
Abstract

This paper introduces a robust numerical tool for the modelling of brittle and quasi-
brittle interfaces. Such interfaces are characterised by a rapid dissipation of a re-
versible stored energy which is commonly accompanied by the so-called snap-back
phenomenon. It leads to numerical instability of standard mathematical approaches.
The small-strain setting model presented is subservient to quasistatic processes and
individual linear elastic domains are joined by (quasi-)brittle friction-less interfaces.
The method of local state is adopted and a current internal interface state is defined
by one internal variable, the well-known scalar damage parameter. A formal ener-
getic formulation of problem is solved using the sequential linear analysis (SLA). The
common discretization of problem by primal variant of finite element method (FEM)
is substituted by the finite element tearing and interconnecting (FETI) method. Fi-
nally, numerical experiment on a layered beam is introduced.

Keywords: damage, energetic solution, FETI, local state method, quasi-brittle inter-
faces, sequentially linear analysis, snap-back.

1 Introduction

It is generally accepted that the key factor the governing mechanical performance in
heterogeneous structures (laminated beams, sandwich structures, etc.) is the inter-
facial debonding due damage processes active at the constituents’ interfaces [1]. In
this contribution, we introduce an efficient energy- and duality-based approach to the
numerical modelling of heterogeneous materials and structures with imperfect quasi-
brittle interfaces.

Although the majority of computational works in the field employ the primal,
displacement-based, variant of the finite element method (FEM), its application to
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imperfectly bonded assemblies suffers from specific difficulties. In particular, an in-
terface is introduced into the model in the form of an inelastic cohesive element [2],
characterized by a finite value of interfacial stiffness. In order to correctly reproduce
the perfect interfaces, the stiffness needs to be very large, which manifests in spurious
traction oscillations and hence inaccurate prediction of damage initiation [3]. A low
stiffness value, on the other hand, allows for mutual interpenetration of individual con-
stituents, resulting in a non-physical distribution of mechanical fields. Furthermore,
it is now well-understood that an efficient treatment of contact among adjacent do-
mains, even for the frictionless approximation, is relatively difficult in the framework
of primal FEM techniques [4].

Our approach attempts to eliminate the above mentioned problems. It is a rate-
independent energy-based model which uses the principles of isotropic damage me-
chanics to model the evolution of interfacial damage [5]. A mixed-mode constitutive
model with linear softening is implemented, based on the developments of Geubelle
and Baylor [6] and Ortiz and Pandolfi [7].

The continuous formulation is approximated by Sequence of linear analyses, which
is subsequently discretized using the FEM method. The problem is converted into
the dual form, expressed in terms of interfacial forces that enforce the displacement
compatibility. For the perfect bonding case, the resulting system is equivalent to the
original Finite Element Tearing and Interconnecting (FETI) method due to Farhat and
Roux [8]. For imperfect interfaces, we recover modified FETI equations first proposed
by Kruis and Bittnar [9], which are complemented with a simple projection technique
to ensure the frictionless contact conditions. In both cases, the system is well-suited
for the treatment by Preconditioned Conjugate Gradient algorithm, see [10] for addi-
tional details.

The remainder of the paper is organized as follows. In Section 2, we introduce
geometrical description, state variables and all energy functionals related to the rate-
independent system. Section 3 introduces the notion of the energetic solution and the
sequentially linear analysis. The numerical treatment of this variational problem is
outlined in Section 4, with emphasis given to the derivation of the FETI-based opti-
mality conditions in Section 5. Finally, the model is validated by force-displacement
diagrams of two-layer laminated beam subject to mode-II conditions.

2 Model Setup

We start from introducing the continuous version of the energy-based delamination
model closely following the exposition of Kočvara et.al [5]. For simplicity, we re-
strict our attention to the small-strain setting and assume that inelastic processes are
concentrated to interfaces only, whereas the bulk response remains elastic.
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2.1 Geometrical description

We consider a system of n disjoint bodies, represented by open domains Ω(i) ⊂ Rd,
d ∈ {2, 3}, with boundaries Γ(i) := ∂Ω(i), where i ∈ {1, 2, . . . , n}. The closure of the
i-th domain is denoted as Ω̄(i) := Ω(i)∪Γ(i). The (possibly empty) common boundary
between two bodies Ω(i) and Ω(j) will be defined by Γ

(i)
j := Ω̄(i) ∩ Ω̄(j), with i < j

and j ∈ {1, 2, . . . , n}.
It will also be useful to distinguish internal interfaces of the system

