
Abstract

This paper is devoted to comparing two numerical approaches for modelling the dy-

namic behaviour of masonry structures. It presents the constitutive equation of masonry-

like materials with bounded compressive strength and addresses the dynamic prob-

lem for both three-dimensional bodies and one-dimensional structures. The numerical

methods implemented in the codes NOSA-ITACA and MADY, respectively for three-

and one-dimensional structures, are outlined. With the aim of comparing the two nu-

merical procedures, a masonry tower with rectangular cross-section is analised. The

structure is subjected to its own weight and an accelerogram recorded during a real

earthquake. This comparison has emphasised the importance of employing accurate

constitutive models when analysing masonry structures.

Keywords: masonry-like materials, nonlinear dynamics, masonry towers, numerical

methods.

1 Introduction

Numerical tools for modelling masonry buildings subjected to time-dependent loads

have a proven, important role in assessing the seismic vulnerability of historical con-

structions. The two main aspects that need to be addressed in studying the dynamic

behaviour of masonry structures are the choice of the constitutive equation for ma-

sonry materials, whose mechanical properties depend heavily on its constituent el-

ements and the building techniques used, and the formulation of suitable numerical

techniques for integrating the equations of motion.

Constitutive equations for masonry materials range from linear elastic models aim-

ing to provide qualitative information on the behaviour of masonry structures [1], [2],

[3] to elastic-plastic models directed at taking into account the strong nonlinearities
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of such structures’ dynamic response [4]-[9]. The constitutive equation for masonry

materials proposed in [10] and [11] models masonry as a nonlinear elastic material

with zero tensile strength and infinite compressive strength. This constitutive equa-

tion, which is known as the masonry-like (or no-tension) model, has been generalized

in order to take into account the bounded compressive strength of masonry materi-

als [12]. The equation has subsequently been implemented in the finite element code

NOSA [12], developed at the Institute of Information Science and Technologies ”A.

Faedo” (ISTI-CNR) and successfully applied to the static analysis of several historical

masonry buildings, and more recently to the dynamic analysis of masonry beams and

towers [13], [14].

As far as numerical solution of dynamic problems is concerned, the NOSA code

applies the Newmark method to integrate with respect to time the system of ordinary

differential equations obtained by discretising the structure into finite elements [15],

[13].

The research and development activities of ISTI-CNR are continuing within the

framework of the NOSA-ITACA project [16], [17]. The project, conducted in collab-

oration with the Department for Constructions and Restoration (DICR) of the Univer-

sity of Florence and funded by the Region of Tuscany, aims to develop a new tool,

the NOSA-ITACA code, stemming from integration of NOSA and the open-source

graphical user interface platform SALOME [18]. An application of NOSA-ITACA to

the “Rognosa” tower in San Gimignano has been presented in [16] and [19], where

the tower’s mechanical response to seismic actions is assessed.

Recent efforts have been directed at developing simplified constitutive models for

masonry structures by representing them through one-dimensional elements. Such

efforts have given rise to a nonlinear constitutive equation for beams, in which the

generalized stress (normal force and bending moment) is a function of the generalized

strain (extensional strain and curvature change of the beam’s longitudinal axis) [20].

This constitutive model is based on the assumption that the material does not withstand

tensile stresses in the longitudinal direction. Variants of the model take into account

cases of unbounded as well as bounded compressive strength. The model has been

extended to deal with both solid and hollow rectangular cross-sections in order to

study masonry arches and freestanding towers [21], [22]. The resulting constitutive

equation has been implemented in the numerical code MADY, developed at DICR to

perform nonlinear dynamic analyses of slender masonry structures.

The present paper is devoted to comparing the models implemented in the two finite

element codes NOSA-ITACA and MADY, which are applied to the dynamic problem

of a masonry tower with hollow rectangular cross-section subjected to its own weight

and an accelerogram recorded during a real earthquake. The solutions obtained via the

two different models are compared in order to highlight the similarities and differences

between the numerical procedures proposed.
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2 Numerical modelling

In this section the constitutive equation of masonry-like materials with bounded com-

pressive strength is recalled and the equations governing the motion of masonry struc-

tures together with the numerical techniques for their approximate solution are pre-

sented. The cases of three-dimensional bodies and one-dimensional structures are

dealt with separately.

