On Higher Order Approximation for Nonlinear Variational Problems in Nonsmooth Mechanics

J. Gwinner
Department of Aerospace Engineering Universität der Bundeswehr München, Germany

Abstract

This paper is concerned with the $h p$-version of the finite element method ($h p$-FEM) to treat a variational inequality that models frictional contact in linear elastostatics. Such an approximation of higher order leads to a nonconforming discretization scheme. We employ Gauss-Lobatto quadrature for the approximation of the nonsmooth frictiontype functional and take the resulting quadrature error into account in the error analysis. We prove convergence of the $h p$-FEM Galerkin solution in the energy norm. To this end we investigate Glowinski convergence for the friction-type functional. The key of our norm convergence result for the $h p-$ FEM is the used Gauss-Lobatto integration rule with its high exactness order and its positive weights together with a duality argument in the sense of convex analysis. Then we discuss how our convergence analysis can be further extended to other nonlinear variational problems from nonsmooth mechanics. In particular we treat the Bingham fluid problem and propose a mixed $h p$-FEM discretization scheme with analogous convergence properties.

Keywords: nonsmooth mechanics, contact, friction, $h p$-FEM, nonconforming approximation, Gauss-Lobatto quadrature.

1 Introduction

This paper is concerned with the $h p$-version of the finite element method ($h p$-FEM) to treat a variational inequality in a vectorial Sobolev space that models bilateral frictional contact in linear elastostatics. Thus we extend recent work [1] for the boundary element method to a larger class of nonlinear variational problems that are treatable by the finite element method.
By the pioneering work of Babuška and co-workers, the exponentially fast convergence of the $h p$-FEM for linear elliptic problems is well-known. Recently M. Mais-
chak and E.P. Stephan [2, 3], respectively P. Dörsek and J.M. Melenk [4, 5] showed superior convergence properties of adaptive $h p$ - boundary element methods ($h p-\mathrm{BEM}$) , respectively adaptive $h p$ - finite element methods in numerical experiments also for unilateral, nonsmooth problems compared to the standard h-version.
Such an approximation of higher order leads to a nonconforming discretization scheme. In contrast to previous work [6] we employ Gauss-Lobatto quadrature for the approximation of the nonsmooth friction-type functional and take the resulting quadrature error into account of the error analysis.
Here without any regularity assumptions, we prove convergence of the $h p$-FEM Galerkin solution in the energy norm. To this end we investigate Glowinski convergence for the friction-type functional. The key of our norm convergence result for the $h p-$ FEM is the used Gauss-Lobatto integration rule with its high exactness order and its positive weights together with a duality argument in the sense of convex analysis. Thus our convergence analysis complements prior work of M. Maischak and E.P. Stephan [3] on $h p-$ BEM for frictionless unilateral contact and more recent work of P. Dörsek and J.M. Melenk [4] on a mixed $h p-$ FEM for frictional bilateral contact.

Then we discuss how our convergence analysis can be further extended to other nonlinear variational problems from nonsmooth mechanics. In particular we treat the Bingham fluid problem and propose a mixed $h p$-FEM discretization scheme with analogous convergence properties.
The paper is organised as follows. In the following section 2, we shortly present two prominent examples in nonsmooth mechanics in the simplified form of a scalar variational inequality; namely a friction problem from contact mechanics and a Bingham flow problem from fluid mechanics. Then in section 3, we focus to a bilateral frictional contact problem in plane linear elastostatics, provide its variational formulation and some preliminaries for our $h p$-FEM analysis, and describe the Gauss-Lobatto quadrature. Our main result, the convergence result and its proof come in section 4. In the concluding section 5 , we discuss how our convergence analysis can be modified for the Bingham flow problem and extended to a mixed $h p$-FEM formulation.

2 A class of nonlinear variational problems from nonsmooth mechanics

In this section we review a class of problems from nonsmooth mechanics that in the terminology of Glowinski [7] can be modeled as elliptic variational inequalities of the second kind.
All these problems are considered on a bounded Lipschitz domain $\Omega \subset \mathbb{R}^{d}(d=2,3)$ with boundary $\Gamma=\partial \Omega$.

