
Abstract

The analysis of two L-frames made up by channel sections subjected to various con-

straint conditions has been performed in order to determine their buckling and post-

buckling behaviour. The analysis has been carried out in the framework of the asymp-

totic bifurcation theory, using a one-dimensional nonlinear elastic beam model able

to account for warping. For each case considered, the first two buckling loads have

been determined, together with the associated eigenmodes. For the frames showing

an asymmetric postbuckling behaviour only the initial slope of the bifurcated path has

been determined. In case of symmetric behaviour, also the secondary modes and the

initial curvatures of the bifurcated path have been evaluated. The effects of small ini-

tial imperfections have also been studied in order to estimate the real load carrying

capacity of the frames for all the cases examined.

Keywords: thin-walled structures, flexural-torsional buckling, Koiter theory, imper-

fection sensitivity.

1 Introduction

Due to their lightness associated to a relevant strength, Thin Walled Beams are largely

used in many structural applications.

The most relevant feature of those structure is that, when subjected to torsion, their

cross sections show an out of plane deformation (warping) that, depending on their

shape, can be very large.

The technical relevance of this phenomenon was pointed out at the beginning of the

XXth century in the pioneering works of Wagner [1] and Kappus [2] and widely inves-

tigated by Vlasov[3]. Since then the analysis of the structural behaviour of TWBs has

received a constant attention by many researchers whose works have largely increased
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our knowledge in the field.

Recently [4], [5], two of the authors have studied the effects of warping constraints

toghether with its transmission across the joints, on the buckling and postbuckling

behaviour of frames made up by TWBs.

The analysis performed in the cited papers has been focused on frames showing an

asymmetric postbuckling behaviour and has been limited to evaluate the initial slope

of the bifurcated paths.

Now, although the asymmetric behaviour leads, in general, to an imperfection sen-

sitivity which is much higher than that shown by frames with symmetric postbuckling

behaviour, this can not be assumed as a rule.

In this paper, using a nonlinear 1D beam model which accounts for warping and

asymmetry of the cross sections [6] and the tools of the asymptotic bifurcation theory

due to Koiter [7], [8] two L-frames showing asymmetric and symmetric bifurcated

paths are analyzed.

In order to make a comparison of some of the results obtained, the frames are made

up by channel beams having the same length and cross sections of those of the L-

frame analyzed by Basaglia et al. [9] in the framework of the GBT theory. In the case

of asymmetric behaviour the analysis, as usual, ends with the assessment of the initial

postbuckling slope of the bifurcated path. In case of symmetric behaviour, instead, the

initial curvature is also determined.

All the analyses have been performed by regarding the structures as perfect. The

assessment of their imperfection sensitivity has been accomplished in a second step.

To this end, it must be stressed that the asymptotic approach proves to be a very ef-

fective tool. In fact, once the perfect structure has been examined, then the evaluation

of the equilibrium path resulting from an assigned imperfection, can be determined in

a very straightforward way together with the load carrying capacity of the structure.

This allows to consider the response of the studied frames when subjected of a number

of possible initial imperfections, in a very easy way.

The numerical results obtained show how the arrangement of the beams, the con-

straint on the out of plane sway of the joint and the warping transmission across it, can

affect the load carrying capacity of the frame.

Finally we want to remark that, although the asymptotic theory, in general, is not

able to describe the bifurcated equilibrium paths far form the neighborhood of the

critical load, when the problem at hand is given an adequate nonlinear model, it gives

a very good approximation of the imperfection sensitivity of the structures with a

limited computational effort.

