ω) passes the generalized patch test if

and only if

lim
h→0

Tα,i(ψ, vh) := lim
h→0

∑
Q∈Qh

TQ
α,i(ψ, vh) = lim

h→0

∑
Q∈Qh

∫
∂Q

ψ ∂αvh µi ds = 0

11



for all i = 1, 2, all |α| ≤ 1, all bounded sequences {Vh} and all ψ ∈ C∞(Ω). We
employ the operators P0 : v 7→ Q1 v :=

∫
BQ
v(x)φ(x) dx, R0 : v 7→ v − Q1 v

and R̂0 : v̂ 7→ v̂ − Q̂1 v̂, where we have used the cut-off function φ (suppφ ∈
BQ,

∫
R2 φ(x) dx = 1) [15, p. 97]. Introducing the affine mapping FQ : x̂ 7→ hQ x̂

one can write v := v̂ ◦ F−1
Q , Q1 v := Q̂1v̂ ◦ F−1

Q .

Let us define the border interpolation functions

∂̃1wh := µ1 ∂̃µwh − µ2 ∂̃τwh, ∂̃2wh := µ2 ∂̃µwh + µ1 ∂̃τwh.

We have to estimate the following terms:

T(0,0),i(ψ, vh) = Ti(ψ, vh),

T(1,0),i(ψ, vh) = Ti(P0ψ, ∂1vh − ∂̃1wh) + Ti(ψ, ∂̃1wh)+

+ Ti(R0ψ, ∂1wh − ∂̃1wh + ∂1Λ),

T(0,1),i(ψ, vh) = Ti(P0ψ, ∂2vh − ∂̃2wh) + Ti(ψ, ∂̃2wh)+

+ Ti(R0ψ, ∂2wh − ∂̃2wh + ∂2Λ).

(5.1)

Using the relations dx = −µ2 ds, dy = µ1 ds, the Green formula and Equation (5.2),[
∂µwh

∂τwh

]
=

[
µ1 µ2

−µ2 µ1

] [
∂1wh

∂2wh

]
,

[
∂1wh

∂2wh

]
=

[
µ1 −µ2

µ2 µ1

] [
∂µwh

∂τwh

]
, (5.2)

we can rewrite Equations (2.4) as

TQ
1 (1, ∂1vh − ∂̃1wh) :=

∫
∂Q

∂1vhµ1 ds−
∫

∂Q

∂̃1wh µ1 ds = 0,

TQ
2 (1, ∂2vh − ∂̃2wh) :=

∫
∂Q

∂2vhµ2 ds−
∫

∂Q

∂̃2wh µ2 ds = 0,∫
∂Q

(
2 ∂1vhµ2 − ∂̃1wh µ2 − ∂̃2wh µ1

)
ds =: 2TQ

2 (1, ∂1vh − ∂̃1wh)−
∫

∂Q

∂̃τwh ds,∫
∂Q

(
2 ∂2vhµ1 − ∂̃1wh µ2 − ∂̃2wh µ1

)
ds =: 2TQ

1 (1, ∂2vh − ∂̃2wh) +

∫
∂Q

∂̃τwh ds.

In order to estimate the first and the second terms in the second and in the third equa-
tion, we have to estimate the term

∫
∂Q
∂̃τwh ds. A short derivation shows that the

sum
∑

Q∈Qh

∫
∂Q
ψ ∂̃τwh ds vanishes for both linear and parabolic interpolations of

the tangential derivative. ∑
Q∈Qh

∫
∂Q

ψ ∂̃τwh ds = 0.
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Remark 5.1. From relations Ti(1, ∂jvh) = 0, 1 ≤ i, j ≤ 2, which hold for all
vh ∈ VP0 := {vh ∈ Vh,∀a ∈ ∂(∪Q∈QP

Q), φa,k(vh) = 0, 1 ≤ k ≤ 3}, it immediately
follows ∑

Q∈QP

∫
Q

∂αvh dx = 0 ∀vh ∈ VP0, |α| = 2.

So, according to [4, Lemma 4.1], the element passes Irons’ patch test.

Now we can estimate the first term in both the second and the third equation of
Equations (5.1). From

T2(P0ψ, ∂1vh − ∂̃1wh) = −1

2

∑
Q∈Qh

∫
∂Q

R0ψ ∂̃τwhd ds

one can derive the estimate:

|T2(P0ψ, ∂1vh − ∂̃1wh)| ≤
∑

Q∈Qh

c(γ)|ψ|1,2,Q |vh|2,2,Q hQ.

With the help of the function w̃h we split the first term into the sum of three terms:

Ti(ψ, vh) = Ti(ψ, w̃h) + Ti(P0ψ,wh − w̃h + Λ) + Ti(R0ψ,wh − w̃h + Λ).

