
Abstract

Current random vibration methods provide efficient solutions for the second moment

properties of the states of arbitrary linear systems subjected to random noise. For

Gaussian noise, these properties define completely the state probability law. The

random vibration methods can also be used to find the distribution of the states of

simple linear systems under non-Gaussian noise and simple nonlinear systems under

Gaussian/non-Gaussian noise.

Monte Carlo simulation is the only general method for finding the probability laws

for the states of arbitrary linear or nonlinear dynamic systems subjected to Gaussian or

non-Gaussian noise. Computational effort, that can be significant when dealing with

realistic systems, is the essential limitation of Monte Carlo simulation.

A novel method is proposed for analyzing arbitrary linear or nonlinear dynamic

systems driven by Gaussian or non-Gaussian noise. The method is based on stochastic

reduced order models (SROMs), that is, stochastic processes that have finite number

of samples. The proposed method is non-intrusive in the sense that its implementa-

tion involves solutions of deterministic versions of random vibration problems corre-

sponding the samples of SROMs describing the inputs to these problems. Numerical

examples are presented to illustrate the implementation and performance of the pro-

posed method. It is also shown that for linear systems with non-Gaussian input Itô’s

calculus can be used to obtain efficient and accurate solutions.

Keywords: Gaussian noise, linear systems, Monte Carlo simulation, non-Gaussian

noise, nonlinear systems, random vibration, stochastic reduced order models.
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1 Introduction

Uncertainty is an inherent feature of properties of physical systems and inputs to these

systems. The states of most dynamic systems are random functions of time and/or

space that satisfy equations with random entries, referred to as stochastic equations.

The solution of stochastic equations poses notable technical difficulties that are fre-

quently circumvented in applications by heuristic assumptions. The random vibra-

tion theory, that is used extensively to analyze dynamic systems subjected to random

noise, assume that (1) system properties are deterministic and perfectly known and

(2) driving noise is Gaussian, although these assumptions are rarely satisfied in ap-

plications. For example, the distribution of the pressure field acting on a spacecraft

during atmospheric re-entry differs significantly from the Gaussian distribution and,

in this extreme environment, the spacecraft mechanical properties are uncertain. The

reliability of this spacecraft cannot be obtained within the framework of the random

vibration theory [1].

It is not possible to relax the assumptions of the random vibration theory and re-

tain its conceptually simple framework since some developments in this theory use

mathematical objects that are not defined. For example, calculations in random vi-

bration yielding mean and covariance equations for the state of a linear system are

formal since they view white noise as a process with constant spectral density, that

is, a process with infinite variance that is not defined in the second moment sense [2]

(Section 7.2). Alternative methods need to be developed to analyze dynamic systems

in a non-Gaussian environment.

The objective of this investigation is the development of accurate, efficient, and

rigorous methods for analyzing linear and nonlinear dynamic systems subjected to

non-Gaussian noise. The development of these methods requires novel approaches

that involve (1) elements of stochastic calculus, for example, Itô integrals, semimartin-

gales, stochastic differential equations, and (2) new representations for stochastic pro-

cesses, for example, stochastic reduced order models (SROMs) that, in contrast to

Karhunen-Loéve expansions that can only describe the first two moments of stochas-

tic processes, can capture the probability law of these processes. The methods provide

full probabilistic characterization for the states of dynamic systems in non-Gaussian

environments, so that they can be used to solve a broad range of practical problems,

for example, optimal design for dynamic systems under reliability constraints.

2 Linear systems

Let X(t) be the state of the dynamic system, that is, a real-valued stochastic process

defined by the stochastic differential equation

Ẋ(t) = −ρX(t) + Z(t) (1)

driven by the non-Gaussian process

Z(t) = Y (t)2, (2)
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where ρ > 0, Y (t) is a real-valued stationary Gaussian process with E[Y (t)] = 0,

E[Y (t + u) Y (t)] = exp(−α |u|), and α > 0. The linear random vibration the-

ory can only delivered the first two moments of X(t) so that, since X(t) is a non-

Gaussian process, its probability law is not known. This is a significant limitation

since system performance cannot be assessed, for example, the probability pf (τ) =
P (max0≤t≤τ X(t) > a) that the system state exceeds a critical threshold a > 0 in a

time interval [0, τ ].