2 A direct one-dimensional model for thin-walled beams

In this section we give a short account of the 1D model adopted in the analysis. For

more details, the reader is referred to [4] and [6].
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Let us consider a plane cross-section and denote by o and c its centroid and shear

center, respectively. We can think to orthogonally attach a section to each point of

a straight line of length ℓ, that we call the beam axis. In particular, we consider the

cases in which the axis is the line of the centroids or, alternatively, the line of the shear

centers. We fix orthogonal cartesian co-ordinates with x1 parallel to the beam axes

and a consistent ortho-normal right-handed vector basis (i1, i2, i3). Suitable strain

measures [10, 11] are

E = R⊤R′ = χ1i2 ∧ i3 + χ2i3 ∧ i1 + χ3i1 ∧ i2,

eo = R⊤p′

o − q′

o = ε1i1 + ε2i2 + ε3i3,

ec = R⊤p′

c − q′

c = eo + Ec = ε1ci1 + ε2ci2 + ε3ci3

= (ε1 + χ2c3 − χ3c2)i1 + (ε2 − χ1c3)i2 + (ε3 + χ1c2)i3,

α, η = α′,

(1)

where: c = c − o = c2i2 + c3i3; po(x1, t), pc(x1, t) are the vector-valued func-

tions describing the present placements of the axes given by qo(x1) and qc(x1) in the

reference shape; R(x1, t) is the proper orthogonal tensor-valued cross-sections rota-

tion from the reference to the present shape; and α(x1, t) is a scalar-valued function

that we consider as a coarse descriptor of warping. Besides, χ1 stands for the torsion

curvature (twist) and χ2, χ3 for the bending curvatures; ε1 is the elongation of the

centroidal axis, ε2, ε3 are the shearing strains between this axis and the cross-section

planes; ε1c, ε2c, ε3c, are the same quantities referred to the axis of the shear centers.

The displacement of the points belonging to the centroidal and shear center axes

together with the rotation are given the following component form

u = po − qo = u1i1 + u2i2 + u3i3

uc = pc − qc = u1ci1 + u2ci2 + u3ci3

R = R3R2R1 (2)

where R1 is a rotation of amplitude θ1 around i1; R2 is a rotation of amplitude θ2

around R1i2; R3 is a rotation of amplitude θ3 around R2R1i3.

By substituting (2) in (1) one obtains nonlinear strain–displacements relationships

that we synthetically refer to in the form

ǫ = e(u) (3)

We assume that the beam is homogeneous, nonlinearly hyperelastic, and that its elastic

energy density, expressed in terms of the strain components ε1c, ε2c, ε3c, χ1, χ2, χ3,

α, η, is
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Making the derivative of ϕ with respect to the strain components, the following

stress measures are obtained

Q1 =
∂ϕ

∂ε1c

= a(ε1c + c2χ3 − c3χ2) +
1

2
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1
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(5)

Q1, Q2, Q3, are the normal and shearing forces applied at the shear centre and

S1, S2, S3, are the twisting couple and the bending torques, evaluated with respect

to the shear centre, as well. The coefficients a, gj , bj (j=2, 3), c, h are the extension,

shear, bending, torsion, warping stiffness, respectively, k accounts for the gap between

warping and torsion, while d, fj (j=2, 3), g keep into account the couplings between

extension and torsion, bending and torsion, warping and torsion, respectively [12, 13,

14].

In this way the virtual work density of the stress, reads

δϕ = ϕ′δǫ = Q1δε1c +Q2δε2c +Q3δε3c +S1δχ1 +S2δχ2 +S3δχ3 + τδα+µδη (6)

where the prime denotes derivative of each function with respect to its own argument.
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Now, by putting

s = Q1i1 +Q2i2 +Q3i3 (7)

S = S1i2 ∧ i3 + S2i3 ∧ i1 + S3i1 ∧ i2

and using equation (6), we can write

∫
δϕ dx1 =

∫
(s · δec + S · δEc + τδω + µδη) dx1 (8)

which, when the variations are interpreted as spatial velocity fields, coincides with the

expression of the (virtual) internal power (15) in [6]. This means that the equilibrium

equations underlying the present formulation are the (18) and (12)5 of [6].

3 Bifurcation analysis

Let us consider a system of hyperelastic beams acted upon by external conservative

loads, whose total potential energy can be written in the form

π(u, λ) = π(u, ǫ(u), λ) =

∫
(ϕ(ǫ(u)) − λu)dx1 (9)

λ being the load parameter.

