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Abstract 
 

An exact finite strip for the buckling and initial post-buckling analysis of moderately 
thick plates is presented in this paper using first order shear deformation theory 
(FSDT). In the buckling phase the equilibrium Von-Karman’s equation is solved 
exactly to obtain out-of-plane mode shapes and critical loads. The Von-Karman’s 
compatibility equation is solved exactly in the post-buckling phase with the 
assumption that the deflected form immediately after buckling is the same as that 
obtained for the buckling. The principle of minimum potential energy is invoked to 
solve for the unknown coefficients in the assumed out-of-plane deflection and 
rotation functions. 
 
Keywords: exact strip, moderately thick plates, initial post-buckling stage, relative 
stiffness, first order shear deformation theory, Von-Karman’s equations. 
 
 

1  Introduction 
 

Application of plates and plate structures has been increased in many branches of 
engineering. These structures are often employed to experience in-plane 
compression loading. Thus, it is important to predict the buckling and post-buckling 
behaviour of such structures accurately. Since in this paper a new finite strip method 
(FSM) is utilized to analyse the buckling and initial post-buckling behaviour, it is 
worth providing a brief review on some of the works done by using FSM. 
One of the persons who may be considered as the pioneer is Cheung[1], who first 
presented the concepts of finite strip method. In the linear buckling field Graves 
Smith and Sridharan[2] derived the first buckling formulation for isotropic plates 
under edge load using FSM. Lau and Hancock[3], Wang and Dawe[4] and Zou and 
Larn[5] have used FSM based on the classical plate theory (CPT), first-order shear 
deformation theory (FSDT) and higher-order shear deformation theory (HSDT). 
Many works have been done in the field of geometrically non-linearity based on use 
of FSM. Early works are those of Graves Smith and Sridharan [6-7]. These 
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investigators assume a plate with simply supported ends and subjected to 
progressive end shortening in order to predict the post-buckling behaviour of the 
structure. An energy-based method, referred to as the semi-energy method by 
Rhodes and Harvey [8], was first used by Marguerre [9] and has since been used by 
various researchers. Rhodes[10] and Chou and Rhodes [11] have published several 
papers on different behaviours of thin-walled structures. The theoretical 
developments are mostly based on semi-energy method. Ovesy et al [12-14] have 
developed a semi-energy post-local-buckling FSM (S-e FSM) in which the out-of-
plane displacement of the finite strip is the only displacement which is postulated by 
a deflected form as distinct to that mentioned previously with respect to the semi-
analytical FSM (S-a FSM) and Spline FSM. The developed semi-energy FSM (S-e 
FSM) has been applied to analyze the post-local-buckling behavior of thin flat plates 
[12], open channel section [13]and box section struts [14]. Ovesy and Ghannadpour 
[15-18] have developed a full-analytical FSM (F-a FSM) based on CPT in which the 
Von-Karman’s equilibrium equation  is solved exactly and thus the buckling mode 
shapes and loads are obtained with very high accuracy. Then the obtained mode 
shapes are used in the post-buckling phase and the Von-Karman’s compatibility 
equation is solved exactly and the in-plane displacements are derived. 
In this paper for the first time, the theoretical developments of an exact finite strip 
for the buckling and initial post-buckling analysis of moderately thick plates are 
presented. The FSDT has been used to model the so-called exact finite strip. The 
Von-Karman’s equilibrium set of equations has been solved exactly with the 
assumption that the two loaded ends are simply supported and the other two ends 
have arbitrary out-of-plane boundary conditions. Thus, the general out-of-plane 
buckling modes are obtained with very high accuracy and then the Von-Karman’s 
compatibility equation is solved exactly to obtain the general form of in-plane 
displacement field in the post-buckling region. It is necessary to remember that the 
buckling shape modes obtained from the buckling phase are used as global shape 
functions for representing the displacement fields in a geometrically non-linear 
analysis. Thus this method is denoted as full-analytical FSM (F-a FSM) based on 
first-order shear deformation theory (FSDT). 
 