Alternative methods are needed to find the probability law of X(t). Samples of

X(t) obtained by Monte Carlo simulation can be used to infer the probability law of

this process. However, this method can be computationally inefficient when dealing

with realistic systems. Two classes of methods are proposed for analyzing dynamic

systems, methods based on Itô’s calculus and methods based on stochastic reduced

order models (SROMs). The first class of methods is useful for linear systems while

SROM-based methods work for both linear and nonlinear systems. We use stochastic

calculus to find state properties for linear systems in non-Gaussian environment. The

implementation of SROM-based is demonstrated for nonlinear systems.

2.1 Stochastic calculus

Concepts of stochastic differential equations and approximate representations for sto-

chastic processes are used to construct approximations for the probability law of X(t).
Since Y (t) can be viewed as the output of the linear filter

dY (t) = −α Y (t) dt + (2 α)1/2 dB(t) (3)

driven by a Brownian motion B(t), the augmented state vector (X,Y ) is a bivariate

diffusion process satisfying the stochastic differential equation

{

dX(t) = −ρX(t) dt + Y (t)2 dt
dY (t) = −α Y (t) dt + (2 α)1/2 dB(t).

(4)

Let p, q ≥ 0 be arbitrary integers. Itô’s formula for continuous semimartingales [2]

(Section 4.6.2) applied to mapping (X(t), Y (t)) 7→ X(t)p Y (t)q gives

µ̇(p, q; t) = −p ρ µ(p, q; t)+p µ(p−1, q+2; t)−q α µ(p, q; t)+q (q−1) µ(p, q−2; t)
(5)

by expectation, where µ(p, q; t) = E[X(t)p Y (t)q] and µ(u, v; t) = 0 if u < 0 and/or

v < 0. This sequence of moment equations is closed, so that moments of any order of

(X,Y ) can be calculated exactly.

To achieve the objective of finding the probability pf (τ), state properties provided

by Itô’s calculus can be used to construct an approximation for the probability law of

X(t). The construction may involve two steps. First, an approximation F̃ needs to be

developed for the marginal distribution F of X(t). Second, a translation model XT (t)
needs to be constructed for X(t) based on its covariance function and F̃ .
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Various techniques can be employed to construct F̃ . For example, F̃ can be (1) ap-

proximated by the piece-wise constant distribution function

F̃ (x) =
m

∑

k=1

pk 1(xk ≤ x) (6)

with probability mass {pk} at {xk}, k = 1, . . . ,m, such that
∑m

k=1
xr

k pi = µ(r),
r = 1, . . . , n = 2 m, [3] (Section II.8), (2) required to maximize the Shannon entropy

−

∫

f̃(x) ln
(

f̃(x)
)

dx (7)

under the constraints
∫

f̃(x) dx = 1 and
∫

xr f̃(x) dx = µ(r), r = 1, . . . , n, where

f̃(x) = dF̃ (x)/dx [4] (Section 2.5.3), or (3) postulated to be a member of the linear

space spanned by a finite collection of specified distributions {Fk(x)}, that is,

F̃ (x) =
m

∑

k=1

pk Fk(x), (8)

where pk ≥ 0 are such that
∑m

k=1
pk = 1. The optimal probabilities {pk} minimize the

discrepancy e(p1, . . . , pm) =
∑r̄

r=1
w(r)

(

µ(r) −
∑m

k=1
pk µk(r)

)2

between moments

µ(r) = E[X(t)r] of X(t) and their approximations µ̃(r) =
∑m

k=1
pk µk(r), µk(r) =

∫

xk dFk(x), under the constraints pk ≥ 0 and
∑m

k=1
pk = 1, where r̄ ≥ 1 is an integer

and w(r) ≥ 0 denotes a weighting function.