The condition of equilibrium, obtained by requesting π(u, ǫ, λ) to be stationary, can

be written as

σδǫ− λδu = σe′(u)δu− λδu = 0 ∀δu

σ = ϕ′(ǫ) = s(ǫ)

ǫ = e(u)

(10)

where a prime stands for differentiation of a function with respect to its own argument.

Equations (10), supplied with appropriate boundary conditions, give a nonlinear

Boundary Value Problem whose solutions are the equilibrium states of the structure.

3.1 Asymptotic solution

Let us assume, now, that (10) admits two solution branches: (uf (τ), λf (τ)) and (ub(t),
λb(t)), t and τ being real parameters, that we call fundamental and bifurcated, re-

spectively. In addition, we assume that the two branches intersect at a point where

τ = τs, t = 0, so that (uf (τs) = ub(0), λf (τs) = λb(0))

If the fundamental solution is known, we may introduce the difference fields

v = ub
− uf (11)
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and look for the asymptotic expansion of the bifurcated solution near the bifurcation

point, that is

v(t) = vs t+
1

2
vs t

2 + o(t2)

λ(t) = λs + λs t+
1

2
λs t

2 + o(t2) (12)

where superimposed bars denote derivatives with respect to t evaluated at t = 0.

In view of (11) and (12), the nonlinear BVP is transformed in a sequence of linear

BVPs.

The first of them results in an eigenvalue problem whose solution gives the critical

loads λs and the associated critical modes vs. The second system is non homogeneous

and singular: its solvability condition gives the coefficients λs for each bifurcated path.

It can now be solved for each one of the λs previously obtained. These solutions give

the secondary modes for each one of the admissible equilibrium paths. Passing now

to the third system we observe that it is non homogeneous and singular as the second

one. Also in this case it solution relays on imposing a solvability condition that, in

turn, gives the coefficients λs for each bifurcated path.

3.2 Imperfection analysis

If the structure under analysis has an initial shape which is slightly different from the

one assumed as reference—that we shall call perfect—we can identify the displace-

ment field, say ũ, leading from the perfect to the imperfect shape.

Under the same loading process the perfect and the imperfect structures will behave

in a different way, that is they must be characterized by two different total potential

energy functionals.

Denoting by π̃(u, ũ, λ) the total potential energy functional of the imperfect struc-

ture, we assume that the following relationship holds true

π̃(u, ũ, λ) = π(u, λ) + ψ(u, ũ, λ) (13)

where, obviously, ψ(u, ũ, λ) must be such that

ψ(u, 0, λ) = 0 ∀δu

ψ(0, ũ, λ) = 0 ∀δũ
(14)

Now, if we put

ũ = ζǔ (15)

ζ being a real parameter, it can be proved that, in order to account for small initial

imperfections expression (12)2 can be recast in the form

λ(t) = λs + λs t− (ζ̺)
1

t
+ o(t) (16)
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where

̺ =
ψ

′
∗

s ǔvs

π̂′′
sv

2

s

(17)

Note that in (17) ∗ and̂stand for derivative with respect to ǔ and λ, respectively.

Besides, ψ
′
∗

s and π̂′′

s are evaluated at the bifurcated point of the perfect structures,

which means that ψ
′
∗

s = ψ
′
∗(uf (λs), 0, λs) and π̂′′

s = π̂′′(uf (λs), λs).

When λs = 0 expression (16) changes in

λ(t) = λs +
1

2
λs t

2
− (ζ̺)

1

t
+ o(t) (18)

4 Frames postbuckling analysis

In this Section, we carry out the analysis of an L-Frame made up by channel beams

arranged in two different ways and subjected to various boundary conditions. The

frame is loaded by a vertical thrust (see Figure 1, where the lines of the centroids are

represented).

In order to make a comparison of the results obtained, we will consider the same

L-Frame analyzed by Basaglia et al. [9] in the framework of the GBT theory, whose

results were kindly communicated to the writers by the authors.

1

1L

L

2 3

1

2

3

1

Figure 1: Two-bar frames structure.