2.1 Three-dimensional bodies

The constitutive equation of masonry-like materials is based on three assumptions:

infinitesimal elasticity, zero tensile strength and a normality postulate. For a more

detailed treatment of this subject, refer to [10]-[12]. Herein, we recall some funda-

mental results on the constitutive equations of masonry-like materials with bounded

compressive strength introduced in [12].

Let Sym be the vector space of symmetric tensors equipped with the inner product

A · B = tr(AB), A,B ∈Sym, with tr the trace. We denote by Sym+ and Sym−

the convex cones of Sym constituted by the positive and negative semidefinite tensors,

respectively.

Let C be an isotropic fourth-order tensor called the elasticity tensor of the material,

C = E
1+ν

(
I + ν

1−2ν
I ⊗ I

)
,with I the fourth-order identity tensor, I the identity of Sym

and ⊗ the tensor product defined by I⊗ I[A] = tr(A)I, for each A ∈Sym. Quantities

E and ν are respectively the Young’s modulus and the Poisson’s ratio of the material,

satisfying the inequalities E > 0, 0 ≤ ν < 1

2
. Moreover, we denote by σ0 < 0

the maximum compressive stress of the material and define the closed convex set of

Sym, K = {A ∈ Sym | A ∈Sym−, A − σ0I ∈Sym+}. A masonry-like material with

bounded compressive strength is completely determined by the fourth-order tensor C

and set K. In fact, it is possible to prove that if E ∈Sym, there exists a unique triplet

(T, Ee, Ea) of elements of Sym such that [23],

E = Ee + Ea,
T = C[Ee],

T ∈ K,
(T − S) · Ea ≥ 0 for each S ∈ K.





(1)

The stress function T̂ is defined by T̂(E) = T and tensors E, T, Ee and Ea are

coaxial. Let
√

(Ea)2 denote the square root of the tensor (Ea)2 ∈Sym+ [24]. The

positive semidefinite part

Ef =
1

2
(Ea +

√
(Ea)2), (2)

and negative semidefinite part

Ec =
1

2
(Ea −

√
(Ea)2), (3)
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of Ea satisfy the relations [25]

T · Ef = 0, (T − σ0I) · E
c = 0, (4)

and are called fracture strain and crushing strain, respectively. The material defined

by constitutive equation (1) is hyperelastic [12], [23], with strain energy density

ψ(E) =
1

2
Ee · C[Ee] + T · Ea, E ∈ Sym. (5)

Both T̂ and its derivativeDET̂(E) with respect to E have been explicitly calculated in

[12] for three and two-dimensional cases. Here we recall how the constitutive equation

(1) can be applied to the study of masonry shell structures, such as vaults, domes etc.,

dealt with in [12]. Consider the shell element of thickness h shown in Figure 1. Let

η1 and η2 be an orthogonal coordinate system defined on the mean surface Σ, with

ζ ∈ [−h/2, h/2] as the coordinate in the normal direction n. We denote by g1 and

g2 the unit tangent vectors to the η1 and η2 axis, respectively. The structure can be

considered to be made up of the layers

Σζ = {p′ = p + ζn, p ∈ Σ, n = n(p)}, ζ ∈ [−h/2, h/2], (6)

and we assume that for each p′ ∈ Σζ , T satisfies the condition

T(p, ζ)n(p) = 0. (7)

