
Abstract

This paper is concerned with the hp-version of the finite element method (hp-FEM) to

treat a variational inequality that models frictional contact in linear elastostatics. Such

an approximation of higher order leads to a nonconforming discretization scheme. We

employ Gauss-Lobatto quadrature for the approximation of the nonsmooth friction-

type functional and take the resulting quadrature error into account in the error analy-

sis. We prove convergence of the hp-FEM Galerkin solution in the energy norm. To

this end we investigate Glowinski convergence for the friction-type functional. The

key of our norm convergence result for the hp−FEM is the used Gauss-Lobatto in-

tegration rule with its high exactness order and its positive weights together with a

duality argument in the sense of convex analysis. Then we discuss how our conver-

gence analysis can be further extended to other nonlinear variational problems from

nonsmooth mechanics. In particular we treat the Bingham fluid problem and propose

a mixed hp-FEM discretization scheme with analogous convergence properties.

Keywords: nonsmooth mechanics, contact, friction, hp-FEM, nonconforming ap-

proximation, Gauss-Lobatto quadrature.

1 Introduction

This paper is concerned with the hp-version of the finite element method (hp-FEM)

to treat a variational inequality in a vectorial Sobolev space that models bilateral fric-

tional contact in linear elastostatics. Thus we extend recent work [1] for the boundary

element method to a larger class of nonlinear variational problems that are treatable

by the finite element method.

By the pioneering work of Babuška and co-workers, the exponentially fast conver-

gence of the hp-FEM for linear elliptic problems is well-known. Recently M. Mais-

1

 
Paper 149 
 
On Higher Order Approximation for Nonlinear 
Variational Problems in Nonsmooth Mechanics 
 
J. Gwinner 
Department of Aerospace Engineering 
Universität der Bundeswehr München, Germany 

©Civil-Comp Press, 2012 
Proceedings of the Eleventh International Conference 
on Computational Structures Technology,  
B.H.V. Topping, (Editor),  
Civil-Comp Press, Stirlingshire, Scotland 



chak and E.P. Stephan [2, 3], respectively P. Dörsek and J.M. Melenk [4, 5] showed su-

perior convergence properties of adaptive hp− boundary element methods (hp−BEM)

, respectively adaptive hp- finite element methods in numerical experiments also for

unilateral, nonsmooth problems compared to the standard h−version.

Such an approximation of higher order leads to a nonconforming discretization scheme.

In contrast to previous work [6] we employ Gauss-Lobatto quadrature for the approx-

imation of the nonsmooth friction-type functional and take the resulting quadrature

error into account of the error analysis.

Here without any regularity assumptions, we prove convergence of the hp-FEM Galerkin

solution in the energy norm. To this end we investigate Glowinski convergence for the

friction-type functional. The key of our norm convergence result for the hp−FEM is

the used Gauss-Lobatto integration rule with its high exactness order and its positive

weights together with a duality argument in the sense of convex analysis. Thus our

convergence analysis complements prior work of M. Maischak and E.P. Stephan [3]

on hp−BEM for frictionless unilateral contact and more recent work of P. Dörsek and

J.M. Melenk [4] on a mixed hp−FEM for frictional bilateral contact.

Then we discuss how our convergence analysis can be further extended to other non-

linear variational problems from nonsmooth mechanics. In particular we treat the

Bingham fluid problem and propose a mixed hp-FEM discretization scheme with anal-

ogous convergence properties.

The paper is organised as follows. In the following section 2, we shortly present two

prominent examples in nonsmooth mechanics in the simplified form of a scalar vari-

ational inequality; namely a friction problem from contact mechanics and a Bingham

flow problem from fluid mechanics. Then in section 3, we focus to a bilateral fric-

tional contact problem in plane linear elastostatics, provide its variational formulation

and some preliminaries for our hp -FEM analysis, and describe the Gauss-Lobatto

quadrature. Our main result, the convergence result and its proof come in section 4.

In the concluding section 5, we discuss how our convergence analysis can be modified

for the Bingham flow problem and extended to a mixed hp-FEM formulation.

2 A class of nonlinear variational problems from non-

smooth mechanics

In this section we review a class of problems from nonsmooth mechanics that in the

terminology of Glowinski [7] can be modeled as elliptic variational inequalities of the

second kind.

All these problems are considered on a bounded Lipschitz domain Ω ⊂ IR
d(d = 2, 3)

with boundary Γ = ∂Ω.
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2.1 A simplified friction problem

Let V = H1(Ω), γ denote the trace map, and define

a(u, v) =

∫

Ω

∇u · ∇v dx+

∫

Ω

uv dx

ℓ(v) = 〈f, v〉, f ∈ V ∗

j(v) = g

∫

Γ

|γv|dΓ, where g > 0.