Let X̃T (t) = F̃−1 ◦ Φ
(

G(t)
)

be a translation model for X(t) with marginal distri-

bution F̃ , where G(t) is a stationary Gaussian process with mean 0, variance 1, and

covariance function ρ(τ) = E[G(t + τ) G(t)] such that the covariance function of

X̃T (t) is close to that of X(t) ([5], Section 3.1). Algorithms are available for finding

ρ(τ) with this property [6].

The marginal distribution F̃ and the correlation function ρ specify fully the proba-

bility law of X̃T (t), so that this process can be used to calculate pf (τ) approximately.

For a relatively large threshold a, we have

pf (τ) ≃ 1 − exp(ν(a) τ) ≃ 1 − exp(νT (a) τ), (9)

where ν(a) and νT (a) denote the mean a-upcrossing rate of level a of X(t) and XT (a),
respectively, and

νT (a) =
√

ρ2 + 2 ρα exp
[

−
(

Φ−1 ◦ F̃ (a)/2
)]

/(2 π). (10)

Figure 1 shows with solid and dotted lines Monte Carlo estimates for the mean a-

upcrossing rate ν(a) and the mean a-upcrossing rate νT (a) for ρ = 1 and α = 5.

Since ν(a) ≃ νT (a), the probability pf (τ) in Eq. 9 can be approximated by 1 −
exp(−νT (a) τ).

In summary, classical methods of linear random vibration can be used to calculate

second moment properties of X(t), that is, the mean and correlation functions of this
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Figure 1: Monte Carlo estimates of the mean a-upcrossing rates of X(t) (solid line)

and mean a-upcrossing rates of X̃T (t) given by Eq. 10 (dotted line) for ρ = 1 and

α = 5

process. The marginal distribution of X(t) can be obtained from parametric represen-

tations of this distribution and moments of X(t), that can be obtained exactly since

the moment equations are closed. The probability law of X(t) can be approximated

by that of translation models XT (t) matching the second moment properties and the

marginal distribution of X(t).

3 Nonlinear systems

Monte Carlo simulation is the only general method for finding properties of the state

X(t) of an arbitrary nonlinear dynamic system with additive/multiplicative Gaussian

or non-Gaussian input. The main limitation of the method can be the computation time

that is prohibitive for realistic applications. This limitation has promoted the devel-

opment of approximate methods for finding properties of X(t). Current approximate

methods are based on heuristic arguments, for example, equivalent linearization [7, 8]

and classical moment closures [9, 10], or rigorous but rather restrictive conditions, for

example, stochastic averaging [2, 10] and perturbation [2].

Our objective is the development of a practical method for calculating statistics of

the state X(t) of nonlinear dynamic systems in Gaussian and non-Gaussian environ-

ments that are accurate and efficient. The method is based on stochastic reduced order

models (SROMs).

Consider a nonlinear dynamic system subjected to a non-Gaussian input Y (t) that

may or may not have stationary independent increments as, for example, the Brownian

motion, the compound Poisson, and α-stable processes considered in the classical

theory of stochastic differential equations. We propose to represent Y (t) by a simple

stochastic process Ỹ (t), that is, a process with a finite number of samples {ỹk(t)} of

probabilities {pk}, k = 1, . . . ,m, that may not be equal. The samples {ỹk(t)} and

their probabilities {pk} define completely the probability law of Ỹ (t). Optimization
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algorithms have been developed to construct SROMs [11]. Two distinct methods,

referred to as SROM and extended SROM methods, are discused. We present the

essentials of these methods and illustrate their implementation and performance by a

simple example.