2.1 A simplified friction problem

Let $V=H^{1}(\Omega), \gamma$ denote the trace map, and define

$$
\begin{aligned}
a(u, v) & =\int_{\Omega} \nabla u \cdot \nabla v d x+\int_{\Omega} u v d x \\
\ell(v) & =\langle f, v\rangle, f \in V^{*} \\
j(v) & =g \int_{\Gamma}|\gamma v| d \Gamma, \text { where } g>0 .
\end{aligned}
$$

Then find $u \in V$ such that for all $v \in V$,

$$
a(u, v-u)+j(v)-j(u) \geq \ell(v-u) .
$$

This variational problem is the simplified version of a friction problem in linear elasticity. Here we can refer to Duvaut and Lions [8] and also to the following section of the present paper, where we treat a full vectorial variational problem that describes frictional contact in plane linear elasticity.

2.2 Laminar stationary flow of a Bingham fluid

Let $V=H_{0}^{1}(\Omega)$ and define

$$
\begin{aligned}
a(u, v) & =\int_{\Omega} \nabla u \nabla v d x \\
\ell(v) & =\langle f, v\rangle, f \in V^{*} \\
j(v) & =\int_{\Omega}|\nabla v| d x .
\end{aligned}
$$

Then with $\mu>0, g>0$ fixed, find $u \in V$ such that for all $v \in V$

$$
\mu a(u, v-u)+g j(v)-g j(u) \geq \ell(v-u) .
$$

If $\ell(v)=C \int_{\Omega} v d x$ (with positive C, the linear decay of pressure), then this variational problem models the laminar stationary flow of a Bingham fluid in a cylindrical pipe of cross section Ω, where $u(x)$ describes the velocity at $x \in \Omega$. The parameters μ, g are, respectively, the viscosity and plasticity yield of the fluid. The Bingham fluid behaves like a viscous fluid in

$$
\Omega^{+}=\{x \in \Omega:|\nabla u(x)|>0\}
$$

and like a rigid medium in

$$
\Omega^{0}=\{x \in \Omega: \nabla u(x)=0\} .
$$

For a full vectorial numerical analysis of viscoplastic fluid flow problems we refer to [9].

3 The bilateral frictional contact problem and its $h p$ FEM approximation

Let us consider an elastic body represented by a bounded domain $\Omega \subset \mathbb{R}^{2}$ with a Lipschitz boundary Γ that splits into three disjoint parts $\Gamma_{0}, \Gamma_{T}, \Gamma_{c}$ such that $\Gamma=\overline{\Gamma_{0}} \cup$ $\overline{\Gamma_{T}} \cup \overline{\Gamma_{c}}$. Zero displacements are prescribed on Γ_{0}, surface tractions $\underline{T} \in\left(L^{2}\left(\Gamma_{T}\right)\right)^{2}$ act on Γ_{T}, and on the part Γ_{c} Tresca friction conditions between the body and a perfectly rigid foundation hold. In the model of Tresca friction (given friction) one assumes a known slip bound $g \in L^{\infty}\left(\Gamma_{c}\right), g \geq 0$. Moreover, the body is subject to body forces $\underline{F} \in\left(L^{2}(\Omega)\right)^{2}$. To simplify matters, we assume meas $\left(\Gamma_{0}\right)>0$; otherwise we can resort to a recession analysis to treat the so called semi-coercive case; see [10] for the standard h-FEM.
We denote by $H^{s}()$ the usual Sobolev spaces on Ω or on parts of Γ with norms defined using the Slobodeckij semi-norms. We also use the short $\underline{H}^{s}=\left(H^{s}\right)^{2}$ for the vectorial Sobolev spaces. In particular, we have the space of virtual displacements

$$
\mathcal{V}=\left\{\underline{v} \in \underline{H}^{1}(\Omega) \mid \gamma_{0} \underline{v}=0\right\},
$$

where $\gamma_{o}=\gamma_{\Gamma 0}: \underline{H}^{1}(\Omega) \rightarrow \underline{H}^{\frac{1}{2}}\left(\Gamma_{0}\right)$ is the trace map onto Γ_{0}. Here, likewise $\gamma_{c}=$ $\gamma_{\Gamma c}: \underline{H}^{1}(\Omega) \rightarrow \underline{H}^{\frac{1}{2}}\left(\Gamma_{c}\right) \subset\left(L^{2}\left(\Gamma_{c}\right)\right)^{2}$, and with the unit outer normal $\underline{n} \in\left(L^{\infty}(\Gamma)\right)^{2}$ to the boundary, a vector field \underline{w} at the boundary has its normal component $w_{n}=\underline{w} \cdot \underline{n}$ and its tangential component $\underline{w}_{t}=\underline{w}-w_{n} \underline{n}$.
Adopting standard notations from linear elasticity, $\varepsilon(\underline{v})=\frac{1}{2}\left(\nabla \underline{v}+\nabla \underline{v}^{T}\right)$ denotes the small strain tensor to the displacement field \underline{v} and $\sigma(\underline{v})=C: \varepsilon(\underline{v})$ the stress tensor. Here, C is the Hooke tensor, assumed to be uniformly positive definite with L^{∞} coefficients. This leads to the bilinear form, linear functional, sublinear functional, and to the total potential energy of the body, respectively,

