
Abstract

This paper proposes the use of derivative free optimization techniques in an algo-

rithm that locates either a good single minimizer or several minimizers with close

function values of unconstrained and bound constrained minimization problems. The

algorithm assumes that the objective function is Lipschitzean with a constant provided

by the user. This is an artifice that identifies sub domains where the objective function

cannot reach a good minimum value, and search on that sub domain is immediately

abandoned. The algorithm has been tested on problems with a small number of vari-

ables with encouraging results. We believe this is an innovative approach, but more

numerical tests should be carried out before reaching conclusive statements.

Keywords: derivative free, bound constraint, multi processing, global minimum.

Notation

We use a rather standard notation with certain peculiarities: Rn is the n-th dimensional

Euclidean spaces; vectors in Rn are denoted by small Latin letters with components

xk, k = 1, · · · , n; e = (1, . . . , 1) is a vectors of ones; ek is a vector of null values,

except that ek
k = 1; scalars are denoted by small Greek letters; R+ is the set of non-

negative scalars; a σ-function σ(·) : R+ → R+ is any non decreasing function with

lim
τ→0

σ(τ)/τ = 0. The index i is used as an iteration number; Pi is a set of points at the

i-th iteration and the subindex ij refers to the j-th element of Pi.

1 Introduction

This paper deals with algorithms for solving the bound constrained optimization prob-

lem:

1

 
Paper 63 
 
Searching for Multiple Minima of  
Bound Constrained Optimization Problems using 
Derivative Free Optimization Techniques 
 
U.M. García Palomares 
Departamento de Enxeñaría Telemática 
Escola de Enxeñaría de Telecomunicación, Universidade de Vigo, Spain 

©Civil-Comp Press, 2012 
Proceedings of the Eleventh International Conference 
on Computational Structures Technology,  
B.H.V. Topping, (Editor),  
Civil-Comp Press, Stirlingshire, Scotland 



(BCOP) minimize
x∈F

f(x), F = {x ∈ Rn : s ≤ x ≤ t}, (1)

where, for the sake of formality, we assume that the upper and lower bounds have dif-

ferent value, that is, sk < tk, k = 1, . . . , n; otherwise xk is not further considered as a

variable of the problem. Bounds can take infinite values and unconstrained optimiza-

tion is a particular case of the BCOP. The algorithm solves (1) by solving a sequence

of the same optimization model defined in sub domains. At the i-th iteration we are

given a finite set of prospective solutions Pi = {xi1, . . . , xip(i)}. For each xij ∈ Pi we

define new bounds (sij, tij) and solve

BCOPij minimize
x∈Fij

f(x), Fij = {x ∈ F : sij ≤ x ≤ tij}. (2)

For the convergence theory special attention must be given to the active set

∂Fij(δ) =
{

x ∈ Fij : (∃k)
(

sk
ij + δ > xk

OR tkij − δ < xk
)}

, (3)

where δ > 0 is a given parameter, that may also change from iteration to iteration.

Efficient Derivative Free Optimization (DFO) techniques exist for solving (1) when

derivative information on f(·) are neither existent nor readily computable. Literature

on DFO is rapidly expanding, but we only cite those recent works [2, 5, 7, 9] that

are linked to our line of research. This paper uses DFO techniques for solving the

sequence of problems BCOPij given above (2), but our aim departs from the cited

works. We do not try to find a local minimum with the least number of function eval-

uations possible; we instead want to find a good set of local minima of a function that

might have multiple local minimizers. We show how to formulate the subproblems (2)

to achieve convergence to different minima.

We recall that, under suitable conditions, it is easy to identify in a finite time,

whether x ∈ F is a local minimum. On the contrary, a global minimum has no math-

ematical characterization. To declare that x is a good minimizer we should amply

search the feasible set, which means that f(·) must be evaluated a significant number

of times. The idea of our algorithm is to identify subdomains Fij with interior solu-

tions. These are as well, solutions to the original problem (1). From a practical point

of view the algorithm declares that x∗ is a good minimizer when it is a local minimum

and when f(x∗) is not too much larger than the best minimum found. The final asset

on the relevance of this minimizer is left to the practitioner.

It is worth mentioning that the algorithm uses strategies to find a global solution to

each BCOPij. We include the non monotone behaviour proposed in [6, 5], linear ex-

trapolation techniques [8, 3, 5], and evaluate the function on random points. We could

also try simulated annealing or any other techniques, but we have not implemented

them yet. Anyway, a global minimum cannot be ensured for the reasons just given in

the above paragraph, and there is a tradeoff between the use of resources and finding

a good minimum.
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At the i-th iteration, the algorithm works with a finite population Pi = {xi1, . . . , xip(i)}
and for a fixed ∆ > δ problem (2) is explicitly formulated as

minimize
x∈Fij

f(x), Fij = {x ∈ F : xij − ∆e ≤ x ≤ xij + ∆e}, (4)

that is, the search is confined to a neighborhood of xij . Other models may be ap-

propriate for more general problems. The solution of 4 is truncated with an accuracy

that is more demanding as the iteration advances. But the truncated solution is al-

ways a Discrete Quasi Minimal Point (DQMP) of (4); and the convergence theory

developed in [5] can be applied. We claim that ∃{Qi ⊆ Pi} converging to a set

Q∗ = {x∗1, . . . , x∗q∗} of q∗ local minima. DQMPs were introduced in [1] for uncon-

strained minimization and adapted in [5] to the BCOP. It is shown in those papers that

local minima are limit points of sequences of DQMPs. It is appropriate to recall that