Because of conformity of the function w̃h, the first term vanishes; thus the remain-
ing two terms only need be elaborated upon. Performing some calculations one can
estimate

Ti(P0ψ,wh − w̃h + Λ) ≤ c(γ)
∑

Q∈Qh

|ψ|0,2,Q ‖vh‖2,2,Q hQ, (5.3)

Ti(R0ψ,wh − w̃h + Λ) ≤ c(γ)
∑

Q∈Qh

|ψ|1,2,Q ‖vh‖2,2,Q h
2
Q. (5.4)

The last terms of the second and the third equations of Equation (5.1) are estimated in
a similar way:

Ti(R0ψ, ∂jwh − ∂̃jwh + ∂jΛ) ≤ c(γ)
∑

Q∈Qh

|ψ|1,2,Q ‖vh‖2,2,Q hQ. (5.5)

In the second and the third inequalities of Equation (5.5), we have used the Sobolev
Imbedding Theorem [17], Friedrichs’ inequality [15, 16] and the inverse inequality
[15, Lemma 4.5.3]. Employing the integration by parts or the equivalent procedure
from [11] we can write the error functional Eh in the form

Eh(u
∗, vh) := (f, vh)− ah(u

∗, vh)

=
∑

Q∈Qh

∫
∂Q

∂ν∆u
∗ vh + (1− σ)∂ντu

∗∂τvh ds

−
∑

Q∈Qh

∫
∂Q

(
∆u∗ − (1− σ)∂ττu

∗)∂νvh ds.
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With the help of the inequalities (5.3), (5.4) and (5.5) we finally derive the estimate of
the error of the consistency term

|Eh(u
∗, vh)| ≤ c h (‖u∗‖3,h + h ‖u∗‖4,h) ‖vh‖2,h (5.6)

valid for all u∗ ∈ H4(Ω).

5.2 Estimate of the approximability term

Let us first adapt Definition 4.4.2 and Theorem 4.4.4 from [15] to obtain the form
suitable for the present purposes.

Lemma 5.2. Let (Q,P,Φ) be a finite element satisfying

(i) Q is star-shaped with respect to some ball, such that

|Â| ≥ c(γ), (5.7)

(ii) P2 ⊂ P ⊂ W 3
∞(Q) and

(iii) Φ ⊂ (C1(Q))′.

Assume p = 2. Then for 0 ≤ i ≤ 2 and v ∈ W 3
2 (Q) we have

|v − Ih v|i,2,Q ≤ Cγ,σ(Q̂)h
3−i
Q |v|3,2,Q,

where Q̂ := { x
hQ
, x ∈ Q}, a constantCγ,σ(Q̂) is dependent on parameter γ, introduced

in Condition 2.4, and σ(Q̂) is the operator norm of Îh : W 3
2 (Q̂) → C1(Q̂).

Let us point out that the interpolation operator Îh is well defined on W 3
2 (Q̂). This

follows from the Sobolev Imbedding Theorems. Our aim is to estimate the norm σ(Q̂)
of operator Îh : W 3

2 (Q̂) → C1(Q̂). For the sake of simplification of notation, we skip
the hat over symbols. Employing the inequalities

‖Ih u‖3,2,Q ≤
12∑
i=1

|φi(u)| ‖pi‖3,2,Q ≤
12∑
i=1

‖φi‖W 3
2 (Q)′ ‖pi‖3,2,Q ‖u‖3,2,Q

gives

σ(Q) ≤
12∑
i=1

‖φi‖W 3
2 (Q)′ ‖pi‖3,2,Q . (5.8)

Next we show that the norm σ(Q) is uniformly bounded for all quadrilaterals Q. As
has been shown by Ciarlet [11] and Adams [17], the identity from W 3

2 (Q) to C1(Q) is
uniformly continuous. First we estimate the norm ‖φi‖W 3

2 (Q)′:

|φi(v)| ≤ c ‖v‖1,∞,Q ≤ c ‖v‖3,2,Q, 1 ≤ i ≤ 12. (5.9)

From Equation (5.9) it immediately follows that the norms ‖φi‖W 3
2 (Q)′ are bounded

from above by the constant c = c(γ, c1).
Equation (5.7) assures that the base functions pi are also bounded. Thus we have
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Lemma 5.3. The base functions pi are bounded:

‖pi‖3,2,Q ≤ c(γ, c1), 1 ≤ i ≤ 12. (5.10)

In order to achieve the ellipticity one should prove

Lemma 5.4. The seminorm v 7→ ‖v‖2,h :=
(∑

Q∈Qh
|v|22,2,Ω

) 1
2

is a norm.

Taking into account the second Strang Lemma [11], the error functional estimate
(5.6), the estimate of the approximability term (Lemma 5.2), and Equations (5.8), (5.9)
and (5.10), one can finally derive the estimate of the error in the energy norm:

‖u∗ − u∗h‖2,h ≤ c h (‖u∗‖3,h + h ‖u∗‖4,h).

Thus, the error in the energy norm decreases at least linearly with h for all u∗ ∈
H4(Ω).

Remark 5.5. Combining the steps of the derivations above with the ideas from [12]
we can derive the same error estimate for weak solutions of other fourth–order V –
elliptic boundary value problems.