Γ
(i)
int :=

n⋃
j=i+1

Γ
(i)
j , Γint :=

n⋃
i=1

Γ
(i)
int (1)

from the external boundary Γ := ∂Ω \ Γint, where

Ω :=
n⋃

i=1

Ω(i). (2)

At each material point x on a non-empty interface Γ
(i)
j , a local Cartesian coordinate

system is introduced in terms of its origin x and unit vectors{
n(i) (x) , t

(i)
1 (x) , . . . , t

(i)
d−1 (x)

}
aligned with its axes; the symbols n(i) (x) and t

(i)
j (x) denote the outer normal and

j-th tangential vectors to the boundary, respectively. Note that in what follows, all
interface-related quantities will be defined in this local coordinate system.

2.2 State Variables

Two fields of the observable state variables are used for characterization of an intro-
duced system state: (i) domain displacements u(i) : Ω(i) → Rd and (ii) interfacial
displacement jumps JuK : Γint → Rd. Next, there is only one internal variable – the
well-known damage parameter ω : Γint → R.

2.3 Admissible Fields

An admissible domain displacement û (x)(i) is constrained to

K(i) :=
{

û(i) (x) : û(i)|Γ(i) (x) = uD (x) ,∀x ∈ ΓD ∩ Γ(i)
}

, (3)

where uD denotes the prescribed displacements on the Dirichlet part of the external
boundary ΓD ⊂ Γ.

Further, we introduce the split of the interfacial displacement jumps to the normal
and tangential components in the form

ˆJuKn (x) := ˆJuK (x) · n(i) (x) , ˆJuKt (x) := ˆJuK (x)− ˆJuKn (x) n(i) (x) (4)
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for all x ∈ Γ
(i)
int and i = {1, 2, . . . , n}. Denoting collectively the domain displacements

as û (x) :=
(
û(i) (x)

)n

i=1
, the set of admissible displacement jumps receives the form

KJuK (û (x)) =
{

ˆJuKn (x) ≥ 0 : ∀x ∈ Γint,

ˆJuK (x) = T
(i)
j (x)

(
û(i)|

Γ
(i)
j

(x)− û(j)|
Γ

(i)
j

(x)
)

: ∀x ∈ Γ
(i)
j ,

j ∈ {1, 2, . . . , n} , i < j} . (5)

The first condition in (5) enforces the interpenetration among adjacent bodies, whereas
the later equality ensures the kinematic compatibility between displacement jumps and
domain displacements, converted into the local coordinate system using matrices T

(i)
j .

Finally, we introduce an admissible set of the internal variable

W := {ω̂ (x) : ω̂ (x) ∈ [0; 1] ,∀x ∈ Γint} , (6)

where ω̂ (x) = 0 corresponds with a perfect interface and ω̂ (x) = 1 indicates a fully
damaged interfacial material point.

2.4 Interfacial constitutive law

The inelastic interfacial behavior is described by means of scalar damage law with
linear softening, cf. [6, 7]. In the one-dimensional version, the interface is character-
ized by the fracture toughness of a perfect interface Gc,0 (in Jm−2), its critical opening
∆ (in m) and the initial damage ω0, controlling the initial interfacial stiffness. These
can be directly related to fracture toughness Gc and strength σmax (in Pa) of an elastic-
damaging representation

Gc = (1− ω0) Gc,0, σmax =
1

2
(1− ω0)Gc,0∆. (7)

The mixed-mode extension is based on an effective displacement jump measure

δ̂
(
x, ˆJuK (x)

)
=

√
ˆJuK

2

n (x) + β2 (x) ˆJuK
2

t (x), ˆJuKt (x) = ‖ ˆJuKt (x) ‖, (8)

in which β denotes a mode-mixity parameter determined from experiments.
Notice that δ̂ (x) is based on the admissible displacement jumps KJuK.

2.5 Energetic Functionals

In accordance with Section 2.4, a density of an elastic energy, reversibility stored at a
material interface point x, is given by

eint
(
x, ω̂ (x) , ˆJuK (x)

)
:=

Gc,0 (x)

∆2 (x)

1− ω̂ (x)

ω̂ (x)
δ̂2
(
x, ˆJuK (x)

)
(9)
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yielding its interfacial counterpart in the form

E int
(
ω̂ (x) , ˆJuK (x)

)
:=

∫
Γint

eint
(
x, ω̂ (x) , ˆJuK (x)

)
dΓ. (10)

The irreversible processes are characterized by a dissipated energy density

d (x, ω̂1 (x) , ω̂2 (x)) =

{
Gc,0 (x) (ω̂2 (x)− ω̂1 (x)) if ω̂1 (x) ≤ ω̂2 (x)
+∞ otherwise

, (11)

due to the change of damage parameter ω̂1 from to ω̂2. The +∞’ term in (11) enforces
unidirectionality of the damage process, i.e. the damaged interface cannot heal (the
second thermodynamics law).