 
 
 
 

2 Theoretical developments of the F-a FSM based on 
FSDT 

 
In this section, the fundamental elements of the theory for the developed exact finite 
strip in buckling and post-buckling problems are outlined. It must be noted that a 
perfectly flat exact strip made up of a linear isotropic material (with constant 
modulus of elasticity E and Poisson ratio ) is assumed throughout the theoretical 
developments of this paper. The so-called exact finite strip is assumed to be simply 
supported out-of-plane at the loaded ends and arbitrary out-of-plane boundary 
condition at the other two ends. It is important to mention that the plate is assumed 
to be moderately thick, thus the FSDT is applied in the remaining of the paper. 
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2.1 Basic formulation of the problem 
 
The exact finite strip, which is schematically shown in Figure 1, is of length L, 
width b and thickness t. As mentioned earlier, the finite strip is simply supported 
out-of-plane at both ends, i.e.  

(1) 0 
It must be noticed that the FSDT is applied, thus 
 

(2) ˆˆ ˆ, ,x yu u z z w wϕ υ υ ϕ= + = + =

where , and  are components of displacement at a general point, whilst ,  and 
 are similar components at the middle surface (z=0),  is the rotation of a 

transverse normal about the axis y and  is the rotation of a transvers normal about 
the axis x. On the assumption that the whole transverse shear components can not be 
neglected in FSDT, the stress-strain relationship at a general point for the plate 
becomes: 
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where and are the stresses and strains at a general point, respectively. 
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Figure 1: A typical exact finite strip. 

Internal forces and moment acting on the edges of a strip are expressed in terms of 
forces and the moments per unit distance along the strip edge. The forces and 
moments intensities are related to the internal stress by the equations 
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where K is a shear correction factor which is taken as  in the current study. It is 
noted that the stresses and strains in Equation (3) include the components 
corresponding to the membrane and bending contributions as outlined below 

(5) ;  
where and correspond to the membrane contribution, and and relate to the 
bending and twisting actions. It is noted that the membrane strain can be 
subdivided into its linear and non-linear component as given below 

(6) 
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According to the FSDT the bending strains are expressed by the following 
equations: 

(7) , , , ,  
 
Since the potential energy of external loads is zero for the strip under consideration, 
the total potential energy of the strip is simply equal to the strain energy  which 
is: 

(8) 1
2  

The Von-Karman’s equilibrium set of equations and Von-Karman’s compatibility 
equation for large deflections of plate with the assumption that the normal pressure 
is zero are given by the following equations, respectively: 
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(9b) , , ,  

In Equation (9a) ,  are plate stiffness coefficients ( , ) and 
 is compressive axial load applied in x direction and in Equation (9b) the 

function F which is known as the Airy stress function is defined as follows: 
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The positive directions of the edge forces and displacements are shown in Figure 1. 
It is noted that the in-plane shear force, out-of-plane shear force and bending 
moment per unit length of the strip edge, i.e.  , , ,   and , are  
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The subscripts i and j denote the corresponding values of forces/displacements at the 
edges i and j, respectively. It is noted that in the remaining of the paper, the 
subscripts , ,  are used for pre-buckling, buckling and post-buckling stages, 
respectively. 
 
2.2 Buckling analysis 
 
The out-of-plane buckling deflection mode , the rotation of a transverse normal 
about the axis y  and the rotation of a transverse normal about the axis x  
are obtained by trying to solve the Von-Karman’s equilibrium set of equations i.e. 
Equation (9a). Thus 
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In the pre-buckling stage the strip is subjected to the constant compressive axial 
loads  and 0. For solving this set of equations it is assumed that 
the whole three functions are trigonometric in x direction and arbitrary in y direction: 
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where /  and m is the number of half-wavelengths in x the direction, 