$$
\begin{aligned}
a(\underline{u}, \underline{v}) & =\int_{\Omega} \varepsilon(\underline{u}): C: \varepsilon(\underline{v}) d x, \\
l(\underline{v}) & =\int_{\Omega} \underline{F} \cdot \underline{v} d x+\int_{\Gamma_{T}} \underline{T} \cdot \underline{v} d s, \\
j(\underline{v}) & =\int_{\Gamma_{c}} g\left|\underline{v}_{t}\right| d s, \\
J(\underline{v}) & =\frac{1}{2} a(\underline{v}, \underline{v})-l(\underline{v})+j(\underline{v}) .
\end{aligned}
$$

In these terms, the variational formulation of the unilateral contact problem with Tresca friction reads as follows: Find a minimizer $\underline{u} \in \mathcal{V}$ of the functional $J(\underline{v}), \underline{v} \in$ \mathcal{V} !
Another equivalent formulation is the variational inequality problem (π) of second kind: Find $\underline{u} \in \mathcal{V}$ such that for all $\underline{v} \in \mathcal{V}$,

$$
\begin{equation*}
a(\underline{u}, \underline{v}-\underline{u})+j(\underline{v})-j(\underline{u}) \geq l(\underline{v}-\underline{u}) . \tag{1}
\end{equation*}
$$

There exists a unique solution \underline{u} (see e.g. [11, 12]), since Γ_{0} has positive measure and hence the bilinear form is coercive by Korn's inequality, see e.g. [8] . Moreover there is the a priori estimate

$$
\begin{equation*}
a(\underline{u}, \underline{u}) \leq c_{0}+c_{1}\|\underline{u}\|_{\underline{H}^{1}(\Omega)} \tag{2}
\end{equation*}
$$

for some constants $c_{0}, c_{1} \geq 0$.
For simplicity let Ω be a polygonal, planar domain and let g be a piecewise constant function on Γ_{C}. These are no restrictions of generality. In fact, the $h p$ - finite element approximation on curvilinear domains is well-understood, see [13]. The analysis to follow can be extended to higher dimensional domains by tensor product approximation.
To conclude the preliminaries for our finite element analysis we state an essential hypothesis, namely the density relation

$$
\begin{equation*}
\overline{\mathcal{V} \cap\left[C^{\infty}(\bar{\Omega})\right]^{2}}=\mathcal{V} . \tag{3}
\end{equation*}
$$

We note that (see [12]) (3) holds true in the polygonal domain Ω, if there is only a finite number of "end-points" $\bar{\Gamma}_{c} \cap \bar{\Gamma}_{T}, \bar{\Gamma}_{0} \cap \bar{\Gamma}_{T}, \bar{\Gamma}_{c} \cap \bar{\Gamma}_{0}$.
Let $\mathcal{T}_{N}(N \in \mathbb{N})$ be a shape regular [14] sequence of meshes consisting of affine quadrilaterals $Q \in \mathcal{T}_{N}$ with diameter $h_{N, Q}$ such that all corners of Γ and all "end points" $\bar{\Gamma}_{c} \cap \bar{\Gamma}_{T}, \bar{\Gamma}_{T} \cap \bar{\Gamma}_{0}, \bar{\Gamma}_{0} \cap \bar{\Gamma}_{c}$ are nodes of \mathcal{T}_{N}. Moreover, we introduce the set of edges on the contact boundary,

$$
\mathcal{E}_{c, N}=\left\{E: E \subset \Gamma_{c} \text { is an edge of } \mathcal{T}_{N}\right\}
$$