3.1 SROM-based method

Denote by {x̃k(t)} the deterministic solutions X(t) for Y (t) set equal to samples

{ỹk(t)} of a SROM ỹ(t) for Y (t). The solutions {x̃k(t)} and the probabilities {pk}
define a SROM X̃(t) for X(t), that can be used to calculate properties of X(t) approx-

imately. Properties of X̃(t) can be obtained by elementary calculations. For example,

the moment of order q ≥ 1 and the marginal distribution of X̃(t) are given by

E[X̃(t)q] =
m

∑

k=1

pk x̃k(t)
q and

F̃ (x) = P (X̃(t) ≤ x) =
m

∑

k=1

pk 1(x̃k(t) ≤ x). (11)

Preliminary studies on the feasibility of the SROM method are in [12]. Simplicity

is the main feature of the approximation of X(t) by SROMs. The method involves

three steps. First, optimization algorithms are employed to construct a SROM Ỹ (t) for

input Y (t). Second, the SROM X̃(t) of X(t) corresponding to Ỹ (t) is obtained from

m deterministic solutions of the defining equation for X(t) with ỹk(t), k = 1, . . . ,m
in place of Y (t). Third, elementary calculations as in Eq. 11 yield approximations for

properties of X(t).

3.2 ESROM-based method

The accuracy of a SROM Ỹ (t) of Y (t) for a selected model size m is guaranteed

by construction, that is, the optimization algorithm used to select the samples of this

process and their probabilities. The accuracy of X̃(t) depends on that of Ỹ (t) and the

approximation used for the mapping Y 7→ X . The SROM X̃(t) is based on a rather

crude approximation of mapping Y 7→ X . The extended SROM method is based on

a more accurate representation of this mapping. The implementation of the extended

SROM method involves the following four steps that, for simplicity, are stated for the

case in which X(t) is a real-valued stochastic process.

– Step 1: Input parametric model. Construct a parametric model YP (t; Z) for

Y (t), that is, a deterministic function of time that depends on an d-dimensional

random vector Z defined on a probability space (Ω,F , P ). The construction of

parametric models for Y (t) involves considerations in [13]. Classical paramet-

ric models obtained by truncating Karhunen-Loève series for Y (t) are inade-

quate since the deterministic functions of time in these representations, which
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are eigenfunctions of a linear operator related to the correlation function of Y (t),
may have properties that are inconsistent with those of samples of Y (t). For ex-

ample, the Brownian motion and properly scaled compound Poisson processes

have the same second moment properties, that is, the same Karhunen-Loève

series. However, the samples of Brownian motion and compound Poisson pro-

cesses are continuous and piecewise constant, respectively. Moreover, only the

first two moments of the random coefficients of Karhunen-Loève series are de-

fined. Unless Y (t) is Gaussian, the distributions of these coefficients are not

known. We conclude this step with the observation that the representation of

Y (t) by parametric models is essential for computation since the stochastic di-

mension of YP (t; Z) is finite, while the stochastic dimension of Y (t) is, gener-

ally, infinite.

– Step 2: SROM for Z. Let {z̃k, k = 1, . . . ,m} be samples of Z, and denote by

Γk = {z ∈ Γ : ‖z − z̃k‖ ≤ ‖z − z̃l‖, l 6= k}, k = 1, . . . ,m, (12)

the Voronoi tessellation with centers {z̃k} in the range Γ = Z(Ω) of Z. Any

set of samples {z̃k} and probabilities {pk = P (Z−1(Γk))} defines a SROM Z̃
for Z. We are interested in that set of pairs {z̃k, pk}, k = 1, . . . ,m, that mini-

mizes the discrepancy between probability laws of Z̃ and Z. An optimization

algorithm is used to select the optimal pair {z̃k, pk} defining Z̃.