Then find u ∈ V such that for all v ∈ V ,

a(u, v − u) + j(v) − j(u) ≥ ℓ(v − u).

This variational problem is the simplified version of a friction problem in linear elas-

ticity. Here we can refer to Duvaut and Lions [8] and also to the following section

of the present paper, where we treat a full vectorial variational problem that describes

frictional contact in plane linear elasticity.

2.2 Laminar stationary flow of a Bingham fluid

Let V = H1
0 (Ω) and define

a(u, v) =

∫

Ω

∇u∇v dx

ℓ(v) = 〈f, v〉, f ∈ V ∗

j(v) =

∫

Ω

|∇v|dx.

Then with µ > 0, g > 0 fixed, find u ∈ V such that for all v ∈ V

µa(u, v − u) + gj(v) − gj(u) ≥ ℓ(v − u).

If ℓ(v) = C

∫

Ω

v dx (with positiveC, the linear decay of pressure), then this variational

problem models the laminar stationary flow of a Bingham fluid in a cylindrical pipe of

cross section Ω, where u(x) describes the velocity at x ∈ Ω. The parameters µ, g are,

respectively, the viscosity and plasticity yield of the fluid. The Bingham fluid behaves

like a viscous fluid in

Ω+ =
{

x ∈ Ω : |∇u(x)| > 0
}

and like a rigid medium in

Ω0 =
{

x ∈ Ω : ∇u(x) = 0
}

.

For a full vectorial numerical analysis of viscoplastic fluid flow problems we refer to

[9].
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3 The bilateral frictional contact problem and its hp-

FEM approximation

Let us consider an elastic body represented by a bounded domain Ω ⊂ IR
2 with a

Lipschitz boundary Γ that splits into three disjoint parts Γ0,ΓT ,Γc such that Γ = Γ0 ∪
ΓT ∪Γc. Zero displacements are prescribed on Γ0, surface tractions T ∈ (L2(ΓT ))2 act

on ΓT , and on the part Γc Tresca friction conditions between the body and a perfectly

rigid foundation hold. In the model of Tresca friction (given friction) one assumes a

known slip bound g ∈ L∞(Γc), g ≥ 0. Moreover, the body is subject to body forces

F ∈ (L2(Ω))2. To simplify matters, we assume meas (Γ0) > 0; otherwise we can

resort to a recession analysis to treat the so called semi-coercive case; see [10] for the

standard h-FEM.

We denote byHs( ) the usual Sobolev spaces on Ω or on parts of Γ with norms defined

using the Slobodeckij semi-norms. We also use the shortHs = (Hs)2 for the vectorial

Sobolev spaces. In particular, we have the space of virtual displacements

V = {v ∈ H1(Ω) | γ0 v = 0} ,

where γo = γΓ0 : H1(Ω) → H
1

2 (Γ0) is the trace map onto Γ0. Here, likewise γc =

γΓc : H1(Ω) → H
1

2 (Γc) ⊂ (L2(Γc))
2, and with the unit outer normal n ∈ (L∞(Γ))2

to the boundary, a vector field w at the boundary has its normal component wn = w ·n
and its tangential component wt = w − wn n.

Adopting standard notations from linear elasticity, ε(v) = 1
2
(∇v + ∇vT ) denotes

the small strain tensor to the displacement field v and σ(v) = C : ε(v) the stress

tensor. Here, C is the Hooke tensor, assumed to be uniformly positive definite with

L∞ coefficients. This leads to the bilinear form, linear functional, sublinear functional,

and to the total potential energy of the body, respectively,

a(u, v) =

∫

Ω

ε(u) : C : ε(v) dx ,

l(v) =

∫

Ω

F · v dx+

∫

ΓT

T · v ds ,

j(v) =

∫

Γc

g |vt| ds ,

J(v) =
1

2
a(v, v) − l(v) + j(v) .

In these terms, the variational formulation of the unilateral contact problem with

Tresca friction reads as follows: Find a minimizer u ∈ V of the functional J(v), v ∈
V!

Another equivalent formulation is the variational inequality problem (π) of second

kind: Find u ∈ V such that for all v ∈ V ,

a(u, v − u) + j(v) − j(u) ≥ l(v − u). (1)
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There exists a unique solution u (see e.g. [11, 12]), since Γ0 has positive measure and

hence the bilinear form is coercive by Korn’s inequality, see e.g. [8] . Moreover there

is the a priori estimate

a(u, u) ≤ c0 + c1‖u‖H1(Ω) (2)

for some constants c0, c1 ≥ 0.