,  and  represent the shape functions in the transverse direction y for 
,  and , respectively. By substituting ,  and  from Equation (13) 

into Equation (12) the following ordinary differential system of equations is 
obtained: 
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For solving the above system of equation it is necessary to assume 
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where , ,  and  are 
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The solution of Equations (14) depends on whether 0 or 0. For example in 
the case of 0, the equations are solved by assuming 
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where 
0 0

0 

 
Now the solution depends on the sign of ,   . For example in the case of

0,0,0 321 ≥≥< JJJ , the solution can be written as 
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where 1Jα = − 2, ,Jβ = 3Jγ = and )6..,,1(,, =kCCC k
s

k
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k
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constants which depend on the displacement boundary conditions at edges 0 
and . The displacement boundary conditions for ,  and  at the 
edges 0 and  can be written as 
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The buckling displacement amplitudes, which are depicted in Figure 1, can be 
written as the displacement vector: 
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buckling displacement amplitudes and the solution of Equation (14) which satisfies 
the displacement boundary conditions of Equation (20) can be obtained analytically 
in terms of the edge displacements 1d

~
. By substituting the Equation (13) into 

Equation (11), the force boundary conditions for the moments and the resultant out-
of-plane edge shear force as 
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The left-hand sides of Equation (22) are the amplitudes of buckling force and 
moments at the corresponding edges of the strip and can be written as the force 
vector: 
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The above equation can be re-arranged as  
(24)111 ~~~

dkp =  

where 1~k  denotes the strip out-of-plane stiffness matrix and is calculated 
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analytically. By applying these expressions to obtain the stiffness matrices of 
individual strips, the exact overall stiffness matrix 1~K for the whole strips can be 

assembled by using the conventional routines of finite element analysis. The 
corresponding buckling problem can finally be expressed as the eigenvalue problem: 

(25)0)( 11 =~~ DK xN  

where the vector 1~D consists of the out-of-plane displacement amplitudes 

),,( 111 yxw ϕϕ for each nodal line, and 1~K is the stiffness matrix whose coefficients 

include trigonometric and hyperbolic functions involving longitudinal force xN . It is 
realized that the application of exact method for buckling of structures has resulted 
in a transcendental eigenvalue problem in the form of Equation (25) as distinct from 
equation 0)( =~D~K-~K GN which is encountered when approximate methods such as 

S-e FSM are used. In earlier publications by the authors [15-18], the Wittrick-
Williams (W-W) algorithm is implemented in order to calculate the number of 
eigenvalues exceeded by any trial value of subjected force. However, this algorithm 
has been developed for analysing the plates and plate structures based on the 
classical plate theory while in the present study the first order shear deformation 
plate theory is applied. Thus, in order to resolve this problem the intervals which are 
found based on the CPT in Reference [18] have been updated. This is achieved by 
the knowledge that a thicker plate has a lower buckling coefficient. Thus, the given 
intervals in the case of CPT are altered until the determinants of the stiffness matrix 
for lower and upper ends of the interval become opposite in sign. This ensures that 
the updated interval consists of one eigenvalue for the thick plate. 
In this paper, Bisection method [15-18] is selected as an iterative computational 
procedure to find the eigenvalues and eigenvectors.  
 
2.3 Post-buckling analysis 
  
Having obtained an exact shape of buckling deflection form, the analysis of post-
buckling behaviour has proceeded on the assumption that the deflected form in the 
immediate post-buckling range is identical to that at the buckling, with only the 
deflection magnitudes varying. Thus, the post-buckling out-of-plane deflection 
function , the rotation of a transverse normal about the axis y  and the 
rotation of a transvers normal about the axis x  can be written as  

(26), , ,     , , , , ,  
where ,  and  are the deflection and rotation coefficients. The in-plane boundary 
conditions at loaded ends of the strip are summarized as follows: 