Definition D1. Given a set of directions D = {dk ∈ Rn : k = 1, · · · , q}, a

stepsize τ > 0, an upperbound ϕ ≥ f(x), and a σ-function σ(τ) : R+ → R+, let

D+ = {y ∈ Rn : y =
∑q

k=1 αkdk, dk ∈ D,αk ≥ 0, k = 1, · · · , q}.

A point x ∈ Fij is denoted a DQMP if

D+ = Rn, and
[

d ∈ D
]

⇒ 〈
(x + τd) 6∈ Fij, or

f(x + τd) > ϕ − σ(τ).
(5)

It is obvious to observe that local minima, including the global one, satisfy (5) for

sufficiently small τ .

Each DQMP ( xij ∈ Pi ) generates a new DQMP (xi+1,j ∈ Fij) using DFO tech-

niques or any gradient like method. We assume that f(·) is Lipschitzean and an esti-

mate of the Lipschitz constant is known, that is,

|f(x) − f(y)| ≤ κ||x − y||, ∀(x ∈ F, y ∈ F ),

where κ is estimated by the user. If κ is unknown, we can assume that it is very large.

The use of a Lipschitz estimate κ makes possible to eliminate xij from Pi; specifically,

xij is discarded when

fm
i = min

1≤j≤p

(

f(xij)
)

< f(xij) − κ∆, (6)

because f(xij) − κ∆ ≤ f(x) for all x ∈ Fij : f(x) < f(xij). In other words, the

algorithm has detected that no point in Fij has a function value below fm
i and no

search on this neighborhood is needed. We also claim that the algorithm works even

if the set F is discrete and can be described as a grid of a regular size; nonetheless to

avoid distraction from the main ideas, we only glimpse onto this, and refer the reader

to [4].

The scheme enclosed in Figure 1 is a rough description of the algorithm. As usual,

we dropped the iteration index i and include a parameter ǫ > 0 to stop the algorithm
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in finite time. It is worth noticing that this algorithm embodies many variants and

can be easily generalized, at least conceptually, for solving more general optimization

problems. We have decided to focus on BCOP, mainly to detect appropriate values

for the parameters involved and to find out the pros and cons to our approach. It has

been argued that the algorithm performance for solving BCOPij is not affected for

any constant µ ∈ [0.3 0.7]. We have decided to generate at each iteration a random

µ in that interval. Other parameters (|P0|, ∆, τ̄ , β) may have a significant influence.

Intuitively, the larger their values, the slower the process, and the larger the number of

function evaluations. We now ask the reader to turn the attention to Figure 1.

At each outer iteration (WHILE loop) the algorithm solves |P | BCOP models, with

an accuracy that is more demanding as the algorithm proceeds (Step 3). In other

words, these subproblems generate approximate local solutions, namely, DQMPs.

These points however, are discarded when (6) holds (Step 2.1). Step 2.3 is necessary

because a point located in ∂Fj is not necessarily a DQMP of the main problem (1).

Parallelism can be invoked as suggested in [5], or it can be incorporated in Step 1.

Albeit this is an important issue, we are only reporting single processor performance

and the members of P are taken randomly in the FOR loop. For the sake of complete-

ness Figure 1 also includes the basic scheme used to solve (4) and Figure 2 describes

a function that constructs D satisfying D+ = Rn.

The rest of this paper is organized as follows: Section 2 is short, yet important

because convergence is shown as a proposition derived from previous works [6, 5].

Numerical tests on two small problems are reported in Section 3 and Section 4 ends

the paper with conclusions and future search.

2 Convergence

We have presented the algorithm in such a way that we can easily claim convergence

from the material given in [5]. Each particular sequence {xij}i∈Z , j = 1, . . . , p∗ has

limit points that are local solutions to problem (1). We now state the convergence

proposition and sketch its proof.

Proposition 1 A1. The sequence {Pi} remains in a compact.

A2. f(·) is bounded below in F , and strictly differentiable at limit points.

There exists a subsequence {Qi ⊆ Pi} that converges to local minima of (1), pro-

vided that A1 and A2 hold.