For simplicity let Ω be a polygonal, planar domain and let g be a piecewise constant

function on ΓC . These are no restrictions of generality. In fact, the hp− finite element

approximation on curvilinear domains is well-understood, see [13]. The analysis to

follow can be extended to higher dimensional domains by tensor product approxima-

tion.

To conclude the preliminaries for our finite element analysis we state an essential

hypothesis, namely the density relation

V ∩ [C∞(Ω)]2 = V . (3)

We note that (see [12]) (3) holds true in the polygonal domain Ω, if there is only a

finite number of “end–points” Γc ∩ ΓT , Γ0 ∩ ΓT , Γc ∩ Γ0 .

Let TN (N ∈ IN) be a shape regular [14] sequence of meshes consisting of affine

quadrilaterals Q ∈ TN with diameter hN,Q such that all corners of Γ and all “end

points” Γc ∩ ΓT ,ΓT ∩ Γ0,Γ0 ∩ Γc are nodes of TN . Moreover, we introduce the set of

edges on the contact boundary,

Ec,N = {E : E ⊂ Γc is an edge of TN}

and assume that g is constant on each edge E ∈ Ec,N . Obviously, for every E ∈ Ec,N

there exists a unique QE ∈ TN such that E is an edge of QE .

Further we denote by pN,Q ∈ IN a polynomial degree for each Q ∈ TN . We assume

that neighboring elements have comparable polynomial degrees, i.e. there exists a

constant c > 0 such that for elements Q,Q′ ∈ TN with Q ∩Q′ 6= ∅ there holds

c−1 pN,Q ≤ pN,Q′ ≤ c pN,Q .

Let Πp(Q) be the tensor product space of polynomials of degree p in each variable.

This gives the FE subspace

VN = {vN ∈ V : vN | Q ∈ (ΠpN,Q(Q))2 , ∀Q ∈ TN} .

We employ Gauss-Lobatto quadrature in the discretization procedure. To this end we

introduce for q ≥ 1 on the reference interval [−1, 1] the q + 1 Gauss-Lobatto points,

i.e., the zeros ξq+1
j (0 ≤ j ≤ q) of (1 − ξ2)L′

q(ξ), where Lq denotes the Legendre

polynomial of degree q. Note that ξq+1
0 = −1 and ξq+1

q = 1 are the end points of the

reference interval. It is known (see [15], chapter I, section 4) that there exist positive

weights

ωq+1
j :=

1

q(q + 1)L2
q(ξ

q+1
j )
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such that the quadrature formula

1
∫

−1

φ(ξ) dξ =

q
∑

j=0

ωq+1
j φ(ξq+1

j )

is exact for all polynomials φ up to degree 2q − 1.

For any E ∈ Ec,N we introduce the quadrature order qN,E such that qN,E = pN,QE
. By

affine transformation FE : [−1, 1] → E we define the set GE,N of qN,E + 1 Gauss-

Lobatto points for each element E of Ec,N and set Gc,N :=
⋃

{GE,N : E ∈ Ec,N}.

We approximate the nonlinear nonsmooth functional j using the above quadrature rule

by

jN(v) = jc,N(γc v)t, jc,N(ψ) =
∑

E∈Ec,N

gE

qN,E
∑

j=0

ω
qN,E+1
j

∣

∣

∣
ψ ◦ FE(ξ

qN,E+1
j )

∣

∣

∣
,

where gE denotes the constant value of the function g on E. Then jN , jc,N are sublin-

ear functionals, with jc,N uniformly bounded on C(Γc). Note that for the piecewise

polygonal boundary Γ, vt ◦ FE is piecewise polynomial of the same degree as v.

Thus we arrive at the following discrete variational problem (πN) as approximation to

our variational problem (π): Find uN ∈ VN such that for all vN ∈ VN

a(uN , vN − uN) + jN(vN) − jN(uN) ≥ l(vN − uN) . (4)

Similarly to the above bound (2) we obtain the a priori bound

a(uN , uN) ≤ c0 + c1‖uN‖H1(Ω) (5)

for some constants c0, c1 ≥ 0 independent of N .

Note that we only replaced the nonlinear functional j by its approximate jN . In most

computations, however, also a and l have to be replaced by some approximations that

take into account e.g. numerical integration or approximation of a curved boundary.

Since such approximations are well documented in the literature of h− and hp− fi-

nite element analysis of elliptic boundary value problems (see [13, 14]), we omit this

aspect here.