(27)0      0 , 0 0 
By adopting the semi-energy post-buckling procedure in the manner described in 
Reference [17], the out-of-plane displacement  is then substituted in the Von-
Karman’s compatibility equation (Equation(9b)) in order to find the corresponding 
in-plane displacement functions. It must be noted that since the only function that is 
used in the Von-Karman’s compatibility equation is  according to Equation (9b), 
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so the solution method of the equation will be the same as the method based on the 
CPT applied in Reference[17], but the only difference is in the form of the particular 
integral solution of the equation that is resulted from difference in deflection mode 
shape . The in-plane displacement functions are found as follows: 

(28)
 
(29)

, sin 2  
 

, cos 2 | |  
where 

(30)

4 4 2  

4
16 4  

1
8 4 2  

and function  can be found from the following equation: 
 

(31)8 16  
 

It is noted that the first term on the right-hand side of Equation (28) represents the 
prescribed uniform end-shortening strain. The amplitude of the second term, whilst 
divided by  and evaluated at 0 and  (i.e. | ; | ), represents the 
post-buckling in-plane displacement parameters  and , respectively (see 
Figure 1). The first term on the right-hand side of Equation (29) describes the 
transverse in-plane expansion of the strip, which occurs due to Poisson’s ratio effect. 
The second term describes the transvers in-plane movement of the longitudinal 
fibers of the strip. This movement, which is constant along the length of a given 
fiber, varies from a minimum value of zero at edge 0 to its maximum value at 
edge . The third term describes the in-plane waviness of the longitudinal 
fibers. The amplitude of this term, whilst divided by  and evaluated at 0 and 

 (i.e. | ;  | ), represents the post-buckling in-plane displacement 
parameters  and , respectively (see Figure 1). Finally, the fourth term and the 
fifth term on the right-hand side of Equation (29) represent values which remain 
constant at all points on a given strip. It is also noted that the post-buckling in-plane 
displacements are a function of out-of plane buckling deflection mode (which is a 
function of critical longitudinal stress) and deflection coefficient . 
Having obtained the in-plane displacements, the in-plane shear force and in-plane 
transverse force can be calculated from Equation (11). The outcome can be re-
arranged to obtain the following set of linear simultaneous equations for the strip, 
which are designated as the strip stiffness equations: 

(32)2222 ~~~~
fdkp +=  

where 

(33){ } { }2 2 2 2 2 2 2 2,
T T

i i j j xi yi xj yju u P P P Pυ υ= =2 2~ ~
d p  

2~f consists of terms which correspond to the particular out-of-plane displacement 
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parameters (buckling displacement amplitudes ),,( 111 yxw ϕϕ ), and 2~k consists of 

terms which correspond to the in-plane displacement parameters (i.e. , ) which 
is the stiffness matrix of the strip. Having developed the stiffness equations for each 
strip, the overall stiffness equations corresponding to the whole strips are formed by 
following the conventional finite element assembly procedure, and noting that the 
plate is not subjected to any external force, thus 2~

p vectors vanish during assembly 

process. The overall stiffness equations are 
(34)222 ~~~ FDK =  

where matrices 22 ~~ DK , and 2~F are assembled from their counterparts for each 

strip. Once Equation (35) is solved and post-buckling in-plane displacement 
parameters are obtained, they are then substituted into Equations (28) and (29) to 
determine the analytical form of  and  for each strip, respectively. It is noted the 
obtained  and  and the assumed ,  and  are determined in terms of the 
deflection and rotations coefficients ,  and , which will be calculated below. 

 
2.4 Deflection and rotations coefficient ( ,  and ) calculation 
 
For a prescribed uniform end-shortening strain , the total strain energy of the plate 

∑  is simply equal to its total potential energy. By substituting Equations 
(26), (28) and (29) into Equations (2) and (7), and then by substituting the outcome 
into Equation (8) the strain energy of a single strip  is obtained. The summation of 
the strip strain energies gives the total strain energy of the plate as follows: 
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In Equations (36) the summation relates to all strips. All the integrations in above 
equation are determined analytically to determine the constants. It is worth to be 
emphasized that the whole constants are evaluated once. It is noted that the 
deflection and rotations coefficients are the only unknowns in the energy expression. 
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The strain energy is then minimized by differentiating U with respect to ,  and . 
This gives 