Proof. We are assuming implicitly that at all iterations, the set of directions of search

D satisfies that D+ = Rn. Besides, the updating of ϕ satisfies A4 in [5, Section

3]. Therefore, all assumptions required for convergence in [5] hold and Pi is a set

of DQMPs for some subproblem with bounded variables. Note also that by the way

the algorithm is constructed, the limit points {x∗1, . . . , x∗p(∗)} are also DQMPs, and

consequently local minima of (1).
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Input:P, ∆, τ = τ̄ , ǭ > ǫ

Loop: WHILE (τ > ǫ)
Step 1. Compute fm = min

x∈P
f(x)

Step 2. FOR j = 1, . . . , p

Step 2.1 IF (f(xj) > fm + κ∆)
Remove xj from P

CONTINUE (next xj ∈ P )
END IF

Step 2.2 Find a DQMP x′ (stop solving (4) when τ < ǭ)

Step 2.3 IF (x′ ∈ ∂Fj) Update τ = τ̄

Step 2.4 Replace x by x′ in P

END FOR

Step 3. Generate random µ ∈ [0.3 0.7], ǭ = µǭ

END WHILE

Output: P, f(P )

Basic scheme for solving BCOP in Step 2.2

Input: ϕ, xj , x
∗ = xj , τ

∗ = τ = τ̄ , ǭ

WHILE (τ > ǭ)
Construct D : D+ = Rn

IF (5) holds

Generate random µ ∈ [0.3 0.7], τ = µτ

IF
(

(τ < ǭ) AND (f(x∗) < fj)
)

xj = x∗, τ = τ∗, ϕ = f(x∗)
END IF

ELSE (5) does not hold

Pick y ∈ Fj : f(y) ≤ ϕ − σ(τ)
Generate a random z ∈ Fj

IF (f(y) < f(z))
xj = y ELSE xj = z

END IF

IF
(

fj < f(x∗)
)

x∗ = xj , τ
∗ = τ

END IF

Generate a random β ∈ [0 0.9]
ϕ = (1 − β)fj + βϕ

END IF

END WHILE

Output: xj , fj

Figure 1: Algorithm framework

3 Numerical tests

Before we carry out the tests, it is advisable to analyze suitable parameters values;

for instance, a large value of ∆ could force Fi = F and the algorithm reduces to
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Formal arguments: (s̄, x, t̄, δ) : s̄ ≤ x ≤ t̄, δ > 0

Let A = {k : xk < s̄k + δ, OR xk > t̄k − δ} be the

index set of δ-Active constraints.

Let S = {x ∈ Rn : xk = 0, k ∈ A} and

let B be a minimum unitary basis for S.

Return D = {±B,±ek, k ∈ A}

Figure 2: Function that builds D+ = Rn

a multi starting approach. We simply apply several iterations of the DFO algoritm

to each element in Pi and solve (4) up to the required accuracy. A large value for

δ will have a tremendous impact on the algorithm performance: On one hand, only

canonical vectors e1, . . . , en will be used throughout the entire procedure. It is well

know that these directions are not in general the best ones to choose from. On the

other hand, the updating τ = τ̄ will always be done after solving (4), which will

increase the number of function evaluations. We decided to carry out some tests to try

to determine appropriate values for these parameters.

We started with the Branin-Hoo unconstrained optimization problem in 2 variables

(x, y):

f(x, y) =
(

(y − 1.275(x/π)2 + 5x/π − 6
)2

+ 10(1 − 1/8π)cos(x) + 10

This problem has 4 global minima. A population of 20 elements were randomly

distributed in the box −5 ≤ x ≤ 20;−5 ≤ y ≤ 20. We set the following input to the

problem: ∆ = 2, δ = 0.1, τ̄ = 1, ǫ = 10−4, ǭ = 10−2, κ = 20, and ϕ = 1.2fj , for

each xj ∈ P .

For the solution of BCOPij we used the code developed in MATLAB by [5]. The

algorithm ended up with 16 elements converging to the global minima. We repeated

the test with other reasonable parameter values and found similar results.

With the same set of parameter values we attempted the solution to the 5-dimensional

Shekel’s function

f(x) = −
30

∑

j=1

1

cj +
∑5

k=1(x
k − Ajk)2

.

The values for (c, A) can be seen in [6, Table 5]. They also report that this function

has at least 12 local minima. The key factor here was the size of the initial popula-

tion. The rate of success, measured as the number of times that the global minima is

reported in 100 runs, is more than 40% with an initial population of at least 50 points.

Although these experiments cannot be considered as conclusive, the results are

highly encouraging. It does seem that acceptable results can be obtained with a rea-

sonable choice of parameter values.
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4 Conclusions and future search

Global optimization is not necessarily a goal for practitioners, mainly because they

are aware that several characteristics of their system could not be incorporated into

the optimization model. This paper presents an algorithm that finds multiple local

minima of a strictly differentiable function subjected to bounds on the variables. The

algorithm works with a set of initial points -a population- and DFO techniques are

used to generate DQMPs of models with bounded variables defined in subdomains.

The algorithm uses the fact that a local minimizer is as well a DQMP.

The algorithm is tested on 2 small problems with a set of magic numbers for the

different parameters involved. Although this is by no means conclusive, it seems that,

except for the initial size of the population, the results not sensible to an ample range

of the parameter values.

There are two obvious routes that this work can tackle: on the one hand, the so-

lution of models with linear constraints using DFO techniques. On the other hand,

the use of derivative information for generating DQMPs and for solving more general

optimization problems.
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Juan Carlos Burguillo Rial. A combined global & local search (CGLS) approach

to global optimization. Journal of Global Optimization, 34:409–426, 2006.

[7] Serge Gratton, Philippe L. Toint, and Anke Tröltzsch. An active-set trust-region
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