Associated to the Gauss-Lobatto points GE,N we have the local interpolation operator

iE,q = iE,N : C0(E) → Pq(E) with q = qN,E given by

(iE,Nη)(x) = η(x), ∀ x ∈ GE,N , η ∈ C0(E)

and the global interpolation operator ic,N on C0(Γc) defined by

ic,Nη =
∑

E∈Ec,N

(iE,Nη)|E, ∀ η ∈ C0(Γ) .
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Likewise associated to the Gauss-Lobatto points GQ,N = FQ{(ξ
p+1
i , ξp+1

j ) | 0 ≤ i, j ≤

p} with p = pN,Q and the affine transformation FQ : [−1, 1]2 → Q we have the local

interpolation operator iQ,p = iQ,N : C0(Q) → Pp(Q) with p = pN,E given by

(iQ,Nψ)(x) = ψ(x), ∀ x ∈ GQ,N , ψ ∈ C0(Q)

and the global interpolation operator iN on C0(Ω) defined by

iNψ =
∑

Q⊂Ω

(iQ,Nψ)|Q, ∀ ψ ∈ C0(Ω) .

For later use we recall from [15, Theorem 13.4, Theorem 14.2] the following results on

the polynomial interpolation error in the reference interval Ê = (−1, 1), respectively

in the reference square Q̂ = (−1, 1)2.

Theorem 1 (i) For any real numbers r and s satisfying s > (1+ r)/2 and 0 ≤ r ≤ 1,

there exists a positive constant c depending only on s such that for any function η ∈
Hs(Ê) the following estimate holds

‖η − iÊ,qη‖Hr(Ê) ≤ c qr−s ‖η‖Hs(Ê) . (6)

(ii) For any real numbers r and s satisfying s > 1 + r/2 and 0 ≤ r ≤ 1, there exists

a positive constant c depending only on s such that for any function ψ ∈ Hs(Q̂) the

following estimate holds

‖η − iQ̂,pψ‖Hr(Q̂) ≤ c pr−s ‖ψ‖Hs(Q̂) . (7)

4 The hp− approximation result

Without any regularity assumption for the solution u of (π) we can show the following

convergence result for the hp− FEM solutions uN of (πN) in the energy norm.

Theorem 2 Suppose that for the polygonal domain Ω, there are only a finite number

of “end points” Γc∩Γ0,Γc∩ΓT ,ΓT∩Γc. Then forN → ∞ with minQ∈TN
h−1

N,Q pN,Q →

∞ there holds uN → u with respect to the H1(Ω) norm.

Proof.

Here we use the discretization theory of Glowinski [7]. Thus we have to show the

following hypotheses:

H1 If vN ⇀ v (weak convergence) in V for N → ∞, then

lim inf
N→∞

jN(vN) ≥ j(v).
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H2 There exist a subset M ⊂ V dense in V and mappings ̺N : M → VN such that,

for each w ∈M,̺N(w) → w for N → ∞,

lim
N→∞

jN
(

̺N(w)
)

= j(w) .

Classical h− FEM convergence for the variational problem under study is already

treated in [6], where Newton-Cotes formulas in numerical quadrature are used instead

of Gauss-Lobatto quadrature. Inspecting the proof of [6, Theorem 4.1] shows that

the norm convergence for a fixed quadrature order hinges on the positiveness of the

quadrature weights, what is satisfied for all quadrature orders with Gauss-Lobatto

quadrature. Therefore in the following we can focus to the case where hN,Q is fixed

for all Q ∈ TN and minQ∈TN
pN,Q → ∞.

To verify H1 it is enough to show that for any µ ∈ C0(Γ) with |µ| ≤ 1 on Γc there

holds
∫

ΓC

g vt µ ds ≤ lim inf
N→∞

jN(vN) , (8)

since by duality with respect to (L1, L∞) and density

j(v) = sup
{

∫

Γc

g vtµ ds : µ ∈ C0(Γ), |µ| ≤ 1
}

.

Moreover, since the mesh TN is independent of N , we can simply consider the above

integrals on any fixed edge E ∈ Ec,N . Thus fix µ ∈ C0[E] with |µ| ≤ 1 and also q :=
qN,E . We approximate these functions by a combination of Bernstein polynomials Bq

with the local mapping FE : [−1, 1] → E to define µq via

µq(t) = (Bqµ ◦ FE)(t) :=

q
∑

k=0

(

q

k

)

(
1 + t

2
)k(

1 − t

2
)q−k(µ ◦ FE)

(

2k

q
− 1

)

.