The (U-shaped) cross-sections of the channel beams that make up the frame, have

outer dimensions of 200 mm (web), 100 mm (flanges) and uniform thickness of 7 mm,

L = 5 000 mm.

We will consider two arrangements of the beams, that we will call Frame A and

Frame B, and are shown in Figure 2.
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Figure 2: Two-bar frames.

The geometric and inertia quantities of the cross sections of Frame A referred to

the local coordinate systems shown in Figure 2, are

a = 2800 mm2E; c = 45733.3 mm4G;

d = 3.25323 107 mm4E; hξ2 = 2.04167 1010 mm6E;

b2 = 1.86724 107 mm4E; b3 = 2.92238 106 mm4E;

g2 = 2800 mm2G; g3 = 2800 mm2G

f2 = 0; f3 = −6.85417 108 mm5E;

c2 = 62.5 mm; c3 = 0; .

(19)

where E and G stand for the Young’s and the shear modulus, respectively.

The geometric and inertia quantities of the cross sections of Frame B, referred to

the local coordinate systems shown in Figure 2, are obtained by exchanging subscripts

2 and 3 in (19).

The following analysis is performed by assuming E = 206 GPa, G = 79 GPa
and k → ∞. Besides, as the cross sections have one axis of symmetry, g = 0 [10].

The analysis will be performed for the problems listed below.

• Case A1

We will consider Frame A subjected to the following boundary conditions
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u = 0, R = 0, α = 0, in A and C

uI = uII, RI = RII, αI = αII. in B
(20)

• Case A2

Frame A is now subjected to the same boundary conditions (20) with the additional

constraint

uI · i3 = 0. in B (21)

that prevents the out of plane displacement of node B.

• Cases B1, B2, B3

The attention is now turned to Frame B, subjected to the boundary conditions

u = 0, R = 0, α = 0, in A and C

uI = uII, RI = RII, uI · i3 = 0. in B
(22)

plus one of the following conditions on warping transmission across the joint B,

case a αI = αII

case b αI = −αII

case c αI = αII = 0 (23)

that correspond to the three configurations of joint B shown in Figure 3 [15, 16, 17].

Case a:

Diagonal stiffened

Case b:

Box stiffened

Case c:

Diagonal/Box stiffened

Figure 3: Configurations of the joint.

Cases B1, B2, B3 are obtained when to Frame B are imposed the boundary conditions

(22) plus, in turn, (23)1, (23)2, (23)3.
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4.1 Buckling and postbuckling analysis

Here, following the asymptotic procedure outlined in Section 3, we analyze the initial

postbuckling behaviour of the Cases described before.

It can easily be seen that the following fields

uf

I = 0, Rf

I = I, αf

I = 0,

ef

I = 0, Ef

I = 0, ηf

I = 0,

sf

I = 0, Sf

I = 0, τ f

I = 0, µf

I = 0,

uf

II = −
λ

a
x1i1, Rf

II = I, αf

II = 0,

ef

II = −
λ

a
i1, Ef

II = 0, ηf

II = 0,

sf

II = −λi1, Sf

II = λc3 i3 ∧ i1 −

λc2 i1 ∧ i2,

τ f

II = 0, µf

II = 0.

(24)

identify a solution branch for equations (10) for all those Cases. We assume this

solution as the fundamental path.

Besides, for each one of the of Cases the first two buckling loads, the associated

buckling modes and the corresponding values of the coefficients λs, are determined.

When λs = 0 the solution to the second order equations set is also determined and the

coefficients λs evaluated.

5 Numerical results

In this section the results obtained for the initial postbuckling analysis of the frames

introduced before, are reported. The numerical simulations have been carried out by

means of the COMSOL mutiphysics software. In order to identify the equilibrium

paths that bifurcate at each one of the two critical loads considered, we refer to the

features of their buckling mode. So we will call

• out of plane flexural-torsional: the mode in which the fields u3, θ2, θ1 are

largely prevailing;

• in plane flexural-torsional: the mode in which the fields u2, θ3, θ1 are largely

prevailing;

• in plane flexural: the mode in which the sole fields u2, θ3 do not vanish.