and assume that g is constant on each edge $E \in \mathcal{E}_{c, N}$. Obviously, for every $E \in \mathcal{E}_{c, N}$ there exists a unique $Q_{E} \in \mathcal{T}_{N}$ such that E is an edge of Q_{E}.
Further we denote by $p_{N, Q} \in \mathbb{N}$ a polynomial degree for each $Q \in \mathcal{T}_{N}$. We assume that neighboring elements have comparable polynomial degrees, i.e. there exists a constant $c>0$ such that for elements $Q, Q^{\prime} \in \mathcal{T}_{N}$ with $\bar{Q} \cap \overline{Q^{\prime}} \neq \emptyset$ there holds

$$
c^{-1} p_{N, Q} \leq p_{N, Q^{\prime}} \leq c p_{N, Q}
$$

Let $\Pi^{p}(Q)$ be the tensor product space of polynomials of degree p in each variable. This gives the FE subspace

$$
\mathcal{V}_{N}=\left\{\underline{v}_{N} \in \mathcal{V}: \underline{v}_{N} \mid Q \in\left(\Pi^{p_{N, Q}}(Q)\right)^{2}, \forall Q \in \mathcal{T}_{N}\right\} .
$$

We employ Gauss-Lobatto quadrature in the discretization procedure. To this end we introduce for $q \geq 1$ on the reference interval $[-1,1]$ the $q+1$ Gauss-Lobatto points, i.e., the zeros $\xi_{j}^{q+1}(0 \leq j \leq q)$ of $\left(1-\xi^{2}\right) L_{q}^{\prime}(\xi)$, where L_{q} denotes the Legendre polynomial of degree q. Note that $\xi_{0}^{q+1}=-1$ and $\xi_{q}^{q+1}=1$ are the end points of the reference interval. It is known (see [15], chapter I, section 4) that there exist positive weights

$$
\omega_{j}^{q+1}:=\frac{1}{q(q+1) L_{q}^{2}\left(\xi_{j}^{q+1}\right)}
$$

such that the quadrature formula

$$
\int_{-1}^{1} \phi(\xi) d \xi=\sum_{j=0}^{q} \omega_{j}^{q+1} \phi\left(\xi_{j}^{q+1}\right)
$$

is exact for all polynomials ϕ up to degree $2 q-1$.
For any $E \in \mathcal{E}_{c, N}$ we introduce the quadrature order $q_{N, E}$ such that $q_{N, E}=p_{N, Q_{E}}$. By affine transformation $F_{E}:[-1,1] \rightarrow \bar{E}$ we define the set $G_{E, N}$ of $q_{N, E}+1$ GaussLobatto points for each element E of $\mathcal{E}_{c, N}$ and set $G_{c, N}:=\bigcup\left\{G_{E, N}: E \in \mathcal{E}_{c, N}\right\}$.
We approximate the nonlinear nonsmooth functional j using the above quadrature rule by

$$
j_{N}(\underline{v})=j_{c, N}\left(\gamma_{c} \underline{v}\right)_{t}, j_{c, N}(\psi)=\sum_{E \in \mathcal{E}_{c, N}} g_{E} \sum_{j=0}^{q_{N, E}} \omega_{j}^{q_{N, E}+1}\left|\psi \circ F_{E}\left(\xi_{j}^{q_{N, E}+1}\right)\right|,
$$

where g_{E} denotes the constant value of the function g on E. Then $j_{N}, j_{c, N}$ are sublinear functionals, with $j_{c, N}$ uniformly bounded on $C\left(\overline{\Gamma_{c}}\right)$. Note that for the piecewise polygonal boundary $\Gamma, \underline{v}_{t} \circ F_{E}$ is piecewise polynomial of the same degree as \underline{v}.
Thus we arrive at the following discrete variational problem $\left(\pi_{N}\right)$ as approximation to our variational problem (π) : Find $\underline{u}_{N} \in \mathcal{V}_{N}$ such that for all $\underline{v}_{N} \in \mathcal{V}_{N}$

$$
\begin{equation*}
a\left(\underline{u}_{N}, \underline{v}_{N}-\underline{u}_{N}\right)+j_{N}\left(\underline{v}_{N}\right)-j_{N}\left(\underline{u}_{N}\right) \geq l\left(\underline{v}_{N}-\underline{u}_{N}\right) . \tag{4}
\end{equation*}
$$