We indicate with the same symbols the restrictions of E, T, Ef and Ec to the two-

dimensional linear space generated by g1 and g2. The explicit solution to constitutive

equation (1) with T satisfying (7) and the derivative of T with respect to E are given

in [12]. In [13] a numerical procedure is proposed with the aim of solving the dy-

namic problem of masonry structures via the finite-element method. This numerical

procedure is now implemented in the NOSA-ITACA code, which performs the inte-

gration with respect to time of the system of ordinary differential equations obtained

by discretising the structure into finite elements. At each time step, a system of the

type

K(ut) ∆u+ C ∆
·

u+ M̃ ∆
··

u = ∆f, (8)

is solved by applying the Newmark method [15]. In (8) ut is the nodal displacement at

time t, ∆f is the load increment, ∆u, ∆
·

u ∆
··

u are respectively the incremental nodal

displacement, velocity and acceleration, and K, C and M̃ are the stiffness, damping

and mass matrices of the structure. According to the Rayleigh assumption in [15], C

takes the form C = αM̃ + βK. Constants α and β are to be determined from the

vibration frequencies of the structure considered as linear elastic and from the cor-

responding damping ratios. The solution to the nonlinear algebraic system obtained

from (8) via the Newmark method is then calculated using the Newton-Raphson algo-

rithm.
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2.2 One-dimensional structures

Recent efforts have been directed at developing a simplified constitutive model for

one-dimensional structures. This constitutive equation, applied at first to static prob-

lems [20], has been used for nonlinear dynamic analyses of slender masonry structures

with simple geometries and flexural behaviour [22]. Specifically, the model, initially

formulated for masonry columns, has been developed using the constitutive equation

for rectangular cross-section beams, under the assumption that the material has zero

tensile strength in the longitudinal direction. Variants to the model [20], [21] more-

over take into account both unbounded and bounded compressive strength and in [22]

the case of hollow, rectangular cross-section beams is dealt with.

The numerical method method proposed in [22] has been implemented into a finite

element code, named MADY, which allows for performing nonlinear dynamic analy-

ses of the aforementioned structures under very general load and boundary conditions,

as well as in the presence of horizontal and vertical seismic excitations.

In the following, we outline the constitutive equation for hollow, rectangular cross-

section beams (Figure 2) with bounded compressive strength [22] and we recall the

algorithm for solving the coupled transverse and longitudinal vibrations problem.

Here we make the classical Euler-Bernoulli assumption and consider axial stresses

alone. Thus, the constitutive equation of the beam can be formulated in terms of

generalized stress and strain: the strain state is described by the extensional strain ε
and the curvature change κ of the longitudinal axis, and the stress state is represented

by axial force N and bending moment M . The material is assumed to be nonlinear

elastic with zero tensile strength and maximum compressive stress σ0.

With the aim of determining the relation between generalized stress and generalized

strain, we firstly note that each longitudinal fiber y = y, with −h/2 ≤ y ≤ h/2,
undergoes the axial stress

σ(y) =





σ0 if ε(y) ≤ ε0,
Eε(y) if ε0 ≤ ε(y) ≤ 0,
0 if ε(y) > 0,

(9)

where, in view of the Euler-Bernoulli hypothesis, ε(y) = ε + yκ, ε0 is the strain

corresponding to σ0 and E is the Young’s modulus. Let us consider the neutral axis

having equation y = yn, where yn satisfies the condition

ε+ ynκ = 0, (10)

and the axis with equation y = ys, where the stress reaches its limit value σ0, with ys

satisfying the condition

ε+ ysκ = ε0. (11)

From (10) and (11), we get

yn = −
ε

κ
, ys =

ε0 − ε

κ
. (12)
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Figure 1: The shell element.

Depending on yn and ys, the plane (ε, κ) is divided into thirteen regions Ei, i =
1 . . . 13, for each of which we have a different stress pattern, as shown in Figure 3. An

explicit expression of N and M as functions of ε and κ

N = N̄(ε, κ), M = M̄(ε, κ) (13)

in each region Ei can be found in [22].