5.1 Case A1

The first case examined concerns Frame A with boundary conditions (20), which is

exactly the case studied in [9], whose results are reported here in Figures 4 and 5.
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Figure 4: First buckling load: results in [9]

Note that, in order to compare the results, we have adopted the same parametriza-

tion and the same initial imperfection fields of [9]. That is w, w0 in Figure 4 cor-

respond to u3B, U3 in Figure 6; θ, θ0 in Figure 5 correspond to θ3B, Θ3 in Figure

7.

The first two buckling loads, result to be

λs = 6.05 105N,

λs = 6.82 105N
(25)

The buckling mode associated to the first buckling load is out of plane flexural-

torsional and the relative bifurcated path results to be symmetric as λs = 0.

The secondary mode adds an in plane flexural deformation and the bifurcated path

results to be unstable symmetric. Figure 6 shows the equilibrium paths of the frame

subject to initial imperfections having the shape of the buckling mode and amplitudes:

U3 = 0.2, 2, 5, 10mm, where U3 stands for the out of plane displacement of joint B.

What is worth to note is that the curves in Figure 6 are very close to those in Figure

4 only for small values of the parameter. Nevertheless, the values of the limit loads of

the imperfect structures are very close.

The mode associated to the second buckling is in plane flexural. It is of the type

studied long time ago by Roorda and Chilver [18], [19] that can be considered a pro-

totype of asymmetric postbuckling frame behaviour.

Figure 7 shows the equilibrium paths of this structure for a set of imperfections hav-

ing the shape of the associated buckling mode and amplitudes: Θ3 = 5 10−4, 10−3,

3 10−3, 5 10−3, 10−2rad where Θ3 stands for the joint rotation around an axis orthog-

onal to the plane of the frame.
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Figure 5: Second buckling load: results in [9]

It is interesting to note that in this case, the curves obtained by the authors and

those in Figure 5 stand close one to the other for values of the parameter much larger

then in the previous case.

Incidentally we point out that the value of the initial slope of the bifurcated path

coincide with that reported in [20] that, in turn, was in very good agreement with the

experiments of Roorda.

5.2 Case A2

The second case examined concerns Frame A with boundary conditions (21).

The first two buckling loads, are now

λs = 6.82 105N,

λs = 6.94 105N
(26)

The first value, the corresponding mode and the relative value of λs are exactly the

same obtained for the second bifurcated path in Section 5.1. So Figure 8 is exactly the

same as Figure 7 and has been reported only for the reader’s convenience.

The out of plane flexural-torsional mode is now associated to the second critical

load and is associated to a buckling load which is now higher although very close to

the lower one.

Figure 9 shows the equilibrium paths of the imperfect structure. In this case, the

parametrization used in Section 5.1 cannot be adopted, as u3B = 0. In order to show
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U3 = 0.2

U3 = 2

U3 = -5

U3 = -10

-300 -200 -100 0 100 200 300
U30.0
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Figure 6: Case A1 first bifurcated path
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Q3=10-3

Q3=3x10-3

Q3=-5x10-2

Q3=10-2

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
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Figure 7: Case A1 second bifurcated path

results that are comparable with the previous one, we have chosen as parameter the

out of plane displacement at the column midspan. It has been denoted by u3m. The

imperfections considered still have the shape of the buckling mode with amplitudes:

U3 = 0.2, 2, 5, 10mm. It can be seen that by imposing the constraint (21) that, of

course, causes a great reduction of the out of plane sway of the frame, one obtains a

double beneficial effect as the buckling load rises while the initial curvature decreases.

Q3=5x10-4

Q3=10-3

Q3=3x10-3

Q3=-5x10-2

Q3=10-2

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Q30.0

0.2

0.4

0.6

0.8

1.0

1.2

Λ

Λs

Figure 8: Case A2 first bifurcated path
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-300 -200 -100 0 100 200 300
U30.0

0.2
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0.8

1.0

1.2

Λ

Λs

Figure 9: Case A2 second bifurcated path

Passing now to examine Frame B we recall that we will consider three cases in

which the boundary conditions (22) remains the same and the warping transmission at

the joint changes according to (23).