– Step 3: Approximate solutions. Calculate the deterministic solutions {x̃k(t)}
corresponding to {Z = z̃k} and the gradients

{∇x̃k(t) = (∂x̃k(t)/∂z1, . . . , ∂x̃k(t)/∂zd)}

of these solutions with respect to the coordinates of Z. The gradients {∇x̃k(t)}
can be interpreted as sensitivity factors with respect to the coordinates of Z. The

deterministic solutions {x̃k(t)} and {∇x̃k(t)} can be used to construct piece-

wise linear approximation

XL(t) =
m

∑

k=1

[

x̃k(t) + ∇x̃k(t) · (Z − z̃k)
]

1(Z ∈ Γk) (13)

for the mapping Z 7→ X(t), under the assumption that the mapping is suffi-

ciently smooth in Z. The representation in Eq. 13 approximates X(t) in each

cell Γk of the tessellation by a hyperplane tangent to the mapping Z 7→ X(t)
at (z̃k, x̃k(t)), k = 1, . . . ,m. Piecewise quadratic approximations can be con-

structed in a similar manner, but require derivatives of order two of x̃k(t) with

respect to the coordinates of Z.

– Step 4: Solution properties. The properties of XL(t) in Eq. 13 depends on

the samples of Z̃, the probability law of Z, and the Voronoi tessellation {Γk}.

The construction of the tessellation {Γk} in high dimension is a rather diffi-

cult task. However, it is possible to estimate properties of XL(t) efficiently by
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Monte Carlo simulation based on the definition of {Γk} in Eq. 12 without pre-

calculating these sets. Let {zi, i = 1, . . . , n} be n ≫ m independent samples

of Z. The members of {zi, i = 1, . . . , n} that are in Γk have the property

‖zi − z̃k‖ ≤ ‖zi − z̃l‖, l 6= k. A simple algorithm is used to identify the sub-

sets of {zi, i = 1, . . . , n} that belong to the cells of the Voronoi tessellation

in Γ = Z(Ω). Once these subsets have been identified, properties of XL(t)
can be estimated simply. For example, moments of order q ≥ 1 and marginal

distributions of this process can be estimated from

E[XL(t)q] ≃
m

∑

k=1

nk

n

[

1

nk

∑

zi∈Γk

[

x̃k(t) + ∇x̃k(t) · (zi − z̃k)
]q

]

and

Fl(x) = P (XL(t) ≤ x) ≃
m

∑

k=1

nk

n

[

1

nk

∑

zi∈Γk

1
(

x̃k(t) + ∇x̃k(t) · (zi − z̃k) ≤ x
)

]

,

(14)

where nk denotes the number of samples {zi} in Γk. Monte Carlo estimates for

properties of XL(t) of the type in Eq. 14 are efficient since the functional form

of the piecewise linear approximation of X(t) is known.

3.3 Numerical example

Let X(t) be the state of the dynamic system

Ẋ(t) = α X(t) + β X(t)3 + X(t) Y (t), t ≥ 0, (15)

where Y (t) =
∑d

j=1
Zj ϕj(t) is a parametric input process, Z = (Z1, . . . , Zd) denotes

an R
d-valued random variable, {ϕj(t)} are specified deterministic functions, and α, β

denote real constants. Note that X(t) is the state of a nonlinear system with non-

Gaussian multiplicative noise. The random input Y (t) will be Gaussian if the random

variables {Zi} are Gaussian. Let {z̃k} be the samples of a SROM model Z̃ for Z and

{Γk} the cells of a Voronoi tessellation centered on the samples of Z̃. The determinis-

tic solutions x̃k(t) and the coordinates w̃k,j(t) = ∂x̃k(t)/∂zj of the gradients of these

solutions can be calculated from

˙̃xk(t) = α x̃k(t) + β x̃k(t)
3 + x̃k(t)

d
∑

j=1

z̃k,j ϕj(t) and

˙̃wk,j(t) =

(

α + 3 β x̃k(t)
2 +

d
∑

j=1

z̃k,j ϕj(t)

)

w̃k,j(t) + x̃k(t) ϕj(t), j = 1, . . . , d.