The equations of transverse and axial vibrations of a beam, which include the axial

force effects are [26]

ρ
∂2v

∂t2
+

∂

∂z

(
∂M

∂z
+N

∂v

∂z

)
− q = 0, (14)

ρ
∂2u

∂t2
−
∂N

∂z
− p = 0, (15)

where z denotes the abscissa along the beam’s axis and t the time. M(z, t), N(z, t),
u(z, t) and v(z, t) are the bending moment, axial force, longitudinal and transverse

displacements, respectively; p(z, t) and q(z, t) are the axial and transverse distributed

loads, and ρ the mass per unit length. The dynamic problem of the beam is governed

by the equations (14) and (15) together with the strain-displacement relations

ε =
∂u

∂z
, κ =

∂2v

∂z2
, (16)

and the constitutive relations (13), which are solved numerically via the MADY code.

The beam is discretized into finite elements and each node has three degrees of free-

dom: axial and transverse displacement plus rotation. The flexural problem is ad-

dressed by using Hermite shape functions, which guarantee the continuity of both the

transverse displacement and rotation, while linear shape functions are adopted for the

axial displacement. Moreover, the Newmark and the Newton-Raphson methods are

used to obtain the numerical solution. Lastly, the effects of viscous damping are taken

into account by means of a constant damping matrix C, as in subsection 2.1. Greater

details on the numerical procedure implemented in MADY are given in [22].
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Figure 2: The beam section.

3 An application: the masonry tower

This section illustrates application of the models described in subsections 2.1 and 2.2

to the case of a slender tower with constant cross-section subjected to both its own

weight and an accelerogram recorded during a real earthquake. By referring to some

of the typical characteristics of ancient, free-standing towers in Italy, for the analysis

we have chosen a tower with a square cross-section, 45 m in height and 6 m in width,

with walls of constant 1.6 m thickness. We have assumed E = 3000 MPa for the

Young’s modulus, ρ = 1900 kg/m3 for the mass density and σ0 = −1.7 MPa for the

maximum compressive stress. The first two flexural periods of the structure in the

linear elastic range are T1 = 1.507 s and T2 = 0.240 s, and the Rayleigh damping

coefficients α and β, evaluated by assuming a damping ratio γ = 0.02 over the two

flexural modes T1 and T2, according to the formulae [26],

α = 4πγ/(T1 + T2), β = T1T2γ/[π(T1 + T2)],

are α = 0.14383805 s−1and β = 0.00132001 s.

The structure is subjected to the horizontal component of the 1997 Nocera Umbra

earthquake, whose accelerogram is reported in Figure 4, applied along the x direction;

it had a duration of 41.30 s and a maximum acceleration (PGA) of 4.3192 m/s2. The

tower has been analyzed with NOSA-ITACA, using 1080 shell elements (see Figure

5, where the faces are numbered from 1 to 4 and some critical points are labelled)

and with MADY, using 90 one-dimensional elements. The time step is 10−2 s for

both NOSA-ITACA and MADY. Two analyses have been performed, considering a

masonry-like material with constitutive equation (1), in the case of NOSA-ITACA,

and constitutive equation of masonry beams (13), in the case of MADY.
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Figure 3: Patterns of stress σ in the beam cross–section.

Figure 4: Accelerogram of the Nocera Umbra earthquake, 1997.
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Figure 6 shows the behaviour of the relative displacement ux of the top of the

tower (point A in Figure 5) in the x−direction, obtained with NOSA-ITACA (black

line) and MADY (red line). In Figure 7 the maximum U(z) of the modulus of ux in

the cross section over the interval t ∈ [0, 41.3], is plotted as function of the height

z. Although Figure 6 shows some discrepancies between the displacements time-

histories calculated via the two codes, the maximum absolute values along the tower’s

height are substantially coincident and clearly highlight the amplification effects of

the dynamic forces in the highest part of the structure.

As for the fracture and crushing strains distributions calculated with MADY, some

global parameters can be plotted to describe the damage to the structure: Figure 8

shows the ratio FV /TV , between the volume FV of the cracked portion and the total

volume TV of the tower, as function of time. Figure 9 shows instead the quantity

CV /TV vs. t, with CV the volume of the crushed regions.

The results of the NOSA-ITACA code are summarized in Figures from 10 to 14.