5.3 Case B1

The first case considered refers to the box stiffened joint, that is to the condition on

warping transmission (23)2.

The first two buckling loads, result to be
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λs = 4.87 105N,

λs = 7.13 105N
(27)

The buckling mode associated to the first load is out of plane flexural-torsional.

Figure 10 shows the equilibrium paths of the structure when the load approaches this

critical value, for imperfections having the shape of the associated buckling mode and

amplitudes: U3 = 0.2, 2, 5, 10mm.

U3=0.2

U3 = 2

U3=-10

U3=-5

-300 -200 -100 0 100 200 300
U30.0

0.2

0.4

0.6

0.8

1.0

1.2

Λ

Λs

Figure 10: Case B1 first bifurcated path

Q3=5x10-4

Q3=10-3

Q3=3x10-3

Q3=-5x10-2

Q3=-10-2

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Q30.0

0.2

0.4

0.6

0.8

1.0

1.2

Λ

Λs

Figure 11: Case B1 second bifurcated path

The buckling mode associated to the second load is in plane flexural-torsional. Fig-

ure 11 shows the equilibrium paths of the structure for imperfections having the shape

of the associated buckling mode and the following amplitudes: Θ3 = 5 10−4, 10−3,

3 10−3, 5 10−3, 10−2rad.

The results show that the first bifurcated path is unstable symmetric even though

the initial curvature is very small.

The second bifurcated path, instead, is highly asymmetric and therefore, very im-

perfection sensitive.

5.4 Case B2

In this case the joint is diagonally stiffened and the condition on warping transmission

is (23)1

The first two buckling loads are the same found for Case B1, that is

λs = 4.87 105N,

λs = 7.13 105N
(28)

Nevertheless, the post critical behaviour of the first bifurcated path remains sym-

metric but with a (slight) positive initial curvature. Figure 12 shows the equilibrium

paths of the structure when the load approaches this critical value, for imperfections

amplitudes: U3 = 0.2, 2, 5, 10mm.
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Figure 12: Case B2 first bifurcated path
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Figure 13: Case B2 second bifurcated path

The bifurcated path associated to the second load is practically the same as before.

So the curves reported in Figure 13 are practically the same of those in Figure 11.

Although the initial curvature of the first bifurcated path is very small, we think

that the change of its sign is, in principle, quite interesting.

5.5 Case B3

Let’s pass now to consider the case of the box-diagonal stiffened joint which is mod-

elled by the condition on warping transmission (23)3.

The first two buckling loads, result to be

λs = 4.87 105N,

λs = 8.27 105N
(29)

Nothing to say about the first bifurcated path as it corresponds to the one examined

in the previous case (diagonal), that remains symmetric and stable.

Also the second bifurcated path shows the same features as before apart the fact

that the associated critical load is now 16% higher.

We observe that in this case, while the stiffening of the node results in an increase

of the critical load the postbuckling behaviour do not get any benefit.

6 Conclusion

A nonlinear elastic beam model that accounts for warping has been used to analyze

the initial postbuckling behaviour of two L-frames subjected to various constraint con-

ditions, by means of the asymptotic bifurcation theory.

The analysis performed show that, despite their simple shape, the frames can buckle

in very different ways, depending on the beam arrangements and on the constraints
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imposed. The effects of the warping transmission across the joint have also been

examined.

The numerical results obtained for Case A1 have been compared with the corre-

sponding ones obtained by Basaglia et al. in the framework of the GBT.

The other Cases examined show that: a) by restraining the out of plane sway of the

joint, a dangerous (although symmetric) buckling mode is eliminated; b) changing the

arrangements of the beams result in a loss of the frame load carrying capacity, due to

the triggering of an out of plane flexural torsional mode.

All the comparisons show that the asymptotic analysis gives information on the

bifurcated paths that, even though in general can not help to know its evolution far

from the bifurcated point, are sufficient to obtain a very good estimate of the load

carrying capacity of the frames.
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