Similarly to the above bound (2) we obtain the a priori bound

$$
\begin{equation*}
a\left(\underline{u}_{N}, \underline{u}_{N}\right) \leq c_{0}+c_{1}\left\|\underline{u}_{N}\right\|_{\underline{H}^{1}(\Omega)} \tag{5}
\end{equation*}
$$

for some constants $c_{0}, c_{1} \geq 0$ independent of N.
Note that we only replaced the nonlinear functional j by its approximate j_{N}. In most computations, however, also a and l have to be replaced by some approximations that take into account e.g. numerical integration or approximation of a curved boundary. Since such approximations are well documented in the literature of $h-$ and $h p-\mathrm{fi}-$ nite element analysis of elliptic boundary value problems (see [13, 14]), we omit this aspect here.
Associated to the Gauss-Lobatto points $G_{E, N}$ we have the local interpolation operator $i_{E, q}=i_{E, N}: C^{0}(\bar{E}) \rightarrow \mathcal{P}_{q}(E)$ with $q=q_{N, E}$ given by

$$
\left(i_{E, N} \eta\right)(x)=\eta(x), \forall x \in G_{E, N}, \eta \in C^{0}(\bar{E})
$$

and the global interpolation operator $i_{c, N}$ on $C^{0}\left(\overline{\Gamma_{c}}\right)$ defined by

$$
i_{c, N} \eta=\sum_{E \in \mathcal{E}_{c, N}}\left(i_{E, N} \eta\right) \mid \bar{E}, \forall \eta \in C^{0}(\bar{\Gamma}) .
$$

Likewise associated to the Gauss-Lobatto points $G_{Q, N}=F_{Q}\left\{\left(\xi_{i}^{p+1}, \xi_{j}^{p+1}\right) \mid 0 \leq i, j \leq\right.$ $p\}$ with $p=p_{N, Q}$ and the affine transformation $F_{Q}:[-1,1]^{2} \rightarrow \bar{Q}$ we have the local interpolation operator $i_{Q, p}=i_{Q, N}: C^{0}(\bar{Q}) \rightarrow \mathcal{P}_{p}(Q)$ with $p=p_{N, E}$ given by

$$
\left(i_{Q, N} \psi\right)(x)=\psi(x), \forall x \in G_{Q, N}, \psi \in C^{0}(\bar{Q})
$$

and the global interpolation operator i_{N} on $C^{0}(\bar{\Omega})$ defined by

$$
i_{N} \psi=\sum_{Q \subset \Omega}\left(i_{Q, N} \psi\right) \mid \bar{Q}, \forall \psi \in C^{0}(\bar{\Omega}) .
$$

For later use we recall from [15, Theorem 13.4, Theorem 14.2] the following results on the polynomial interpolation error in the reference interval $\hat{E}=(-1,1)$, respectively in the reference square $\hat{Q}=(-1,1)^{2}$.

Theorem 1 (i) For any real numbers r and s satisfying $s>(1+r) / 2$ and $0 \leq r \leq 1$, there exists a positive constant c depending only on s such that for any function $\eta \in$ $H^{s}(\hat{E})$ the following estimate holds

$$
\begin{equation*}
\left\|\eta-i_{\hat{E}, q} \eta\right\|_{H^{r}(\hat{E})} \leq c q^{r-s}\|\eta\|_{H^{s}(\hat{E})} . \tag{6}
\end{equation*}
$$

(ii) For any real numbers r and s satisfying $s>1+r / 2$ and $0 \leq r \leq 1$, there exists a positive constant c depending only on such that for any function $\psi \in H^{s}(\hat{Q})$ the following estimate holds

$$
\begin{equation*}
\left\|\eta-i_{\hat{Q}, p} \psi\right\|_{H^{r}(\hat{Q})} \leq c p^{r-s}\|\psi\|_{H^{s}(\hat{Q})} . \tag{7}
\end{equation*}
$$

4 The $h p$ - approximation result

Without any regularity assumption for the solution \underline{u} of (π) we can show the following convergence result for the $h p-$ FEM solutions \underline{u}_{N} of $\left(\pi_{N}\right)$ in the energy norm.