For g1 and g2, respectively the unit vectors of the horizontal tangential axis and z-axis

(Figure 5), the components of the fracture strain Ef with respect to g1 and g2 are

Ef
11=g1 · E

fg1, Ef
22=g2 · E

fg2 and Ef
12=g1 · E

fg2.

An analysis of the component Ef
22 in the whole structure as function of time allows

for concluding that Ef
22 reaches its maximum values on sides 2 and 4. The component

Ef
22 of the fracture strain tensor measures the tendency of the structure to exhibit

horizontal cracks in a certain region. Figures 10 and 11 show damage concentrated in

the highest part of the structure, with a peak for z = 36 m. Although both referring

to the Ef
22 component, Figures 8 and 10 are not directly comparable, as the former

regards a global parameter, while the latter refers to local strains. In any event, both

figures show that the crack damage time-history is distributed mainly between 2 and

6 s. The three-dimensional model also enables detecting the emergence of vertical

cracks, marked by the Ef
11 component of the crack strain tensor. Figure 12 shows

the component Ef
11 at different heights of the tower, along side 3 of the tower: the

maximum damage appears at a height of 27 m, about two thirds along the tower’s

height. It can also be noted (see Figures 11 and 12) that the order of magnitude of the

Ef
11 crack component is greater than that of the Ef

22 component. As far as the crushing

damage is concerned, as expected, it turns out to be concentrated at the tower’s base.

Figure 13 shows the component Ec
22 of the crushing strain tensor vs. time, calculated

at points B (at the base, in the middle of side 2) and C (at the base, corner between

sides 2 and 3). Both the time-histories shown in Figures 9 and 13 highlight some

damage peaks concentrated within very short time intervals. Finally, Figure 14 shows

the values of T22=g2 · Tg2 at the base of the tower (point B) vs. time calculated by

NOSA–ITACA and MADY codes.
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Figure 5: The masonry tower: finite element mesh.

Figure 6: Relative x− displacement ux of point A vs. t.

10



Figure 7: Maximum U of | ux | at z = 9 m, z = 18 m, z = 27 m, z = 36 m and

z = 45 m.

Figure 8: Plot of FV/TV vs. t (MADY).
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Figure 9: Plot of CV/TV vs. t (MADY).

Figure 10: Ef
22 values on side 2 at t = 3.99 s, t = 4.24 s and t = 4.49 s (NOSA–

ITACA).
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Figure 11: Ef
22 vs. t at different levels of the tower (NOSA–ITACA).

Figure 12: Ef
11 vs. t at different levels of the tower (NOSA–ITACA).

Figure 13: Values of Ec
22 vs. t at the tower’s base at points B (blue) and C (pink)

(NOSA–ITACA).
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Figure 14: Values of T22 vs. t, calculated at the base of the tower.

4 Conclusions

This paper has presented two constitutive equations for three– and one–dimensional

masonry structures. These constitutive equations view masonry as a nonlinear elastic

materials with zero tensile strength and bounded compressive strength. These models,

implemented in the finite-element codes NOSA–ITACA and MADY, enable investi-

gating the dynamic behaviour of masonry structures. Here, in particular, they have

been applied to the study of a masonry tower subjected to its own weight and a hor-

izontal acceleration recorded during a real earthquake. By comparing the numerical

solutions obtained via application of NOSA-ITACA and MADY, the consistencies and

divergences between the two different approaches have been highlighted.

In particular, diplacements calculated by the two codes have turned out to be in

good agreement. Different behaviours have been highlighted, instead, for the crack

distribution: in fact, the MADY code takes into account only the flexural behaviour

of the structure, while the results obtained using the NOSA–ITACA code, as a con-

sequence of the three–dimensionality of the model, are also able to show the arise of

vertical cracks.

Although these methods seem to capture many of the important dynamic properties

of such structures quite well, they neglect other aspects, for example, those related

to the irreversibility of the damage process, an aspect requiring further research and

analysis.
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