Since the Bernstein operators are monotone, |µq| ≤ 1. By [16, Chapter 1, Theorem

2.3],

lim
q→∞

‖µq − µ‖L∞(E) = 0 . (9)

Since the embedding H1/2(Γ) →֒ L1(E) is weakly continuous, vN ⇀ v in L1(E) and

‖vN‖(L1(E))2 is bounded. Therefore from

∣

∣

∣

∫

E

[vN,t µqN,E−1 − vtµ] dt
∣

∣

∣

≤
∥

∥vN,t‖L1(E) ‖µqN,E−1 − µ
∥

∥

L∞(E)

+
∣

∣

∣

∫

E

[vN,t − vt]µ dt
∣

∣

∣
,
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(9) and using µ ∈ L∞(e) =
(

L1(e)
)∗

, we conclude

lim
N→∞

∫

E

vN,t µqN,E−1dt =

∫

E

vt µ dt . (10)

On the other hand, vN,t|E µqN,E−1 are polynomials of degree 2q− 1. Hence the above

integrals can be evaluated exactly by the Gauss-Lobatto quadrature formula to obtain

∫

E

vN,t µqN,E−1 dt =

q
∑

j=0

ωq+1
j (vN,t µq−1) ◦ FE(ξq+1

j ) .

Since the weights ωq+1
j > 0, |µq−1| ≤ 1, ge ≥ 0 we arrive at

gE

∫

E

vN,t µqN,E−1 dt ≤ gE

q
∑

j=0

ωq+1
j |vN,t ◦ FE(ξq+1

j )| =: jE,N(vN) ,

∑

E∈Ec,N

jE,N(vN) = jN(vN) .

In view of (10) this proves our claim (8).

In the last step let us prove H2.

By the finiteness assumption we have due to [12] the density relation

V ∩ [C∞(Ω)]2 = V .

Therefore we can take M = [C∞(Ω)]2 and define ̺N : M → VN by ̺N := iN . By

Theorem 1(ii) , ̺Nw → w in H1(Ω). Finally by jN(w) = j(̺Nw), we conclude for

N → ∞,

|j(w) − jN(̺Nw)| ≤ |j(w) − j(̺Nw)| + |jN(w) − jN(̺Nw)|

≤ ‖g‖L∞(Γc)

[

‖wt − (̺Nw)t‖L1(Γc) + ‖wt − (̺Nw)t‖L∞(Γc)

]

→ 0 .

5 Concluding remarks on the Bingham fluid problem

The primal variational formulation of the simplified Bingham fluid problem given in

section 2 corresponds to the strong formulation

f ∈ g ∂j(u) − ∆ u ,

where ∂j denotes the subdifferential of the sublinear functional j in the sense of

convex analysis. We modify the well-known reformulation of the classic Poisson
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problem with zero Dirichlet boundary condition as a saddle point problem and write

∆ u = div σ, σ = ∇u. This leads to the following mixed formulation: Find (σ, u) ∈
Ld

2(Ω) ×H1
0 (Ω) such that for all (τ, v) ∈ Ld

2(Ω) ×H1
0 (Ω)

{

(σ, τ)0 − (τ,∇ u)0 = 0
(σ,∇ v −∇ u)0 ≥ 〈f, v〉 − g[j(v) − j(u)] .

This is a saddle point problem with the bilinear forms α(σ, τ) = (σ, τ)0 on X × X ,

β(σ, u) = −(σ,∇ u)0 on X ×M , where X = Ld
2(Ω),M = H1

0 (Ω) and (·, ·) denotes

the Ld
2, respectively L2 scalar product.

Let again TN (N ∈ IN) denote a shape regular sequence of meshes consisting of affine

quadrilaterals Q ∈ TN with diameter hN,Q and let Πp(Q) be the tensor product space

of polynomials of degree p in each variable. Then appropriate FE subspaces are

XN = {τN ∈ Ld
2(Ω) : τN | Q ∈ (Πp−1N,Q(Q))d , ∀Q ∈ TN} ,

MN = {vN ∈ H1
0 (Ω) : vN | Q ∈ (ΠpN,Q(Q))2 , ∀Q ∈ TN} .

We again use (L1, L∞) duality and now the representation

j(v) = sup
{

∫

Ω

∇ v · µ dx : µ ∈ Ld
∞(Ω), |µ| ≤ 1

}

,

where Ld
∞(Ω) is endowed with the norm

|µ| = ess sup
ξ∈Ω

|µ(ξ)| = ess sup
ξ∈Ω

[
d

∑

k=1

µ2
k(ξ)]

1/2 ,

that is equivalent to the norm

‖µ‖∞ = ess sup
ξ∈Ω

max
k=1,...,d

|µk(ξ)| .

Thus we can modify the arguments of the proof of Theorem 2 and arrive at an analo-

gous convergence result for the considered mixed hp-fem approximation.
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