Theorem 2 Suppose that for the polygonal domain Ω, there are only a finite number of "end points" $\bar{\Gamma}_{c} \cap \bar{\Gamma}_{0}, \bar{\Gamma}_{c} \cap \bar{\Gamma}_{T}, \bar{\Gamma}_{T} \cap \bar{\Gamma}_{c}$. Then for $N \rightarrow \infty$ with $\min _{Q \in \mathcal{I}_{N}} h_{N, Q}^{-1} p_{N, Q} \rightarrow$ ∞ there holds $\underline{u}_{N} \rightarrow \underline{u}$ with respect to the $\underline{H}^{1}(\Omega)$ norm.

Proof.

Here we use the discretization theory of Glowinski [7]. Thus we have to show the following hypotheses:

H1 If $\underline{v}_{N} \rightharpoonup \underline{v}$ (weak convergence) in \mathcal{V} for $N \rightarrow \infty$, then

$$
\liminf _{N \rightarrow \infty} j_{N}\left(\underline{v_{N}}\right) \geq j(\underline{v}) .
$$

H2 There exist a subset $M \subset \mathcal{V}$ dense in \mathcal{V} and mappings $\varrho_{N}: M \rightarrow \mathcal{V}_{N}$ such that, for each $\underline{w} \in M, \varrho_{N}(\underline{w}) \rightarrow \underline{w}$ for $N \rightarrow \infty$,

$$
\lim _{N \rightarrow \infty} j_{N}\left(\varrho_{N}(\underline{w})\right)=j(\underline{w}) .
$$

Classical $h-$ FEM convergence for the variational problem under study is already treated in [6], where Newton-Cotes formulas in numerical quadrature are used instead of Gauss-Lobatto quadrature. Inspecting the proof of [6, Theorem 4.1] shows that the norm convergence for a fixed quadrature order hinges on the positiveness of the quadrature weights, what is satisfied for all quadrature orders with Gauss-Lobatto quadrature. Therefore in the following we can focus to the case where $h_{N, Q}$ is fixed for all $Q \in \mathcal{T}_{N}$ and $\min _{Q \in \mathcal{I}_{N}} p_{N, Q} \rightarrow \infty$.
To verify H1 it is enough to show that for any $\mu \in C^{0}(\Gamma)$ with $|\mu| \leq 1$ on Γ_{c} there holds

$$
\begin{equation*}
\int_{\Gamma_{C}} g \underline{v}_{t} \mu d s \leq \liminf _{N \rightarrow \infty} j_{N}\left(\underline{v}_{N}\right), \tag{8}
\end{equation*}
$$

since by duality with respect to $\left(L^{1}, L^{\infty}\right)$ and density

$$
j(\underline{v})=\sup \left\{\int_{\Gamma_{c}} g \underline{v}_{t} \mu d s: \mu \in C^{0}(\Gamma),|\mu| \leq 1\right\} .
$$

Moreover, since the mesh \mathcal{T}_{N} is independent of N, we can simply consider the above integrals on any fixed edge $E \in \mathcal{E}_{c, N}$. Thus fix $\mu \in C^{0}[\bar{E}]$ with $|\mu| \leq 1$ and also $q:=$ $q_{N, E}$. We approximate these functions by a combination of Bernstein polynomials B_{q} with the local mapping $F_{E}:[-1,1] \rightarrow \bar{E}$ to define μ_{q} via

$$
\mu_{q}(t)=\left(B_{q} \mu \circ F_{E}\right)(t):=\sum_{k=0}^{q}\binom{q}{k}\left(\frac{1+t}{2}\right)^{k}\left(\frac{1-t}{2}\right)^{q-k}\left(\mu \circ F_{E}\right)\left(\frac{2 k}{q}-1\right) .
$$

Since the Bernstein operators are monotone, $\left|\mu_{q}\right| \leq 1$. By [16, Chapter 1, Theorem 2.3],

$$
\begin{equation*}
\lim _{q \rightarrow \infty}\left\|\mu_{q}-\mu\right\|_{L^{\infty}(E)}=0 \tag{9}
\end{equation*}
$$

Since the embedding $H^{1 / 2}(\Gamma) \hookrightarrow L^{1}(E)$ is weakly continuous, $\underline{v}_{N} \rightharpoonup \underline{v}$ in $L^{1}(E)$ and $\left\|\underline{v}_{N}\right\|_{\left(L^{1}(E)\right)^{2}}$ is bounded. Therefore from

$$
\begin{aligned}
& \left|\int_{E}\left[\underline{v}_{N, t} \mu_{q_{N, E}-1}-\underline{v}_{t} \mu\right] d t\right| \\
& \leq\left\|\underline{v}_{N, t}\right\|_{L^{1}(E)}\left\|\mu_{q_{N, E}-1}-\mu\right\|_{L^{\infty}(E)} \\
& \quad+\left|\int_{E}\left[\underline{v}_{N, t}-\underline{v}_{t}\right] \mu d t\right|
\end{aligned}
$$