(16)

The piecewise linear approximation XL(t) of X(t) is given by Eq. 13. Following

numerical results are for d = 2, (Z1, Z2) = translation Beta random variables with

range (1, 4), shape parameters (p, q) = (1, 3), and correlation coefficient ρ = 0.2 for
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their image in the Gaussian space, α = 1, β = −1, ν = 1, initial state X(0) = 1, time

interval [0, 10], ϕ1(t) = cos(ν t), and ϕ2(t) = sin(ν t). The samples and probabilities

of a SROM Z̃ with m = 10 are

z̃k,1 = 1.36; 1.39; 1.37; 2.77; 1.58; 2.30; 1.19; 1.22; 2.05 1.71

z̃k,2 = 1.33; 1.00; 2.81; 1.25; 1.01; 2.55; 2.29; 1.53; 1.37; 2.03

and

pk = 0.0001; 0.0001; 0.2075; 0.2435; 0.0882; 0.0598; 0.0713; 0.0967; 0.1403; 0.0924.

Figure 2 shows the deterministic solutions x̃k(t) corresponding to Z = z̃k, k =
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Figure 2: Deterministic solutions x̃k(t)

1, . . . ,m, that is, the samples of X̃(t). The sensitivity factors w̃k,j , j = 1, 2, are

shown in Fig. 3. The heavy solid line in Fig. 4 is a Monte Carlo estimate of E[X(t)6].
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Figure 3: Coordinates of gradient ∇x̃k(t) with respect to Z1 (left panel) and Z2 (right

panel)

The dashed line is an approximate of this moment delivered by the SROM of X(t)
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Figure 4: Monte Carlo estimate of E[X(t)6] (heavy solid line) and SROM-based ap-

proximation of this moment (heavy dotted line)

corresponding to Z̃. It has been obtained by using the first formula in Eq. 11. The ac-

curacy of the approximation is remarkable given that it is obtained from only m = 10
deterministic solutions. The approximation of E[X(t)6] given by the extended SROM

method in Eq. 14 is indistinguishable from the Monte Carlo estimate at the figure

scale. For this system, both SROM-based methods provide accurate approximations

for E[X(t)6]. A Monte Carlo estimate and SROM-based approximations for the

marginal distribution F (x; t) = P (X(t) ≤ x) of X(t) at time t = 1 are shown in

Fig. 5. The thin solid line and the heavy dashed line are a Monte Carlo estimate
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Figure 5: Marginal distribution F (x; t) = P (X(t) ≤ x): Monte Carlo estimate

(thin solid line), SROM-based approximation (thin solid step function), and extended

SROM-based approximation (heavy dashed line)

and a SROM-based approximation for F (x; t) corresponding to the piecewise linear

representation XL(t) in Eq. 13. The staircase thin solid line in the figure is the ap-

proximation of F (x; t) based on a SROM X̃(t) of X(t) of the type in Eq. 11. The

approximation of F (x; t) obtained from XL(t) is significantly better than that deliv-

ered by X̃(t). The notable improvement of the approximation of F (x; t) given by
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the extended SROM method is solely due to the superior representation of mapping

Z 7→ X(t) used in this method. The SROM-based method represents the mapping

Z 7→ X(t) by a piecewise constant function, while the extended SROM method ap-

proximation represents this mapping by a piecewise linear function.

4 Conclusion

Stochastic reduced order models (SROMs), that is, random processes with a finite

number of samples, have been used to represent inputs to linear and nonlinear dynamic

systems and construct approximations for the states of these systems. The approxi-

mations are non-intrusive in the sense that their implementation involves solutions of

small numbers of deterministic versions of random vibration problems. Two types of

SROM-based methods have been presented and illustrated numerically. Results show

that for some statistics the extended SROM-based method is superior. It was also

shown that Itô’s calculus and properties of translation processes provide efficient and

accurate solutions for the case of linear systems driven by a class of non-Gaussian

noise processes.
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