(37)
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It is noted that in Equation (38) , 0δ === μξ is a trivial equilibrium path, and thus 
the branched equilibrium path is obtained 

(38)
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The longitudinal mid-plane stress  can be obtained as the following equation: 
(39)

4 2 cos 2  
The longitudinal force/load acting on a strip is determined by integrating the 
longitudinal mid-plane stresses  over the strip cross-sectional area. The total 
longitudinal force/load acting on a plate at a given cross-section along the plate 
length, corresponding to a prescribed end-shortening strain, is obtained by 
summation of all strip forces at the same cross-section, i.e. 

(40)
4 2 cos 2  

 

By substituting the deflection coefficient from Equation (38) into Equation (40) and 
simplifying the result 

(41)
8 2 cos 2  
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It is obvious that the  relationship in the post-buckling region is a linear 
function which is tangent to the actual post-buckling curve at the buckling point. 
The slope of this line, which is post-buckling stiffness , can be obtained by 
differentiating Equation (41) with respect to . The effective pre-buckling stiffness  
can be obtained by letting 0 in Equation (40) and differentiating the equation 
with respect to . Therefore, the relative post-buckling stiffness defined as the ratio 
of the post-buckling stiffness to the pre-buckling stiffness can be calculated from 
equation (42) in a very straightforward manner 



12 

(42)1 8 ∑ 2 cos 2  

where∑  is the cross-sectional area of the plate. 
 
 
3  Results and discussions 
 
This section presents a number of numerical examples showing the excellent 
performance of the proposed algorithm, which was implemented in a Maple 11 
program. It is noted that the program is run on a standard Core 2 Dou 2.40 GHz PC. 
The results of the developed F-a FSM based on the FSDT in buckling phase as well 
as post-buckling region are compared with those of F-a FSM based on the CPT 
which are carried out by first two authors of this paper [18].  
In order to investigate the verification of the proposed method, some representative 
plates with various boundary conditions are considered and each plate is divided into 
two, four, ten and fifty strips of equal length giving four cases for consideration. The 
investigation of the results has revealed that the critical buckling load, the relative 
stiffness values and the post-buckling results are identical among the four cases as 
expected. Thus, each plate can be accurately modelled by only one strip to it. It may 
be noted that the Poisson’s ratio  is assumed to be equal to 0.3 for the entirety of 
this paper and in the whole examples it is assumed that the plate buckles with one 
half-length wave along the x direction. 
 
3.1 Buckling results 
 
In presenting the results the non-dimensional plate buckling coefficient is introduced 
as 2 2

xk N b Dπ= . Table 1 represents the numerical values of buckling coefficient 
obtained by the developed method (F-a FSM based on the FSDT) for various plate 
thicknesses, as well as the F-a FSM based on the CPT [18]. Out-of-plane boundary 
conditions and the aspect ratio ( / ) of the plates under consideration are also 
represented in this table. 
 

Buckling coefficient(k) 

Case 
Edges 
BCs 

φ 
(L/b) 

L/h 
CPT[18] 

5  10  15  25  50  100 

1 S‐S 1 3.26373 3.78645 3.90219 3.96423 3.99100 3.99775 4.00000 

2 C‐S 1 4.15097 5.22317 5.49591 5.64912 5.71704 5.73438 5.74021 

3 C‐F 2 0.91992 1.17042 1.24414 1.29193 1.31868 1.32859 1.33598 

S, C and F denote simply‐supported, clamped and free respectively. 
 

Table 1. The minimum plate buckling coefficient obtained by the developed method  
 
 The table shows that in each case as the thickness of the plate decreases, the 
buckling coefficient converges to that obtained by using the CPT. For example in 
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the case 1 the buckling coefficient value converges to the well-known buckling 
coefficient value of 4.0 for classic plates.  
Figure 2 is made from the data of case 1 in Table 1.This results show that the 
classical plate theory (CPT) loses its validity as the length to thickness ratio 
decreases. 
 