The related interfacial dissipation distance is obtained by

D (ω̂1 (x) , ω̂2 (x)) =

∫
Γint

d (x, ω̂1 (x) , ω̂2 (x)) dΓ. (12)

As introduced earlier in this section, individual sub-domains Ω(i) are assumed to
remain linearly elastic. The associated energy densities are given by

e(i)
(
x, ε̂(i) (x)

)
=

1

2
ε̂(i) : C(i) (x) : ε̂(i), (13)

where ε̂(i) is the linearized strain and C(i) (x) is a fourth-order tensor of elastic stiff-
ness. It leads to an energy functional

E (i)
(
û(i) (x)

)
=

∫
Ω(i)

e(i)
(
x, ∇sû

(i) (x)
)

dΩ, (14)

where ∇s denotes the symmetrized gradient.
The last energy component of the model is given by the potential energy of external

forces of the i-th domain, expressed in the form

W(i)
(
t, û(i) (x)

)
= −

∫
Ω(i)

û(i) (x) v (t,x) dΩ−
∫

Γ(i)

û(i) (x) t (t,x) dΓ, (15)

where v (t,x) are volume external forces and t (t,x) are surface tractions, given as
functions of a pseudo-time t ∈ I := [0, T ], where T is positive constatnt.

3 Energetic Solution

The energetic solution is based on two basic requirements. The first one so-called
stability inequality (16) which besides the potential energy takes into account also
the dissipation. The second requirement so-called energy balance (17) expresses the
second law of thermodynamics bysaying that the energy put to the system by external
forces or boundary conditions is pent on the change of potential energy and/or on
dissipation.
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3.1 Global Stability and Energy Balance

For initial data u(i) (0, x), JuK (0, x) and ω (0, x), the energetic solution of the rate-
independent evolution in pseudo-time t ∈ I is provided by functions u(i) (t,x), JuK (t,x)
and ω (t,x), for all i ∈ {1, 2, . . . , n}. The energetic solution satisfies the conditions
of the global stability

n∑
i=1

E(i)
(
u(i) (t, x)

)
+ E int (ω (t, x) , JuK (t, x))−

n∑
i=1

W(i)
(
t, u(i) (t, x)

)
≤

n∑
i=1

E(i)
(
û(i) (x)

)
+ E int

(
ω̂ (x) , ˆJuK (x)

)
+D (ω (t, x) , ω̂ (x))−

n∑
i=1

W(i)
(
t, û(i) (x)

)
(16)

and the energy balance

n∑
i=1

E(i)
(
u(i) (t, x)

)
+ E int (ω (t, x) , JuK (t, x)) + VarD (ω (t, x) , [0, t]) =

n∑
i=1

E(i)
(
u(i) (0,x)

)
+ E int (ω (0,x) , JuK (0,x)) +

n∑
i=1

∫ t

0

d
ds
W(i)

(
s, û(i) (s,x)

)
ds, (17)

where VarD (ω (t,x) , [0, t]) quantifies totally dissipated energy in time interval [0, t].

3.2 Sequentially Linear Analysis

The most natural way for solving of the formal energetic solution defined by condi-
tions (16) and (17) (for mathematically based scientists, especially) leads through time
discretization methods, see [11] for more details. Such approach is consistent with a
concept developed by mathematics for researching of an evolution in so-called rate
independent systems, see [12]. The concept includes mathematically rigorous proofs
of solution existence, error estimations, etc.

For more engineered based readers, we offer an alternative approach based on the
sequentially linear analysis (SLA) developed by Rots in 2001 (nice review of the
method in [13]). The main advantage of the method is an intuitive transparency and
robustness (primarily important for the quasi-brittle behaviour), on the other hand,
there is not the sophisticated mathematical background.