6 Numerical examples

The theoretically derived error estimate is also verified numerically. We study the
convergence behaviour of a thin clamped plate, subjected to the variable surface load
f : (x, y) 7→ 8 (10−18 y2 +3 (x4 +y4 +6x2 (−1+2 y2))), defined on Ω = [−1, 1]×
[−1, 1]. Poisson’s ratio is taken to be ν = 1

3
. The related analytical solution is u∗ =

(x2 − 1)2 (y2 − 1)2. In Section 6.1 we show that the numerical results confirm the
theoretically predicted linear convergence. In Section 6.2 we show that the improved
element is more robust and thus more convenient for practical computations.

6.1 Rate of convergence

Two different series of meshes, i.e. those made of only convex quadrilaterals, and
meshes made of mostly nonconvex quadrilaterals, have been employed in the conver-
gence analysis. The initial convex mesh and the second convex mesh are shown in
Figure 3. The second convex mesh and all the subsequent convex meshes follow the
bisection dividing scheme [12]. The construction of the first and the second noncon-
vex meshes is shown in Figure 4. The first mesh was constructed in two steps. In
the first step, the square was divided into parallelograms and trapesoids shown in the
left plot of Figure 4. In the second step, the largest diagonal of each quadrilateral was
divided into five equal parts with four dividing points, which present some nodes of
the final nonconvex quadrilateral division. This is illustrated by shaded quadrilaterals.
The second nonconvex mesh and all subsequent nonconvex meshes were obtained in
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Figure 3: Initial and the first refined convex meshes constructed by the bisection di-
viding scheme [12]
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Figure 4: Nonconvex meshes construction

a similar way. The first construction step of the second mesh is shown in the right
plot of Figure 4. RPQ4 and its improved version denoted by RPQ4(3) with the linear
variation of displacement derivative along the sides of the element have been used in
convergence analysis. Nine convex meshes with h ≈ 1.22, . . . , 0.007 and seven non-
convex meshes with h ≈ 0.8, . . . , 0.0125 have been applied with the related number
of linear equations ranging from 12 to 1764867 and from 219 to 981507, respectively.
The decrease of the actual error of the solution in the energy norm with h for both
elements is depicted in Figure 5. There RPQ4 denotes the original RPQ4 element
by Wanji and Cheung [1] and the RPQ4(3) denotes its improved version derived in
the present paper. Observe that the actual error in the energy norm decreases linearly
with h for element RPQ4 and RPQ4(3) for both meshes, exactly as predicted theoret-
ically. The results of the RPQ4 element for small values of h, which do not fall on the
straight line, are discussed in the next section. From the obtained numerical results
from Figure 5 it is clearly seen that the results obtained by the dividing schemes using
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only convex quadrilaterals are somewhat more accurate compared to the nonconvex
quadrilaterals.

6.2 Condition number of the structure stiffness matrix
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Figure 6: Ratios of stiffness matrix condition numbers

Both theoretical and numerical results for finite elements RPQ4 and RPQ4(3) show
that the accuracy of the solution monotonically increases, if the number of finite ele-
ments grows.

Clearly, with the increasing number of equations the condition number of the struc-
ture stiffness matrix increases, too. The analysis of the present numerical examples has
shown that the condition numbers of the stiffness matrices range from, roughly, 102

to 1012, if applying improved element RPQ4(3). The condition numbers of the related
RPQ4 stiffness matrices obtained by convex meshes increase much faster, see Figure
6, where the ratios of the stiffness matrix condition numbers of elements RPQ4 and
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RPQ4(3) are presented for each h. There the condition numbers of elements RPQ4(3)
and RPQ4 are denoted by condest(RPQ4(3)) and condest(RPQ4), respectively. The
condition numbers were estimated by the MATLAB function condest. As clearly
seen from Figure 6, the condition number ratios grow from, approx., 1 to 108, which
indicates that the condition numbers of element RPQ4 grow from, approx. 102 to
1020, where a complete lost of the accuracy of solution is observed (see Figures 5).
Hence in almost every step of the bisection dividing algorithm, the condition number
of RPQ4 structure stiffness matrix increases roughly by factor 7 or more with respect
to the condition number of the RPQ4(3) structure stiffness matrix. This indicates an
important computational advantage of the improved element version. Since in the case
of nonconvex element meshes, the nonconvex element does not change the shape dur-
ing dividing process, the ratios of condition number of structure matrices remain the
same.

7 Conclusion

In the present paper we have proved convergence and estimated the rate of conver-
gence of the improved version of the nonconforming nonconvex quadrilateral thin
plate bending finite element derived directly from the finite element RPQ4 proposed
by Wanji and Cheung [1].

Our mathematically rigorous proof of convergence is based on Stummel’s gener-
alized patch test [7] and the consideration of the element approximability condition
[11], which are both necessary and sufficient for convergence.

This improved element has theoretically the same convergence characteristics as
its predecessor, RPQ4, only that it is unconditionally unisolvent.

This convenient property of the new element helps to reduce the condition number
of the structure stiffness matrices and consequently results in the element being more
robust and thus better suited for highly refined finite element meshes.
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