 
Figure 2. Buckling coefficients for a square 

simply supported plate. 
Figure 3. Out-of-plane deflection modes for 

various thicknesses for a C-F plate. 
 
Finally, the buckling mode shapes for a C-F plate (case 3 in Table 1) are depicted in 
Figure 3. As it is seen in the figure, for thin plates there is a very good agreement 
between the mode shapes obtained by both F-a FSM, based on either the FSDT or 
CPT. 
 
 
3.2 Relative stiffness and initial post-buckling behaviour 
 
Table 2 represents the numerical values of the relative stiffness (i.e., the /  at the 
instant of buckling) for various plates with various out-of-plane boundary 
conditions. The transverse in-plane displacement is allowed at the edges of the plate. 
The presented values consist of those derived from the developed F-a FSM analysis 
based on FSDT and those presented in Reference [18], which have been calculated 
by implementing the F-a FSM based on CPT. The numerical values of the relative 
stiffness obtained by the developed F-a FSM analysis are exact because the 
deflected form in the immediate post-buckling range is identical to that at the 
buckling.  
 
 

Relative Stiffness(S*/S) 

Case 

Unloaded 
edges  φ 

(L/b) 
CPT[18] 

L/h 

BCs  200  100  50  25  15  10  5 

1 S‐S 1 0.408336 0.408336 0.408336 0.408336 0.408336 0.408336 0.408336 0.408336 

2 C‐S 1 0.494057 0.494025 0.493930 0.493554 0.492090 0.488819 0.483066 0.461289 

3 C‐F 2 0.556664 0.556963 0.557167 0.557298 0.556495 0.553410 0.546843 0.516499 

 

Table 2.The plate relative stiffness obtained by the developed method  
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The table shows that as the thickness decreases, the values of relative stiffness 
obtained by F-a FSM based on FSDT converge to those values from F-a FSM based 
on CPT. It can be seen that the relative stiffness for a S-S plate does not change as 
the thickness changes.  
The initial post-buckling behaviour for a C-F plate is shown in Figure 4. 
 

Figure 5 shows the out-of-plane deflection of the preceding plate with 200/ =hL
when it is subjected to a load CrPP 5.1= . As depicted in the figure the current FSDT 
deflection variation, which is effectively obtained based on a single mode of 
buckling, is similar to that obtained by CPT single-mode F-a FSM.  
 
 
4  Conclusion 
 
Theoretical developments of an exact finite strip for the buckling and initial post-
buckling of moderately thick plates have been presented. Each plate has been 
modelled by assigning the developed exact strip across its width. The transcendental 
overall stiffness matrix for the whole plate has been obtained by assembling the 
individual strip stiffness. The presented buckling results have indicated the 
capability of the developed F-a FSM analysis based on the FSDT in terms of 
delivering exact results at the buckling point. The values of the relative post-
buckling stiffness obtained by the developed F-a FSM analysis are also extremely 
accurate at the buckling point because the exact buckling mode shape and 
corresponding buckling coefficient are used in the post-buckling analysis. Having 
compared the F-a FSM results with those from S-a FSM inside the post-buckling 
range, a small difference between the results is experienced. This has been due to the 
fact that the current F-a FSM analysis utilizes only a single mode to represent the 
out-of-plane deflection of the plates in the post-buckling region. However, for a 
given degree of accuracy in the results, the F-a FSM analysis requires less 
computational effort, as a consequence of implementing less degrees of freedom, 
compared to the S-a FSM. Finally, it is worth mentioning that the promising results 
obtained in the current paper have made the authors to extend the formulation of 

Figure 4. Load-end shortening plot for a 
C-F isotropic plate 

 

      Figure 5. Out-of-plane deflection for a 
thin C-F plate. 
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single-term F-a FSM to the multi term F-a FSM. Some interesting results have 
already been obtained which will be published once the investigation is complete. 
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