3.3 Restriction of Admissible Internal States

The SLA selects from the set of admissible internal states W only a finite number of
them – the resulting set is denoted Wp (the superscript p corresponds with number of
selected states). The SLA inserts an order into the set of admissible states W from a
spatial distribution on the interface area Γint point of view. The discretization of W to
Wp ⊂ W, where

Wp =
{
ω̂1 (x) , ω̂2 (x) , . . . , ω̂p (x)

}
, (18)
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is based on a sequence of p linear analyses (the word linear is used from the internal
state point of view – there is non-linear behaviour induced by the contact problem)
supplemented about an incremental dissipation of energy, in k-th linear analysis de-
noted ∆Dp (k).

For reason of the incremental dissipation, the domain Γint is subdivided into NSLA

simplex subdomains

Γint =

NSLA∏
α=1

Γα
SLA (19)

and the increment of the dissipation in k-th linear analysis ∆Dp (k) will occur over one
of them. Next, in order to unique definition of the increment ∆Dp (k), it is necessary
to discretize an internal evolution of a material point state, which can be formally
characterized by an auxiliary field s (x), to q discrete states. Then, a related amount
of a dissipated energy density ∆d : {1, 2, . . . , q} × Rd → R have to satisfy

G (x) =

q∑
ŝ(x)=1

∆d (ŝ (x)) , (20)

where the field ŝ : Γint → {1, 2, . . . , q} evaluates discretized internal state of the
material point x.

3.4 Construction of Admissible Internal States

In this part, a construction of k-th admissible internal state defined by ω̂k (x) ∈ Wp

and formally defined by ŝ (x) is described. The k-th step of SLA is equivalent to
minimization problem

(uk (x) , JuKk (x)) = arg min
(û(x), ˆJuK(x))∈K×KJuK

Φk

(
û (x) , ˆJuK (x) , ω̂k−1 (x)

)
, (21)

where the associated energetic functional Φk is defined as

Φk :=
n∑

i=1

E (i)
(
û(i) (x)

)
+ E int

(
ω̂k−1 (x) , ˆJuK (x)

)
−

n∑
i=1

W(i)
(
1, û(i) (x)

)
. (22)

Let exists a state of interfaces ŝ (x) < q, then exists a level of reference load defined
by pseudo-time tk such that

(
tk, xk

)
= arg min(t,x)∈I×Γint

(
1− ω̂k−1 (x)

)
Y ∗ (ŝ (x)) + ∆d (ŝ (x))

eint (JuKk (x))
, (23)

where Y ∗ (s (x)) denotes the critical driving force whose meaning is energy threshold.
In the SLA, until the pseudo-time tk is reached, no evolution of the internal state
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is assumed. On the other side, the achieving of the pseudo-time tk is joined with
incremental change of internal state over all part of interface

Γk
crit =

{
Γα

SLA : xk ∈ Γα
SLA

}
, (24)

consequently
ŝ (x) = ŝ (x) + 1 : ∀x ∈ Γk

crit. (25)

The incremental change of the internal state ŝ (x) and the state variable ω̂k (x) corre-
sponds with energy dissipation

∆Dp (k) =

∫
Γk

crit

∆d (ŝ (x)) dΩ. (26)

The above described process of the incremental changes of admissible states ŝ (x)
and limited number of discretized states impose next restrictions (in addition to (20))
on the choice of amount of a dissipated energy density as follows

∆d (ŝ (x)) =

{
finite value : ∀ŝ (x) < q
∞ : ∀ŝ (x) = q

. (27)

3.5 Approximated Energetic Solution

During the construction of the countable set Wp, in each linear analysis, values of all
energetic functionals contained in conditions (16) and (17) are quantified. Based on
these values, a selection of the energetically admissible states in each time step tk,
which satisfy conditions (16) and (17), is only a question of a postprocessing.

4 Numerics

In this Section, a numerical solution of k-th linear analysis corresponding with mini-
mization problem (21) is introduced.

4.1 Approximation of State Variables

Following the standard Finite Element discretization, each domain is subdivided into
simplex elements of a maximum diameter h. Then, the domain displacements receive
the form [14]

û(i) (x) ≈ û
(i)
h (x) = N

(i)
u,h (x) û

(i)
h , ûh =

(
û

(1)
h

T, û
(2)
h

T, . . . , û
(n)
h

T
)T

, (28)

where N
(i)
u,h (x) denotes the matrix of basis functions associated with the displace-

ments field and û
(i)
h are associated nodal displacements, both over i-th domain. The
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vector ûh collects nodal displacement from all domains. Then, an approximation of
the linearized strains over i-th domain is expressed as