(9) and using $\mu \in L^{\infty}(e)=\left(L_{1}(e)\right)^{*}$, we conclude

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{E} \underline{v}_{N, t} \mu_{q_{N, E}-1} d t=\int_{E} \underline{v}_{t} \mu d t \tag{10}
\end{equation*}
$$

On the other hand, $\underline{v}_{N, t} \mid E \mu_{q_{N, E}-1}$ are polynomials of degree $2 q-1$. Hence the above integrals can be evaluated exactly by the Gauss-Lobatto quadrature formula to obtain

$$
\int_{E} \underline{v}_{N, t} \mu_{q_{N, E}-1} d t=\sum_{j=0}^{q} \omega_{j}^{q+1}\left(\underline{v}_{N, t} \mu_{q-1}\right) \circ F_{E}\left(\xi_{j}^{q+1}\right)
$$

Since the weights $\omega_{j}^{q+1}>0,\left|\mu_{q-1}\right| \leq 1, g_{e} \geq 0$ we arrive at

$$
\begin{aligned}
& g_{E} \int_{E} \underline{v}_{N, t} \mu_{q_{N, E}-1} d t \leq g_{E} \sum_{j=0}^{q} \omega_{j}^{q+1}\left|\underline{v}_{N, t} \circ F_{E}\left(\xi_{j}^{q+1}\right)\right|=: j_{E, N}\left(\underline{v}_{N}\right), \\
& \sum_{E \in \mathcal{E}_{c, N}} j_{E, N}\left(\underline{v}_{N}\right)=j_{N}\left(\underline{v}_{N}\right) .
\end{aligned}
$$

In view of (10) this proves our claim (8).
In the last step let us prove H 2 .
By the finiteness assumption we have due to [12] the density relation

$$
\overline{\mathcal{V} \cap\left[C^{\infty}(\Omega)\right]^{2}}=\mathcal{V}
$$

Therefore we can take $M=\left[C^{\infty}(\Omega)\right]^{2}$ and define $\varrho_{N}: M \rightarrow \mathcal{V}_{N}$ by $\varrho_{N}:=i_{N}$. By Theorem 1(ii), $\varrho_{N} \underline{w} \rightarrow \underline{w}$ in $\underline{H}^{1}(\Omega)$. Finally by $j_{N}(\underline{w})=j\left(\varrho_{N} \underline{w}\right)$, we conclude for $N \rightarrow \infty$,

$$
\begin{aligned}
& \left|j(\underline{w})-j_{N}\left(\varrho_{N} \underline{w}\right)\right| \leq\left|j(\underline{w})-j\left(\varrho_{N} \underline{w}\right)\right|+\left|j_{N}(\underline{w})-j_{N}\left(\varrho_{N} \underline{w}\right)\right| \\
& \leq\|g\|_{L^{\infty}\left(\Gamma_{c}\right)}\left[\left\|\underline{w}_{t}-\left(\varrho_{N} \underline{w}\right)_{t}\right\|_{L^{1}\left(\Gamma_{c}\right)}+\left\|\underline{w}_{t}-\left(\varrho_{N} \underline{w}\right)_{t}\right\|_{L^{\infty}\left(\Gamma_{c}\right)}\right] \rightarrow 0 .
\end{aligned}
$$

5 Concluding remarks on the Bingham fluid problem

The primal variational formulation of the simplified Bingham fluid problem given in section 2 corresponds to the strong formulation

$$
f \in g \partial j(u)-\Delta u
$$

where ∂j denotes the subdifferential of the sublinear functional j in the sense of convex analysis. We modify the well-known reformulation of the classic Poisson
problem with zero Dirichlet boundary condition as a saddle point problem and write $\Delta u=\operatorname{div} \sigma, \sigma=\nabla u$. This leads to the following mixed formulation: Find $(\sigma, u) \in$ $L_{2}^{d}(\Omega) \times H_{0}^{1}(\Omega)$ such that for all $(\tau, v) \in L_{2}^{d}(\Omega) \times H_{0}^{1}(\Omega)$

$$
\left\{\begin{aligned}
(\sigma, \tau)_{0}-(\tau, \nabla u)_{0} & =0 \\
(\sigma, \nabla v-\nabla u)_{0} & \geq\langle f, v\rangle-g[j(v)-j(u)] .
\end{aligned}\right.
$$