ε̂(i) (x) ≈ ε̂
(i)
h (x) = B

(i)
u,h (x) û

(i)
h , (29)

where B
(i)
u,h (x) denotes the geometric matrix [14] containing relevant derivatives of

the basis functions. The admissible displacement jumps are discretized analogously,
so

ˆJuK (x) ≈ ˆJuKh (x) = N JuK,h (x) ˆJuKh. (30)

Finally, for simplicity, let the partitioning to the finite elements on interfaces is equiv-
alent to the subdivision to the subdomains Γα

SLA, than discretization of the damage
parameter ω̂ (x)k is automaticaly done by process of SLA, where constant basis func-
tions are used, then

ω̂k (x) = ω̂k
h (x) . (31)

4.2 Admissible Sets

The set of admissible nodal displacements

K(i)
h =

{
û

(i)
h ∈ Rd·m(i)

,B(i)
h,Dû

(i)
h = u

(i)
h,D

}
(32)

is defined with regard to corresponding original set (3), where m(i) denotes the num-
ber finite element nodes at the i-th domain and the Boolean matrix Bh,D selects the
degrees of freedom related to the Dirichlet boundary conditions u

(i)
h,D. The displace-

ment jumps at m interfacial nodes are constrained to the set

KJuK
h (ûh) =

{
ˆJuKh ∈ Rd·m,B(i)

h û
(i)
h = ˆJuKh,

ˆJuKn,h ≥ 0
}

, (33)

with B(i)
h storing the corresponding entries of transformation matrices appearing in (5).

Finally, with a view to (31), the discretized set of admissible damage variables satisfies

Wh = Wp. (34)

4.3 Discrete Form of Minimization Problem

Now, a full discrete form of the k-th step of SLA (21) is formulated as

(uk,h, JuKk,h) = arg min
(ûh, ˆJuKh)∈Kh×KJuK

h (uh)

Φk,h

(
ûh, ˆJuKh

)
, (35)

where the discretized energetic functional has form

Φk,h

(
ûh, ˆJuKh

)
=

1

2

n∑
i=1

û
(i)
h

TK
(i)
h û

(i)
h +

1

2
ˆJuKh

TK int
h

(
ω̂k−1

h

) ˆJuKh

−
n∑

i=1

û
(i)
h

Tf
(i)
h (36)
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The terms appearing in (36) are the stiffness matrix of the i-th domain

K
(i)
h =

∫
Ω(i)

B
(i)
u,h

T (x) C(i) (x) B
(i)
u,h (x) dΩ, (37)

the vector of reference forces on the i-th domain at unit time

f
(i)
h =

∫
Ω(i)

N
(i)
u,h

T (x) v(i) (1, x) dΩ +

∫
Γ(i)

N
(i)
u,h

T (x) t(i) (1, x) dΓ (38)

and the interfacial stiffness matrix

K int
h

(
ω̂k−1

h

)
=

∫
Γint

Gc,0 (x)

∆2 (x)

(
1

Nω,h (x) ω̂k−1
h

− 1

)
NT

JuK,h (x) β (x) N JuK,h (x) dΓ.

(39)

5 FETI-based Solver

5.1 Lagrange function

The Lagrangian function associated with the minimization problem (35) is formed as
follows

Lk,h

(
ûh, ˆJuKh, λ̂h

)
=

1

2

n∑
i=1

û
(i)
h

TK
(i)
h û

(i)
h +

1

2
ˆJuK

T

h K int
h

(
ω̂k−1

h

) ˆJuKh

−
n∑

i=1

û
(i)
h

Tf
(i)
h + λ̂h

T

(
n∑

i=1

B(i)
h û

(i)
h − ˆJuKh

)
, (40)

where the vector of the nodal Lagrange multipliers λ̂h represents the nodal forces
enforcing the geometrical compatibility. Observe that the domain displacements and
interfacial displacements jumps become independent. The admissible sets read as

L = Rd·m, KJuK
L :=

{
ˆJuKh ∈ Rd·m : ˆJuKn,h ≥ 0

}
. (41)

5.2 Stationary Conditions

Note that the inequality in (41) will be enforced by a simple projection technique; the
optimality conditions of (40) thus attain the form

∂Lk,h

∂û
(i)
h

= K
(i)
h u

(i)
k,h − f

(i)
h + B(i)

h
Tλk,h = 0, (42)

∂Lk,h

∂λ̂h

=
n∑

i=1

B(i)
h u

(i)
k,h − JuKk,h = 0, (43)

∂Lk,h

∂ ˆJuKh

= K int
h

(
ωk−1

h

)
JuKk,h − λk,h = 0. (44)

where i ∈ {1, 2, . . . , n}.
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5.3 FETI-based Dualization

Now we proceed with the elimination of the primary variables u
(i)
k,h and JuKk,h to

express the problem in terms of the dual variables – Lagrange multipliers λk,h. To
that end, the field of displacements u

(i)
k,h is expressed in the form

u
(i)
k,h = K

(i)
h

†
(
f

(i)
h − B(i)

h
Tλk,h

)
+ R

(i)
h α

(i)
k,h. (45)

The first term in relation (45) corresponds to the particular solution of the i-th sys-
tem (42), expressed by means of the generalized inverse matrix K

(i)
h

† replacing the
inverse matrix for singular K

(i)
h . The second term in (45) corresponds to a homoge-

neous solution of the system (42), which is expressed as the linear combination of
rigid body motions R

(i)
h with coefficients of the linear combination α

(i)
k,h.

When introducing the primary variables (45) into the stationary condition (43), we
receive

F hλk,h + Ghαk,h = gh − JuKk,h, (46)

where F h is the compliance matrix of a perfect interface, containing only the domain
contributions:

F h =
n∑

i=1

B(i)
h K

(i)
h

†B(i)
h

T (47)

and the remaining terms are provided by

Gh =
(
−B(1)

h R
(1)
h ,−B(2)

h R
(2)
h , . . . ,−B(i)

h R
(n)
h

)
(48)

and

gh =
n∑

i=1

B(i)
h K

(i)
h

†f
(i)
h . (49)

Equation (46) is an extension of the well-known dual formulation of the original
FETI method. To account for additional compliance of an imperfect interface, the
displacement jumps are directly related to the Lagrange multipliers via (43), so

JuKk,h =
(
K int

h

(
ωk−1

h

))−1
λk,h = H int

k,h

(
ωk−1

h

)
λk,h, (50)

where the matrix H int
k,h

(
ωk−1

h

)
is a compliance matrix of interfaces. Altogether, this

yields a system of interfacial equations, cf. [9],(
F h + H int

k,h

(
ωk−1

h

))
λk,h + Ghαk,h = gh. (51)

The discrete model is closed by the solvability conditions

GT
h λk,h = eh,k, (52)

where

eT
h =

((
−R

(1)
h

T
f

(1)
h

)T

,
(
−R

(2)
h

T
f

(2)
h

)T

, . . . ,
(
−R

(n)
h

T
f

(n)
h

)T
)

. (53)

The resulting system can now be efficiently solved using projected Conjugate Gradient
algorithm; see, e.g., [10] for additional details.
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Figure 1: Geometry of specimen.

6 Numerical Experiment

The numerical model presented in the previous sections is implemented in the MAT-
LAB. In particular, a simple two-layer laminated beam with a span of 120 mm was
considered, composed of two 3 mm thick and 20 mm wide aluminium layers bonded
with adhesive layer. So-called end-notched flexure (ENF) test, commonly used for
obtaining pure mode-II loading conditions, is used. In the test, the beam is subjected
to a proportional-in-time displacement control bending with a three-point fixtures as
shown in Figure 1.

The corresponding material data of the aluminium layers are gathered in Table 1,
whereas the interfacial parameters appear in Table 2. The structure was discretized
using a regular structural mesh consisting of isoparametric bilinear 4-node plane strain
elements with size of 1 × 1 mm. The obtained load-deflection response is plotted in
Figure 2.

Young’s modulus, E 75 GPa
Possion’s ratio, ν 0.3

Table 1: Material data of the aluminium layers.

fracture toughness, Gc 0.1 N/mm
initial damage, ω0 0.4
critical stress, σmax 8 MPa
critical opening, ∆ 0.025 mm
mode mixity parameter, β 1
number of discrete states in material point, q 30

Table 2: Interfacial material data.
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Figure 2: Load-deflection response of ENF test.
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7 Conclusion

In the present contribution, a variational approach to simulation of macroscopic de-
lamination of composite structures with quasi-brittle interfaces based on global energy
minimization using SLA method has been presented and efficiently resolved by the
FETI method. The model consistently incorporates a mixed-mode linear interfacial
softening and frictionless contact conditions. As a proof-of-concept for this approach,
one numerical example of a two-layered laminated beam failing due to mode-II and
characterized by snap-back behaviour was presented.
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