This is a saddle point problem with the bilinear forms $\alpha(\sigma, \tau)=(\sigma, \tau)_{0}$ on $X \times X$, $\beta(\sigma, u)=-(\sigma, \nabla u)_{0}$ on $X \times M$, where $X=L_{2}^{d}(\Omega), M=H_{0}^{1}(\Omega)$ and (\cdot, \cdot) denotes the L_{2}^{d}, respectively L_{2} scalar product.
Let again $\mathcal{T}_{N}(N \in \mathbb{N})$ denote a shape regular sequence of meshes consisting of affine quadrilaterals $Q \in \mathcal{T}_{N}$ with diameter $h_{N, Q}$ and let $\Pi^{p}(Q)$ be the tensor product space of polynomials of degree p in each variable. Then appropriate FE subspaces are

$$
\begin{aligned}
& X_{N}=\left\{\tau_{N} \in L_{2}^{d}(\Omega): \tau_{N} \mid Q \in\left(\Pi^{p-1_{N, Q}}(Q)\right)^{d}, \forall Q \in \mathcal{T}_{N}\right\} \\
& M_{N}=\left\{v_{N} \in H_{0}^{1}(\Omega): v_{N} \mid Q \in\left(\Pi^{p_{N, Q}}(Q)\right)^{2}, \forall Q \in \mathcal{T}_{N}\right\}
\end{aligned}
$$

We again use $\left(L^{1}, L^{\infty}\right)$ duality and now the representation

$$
j(v)=\sup \left\{\int_{\Omega} \nabla v \cdot \mu d x: \mu \in L_{\infty}^{d}(\Omega),|\mu| \leq 1\right\}
$$

where $L_{\infty}^{d}(\Omega)$ is endowed with the norm

$$
|\mu|=\operatorname{ess} \sup _{\xi \in \Omega}|\mu(\xi)|=\operatorname{ess} \sup _{\xi \in \Omega}\left[\sum_{k=1}^{d} \mu_{k}^{2}(\xi)\right]^{1 / 2},
$$

that is equivalent to the norm

$$
\|\mu\|_{\infty}=\operatorname{ess} \sup _{\xi \in \Omega} \max _{k=1, \ldots, d}\left|\mu_{k}(\xi)\right| .
$$

Thus we can modify the arguments of the proof of Theorem 2 and arrive at an analogous convergence result for the considered mixed $h p$-fem approximation.

References

[1] J. Gwinner, "On the p-version approximation in the boundary element method for a variational inequality of the second kind modelling unilateral contact and given friction", Appl. Numer. Math. 59, 2774-2784, 2009.
[2] M. Maischak, E.P. Stephan, "Adaptive $h p$-versions of BEM for Signorini problems", Appl. Numer. Math. 54, 425-449, 2005.
[3] M. Maischak, E.P. Stephan, "Adaptive $h p$-versions of boundary element methods for elastic contact problems", Comput. Mech. 39, 597-607, 2007.
[4] P. Dörsek, J.M. Melenk, "Adaptive hp-FEM for the contact problem with Tresca friction in linear elasticity: The primal - dual formulation and a posteriori error estimation", Appl. Numer. Math. 60, 689 - 704, 2010.
[5] P. Dörsek, J.M. Melenk, "Adaptive hp-FEM for the contact problem with Tresca friction in linear elasticity: The primal formulation", in "Proceedings of ICOSAHOM 2009", Lecture Notes in Computational Science and Engineering 76, Springer, Berlin, 1-17, 2011.
[6] J. Gwinner, "Finite-element convergence for contact problems in plane linear elastostatics", Quart. Appl. Math. 50, 11 - 25, 1992.
[7] R. Glowinski, "Numerical methods for nonlinear variational problems", Springer, New York, 1984.
[8] G. Duvaut and J.L. Lions, "Inequalities in mechanics and physics", Springer, Berlin, 1976.
[9] R. Glowinski, A. Wachs, "On the numerical simulation of viscoplastic fluid flow", in "Handbook of Numerical Analysis XVI", P.G. Ciarlet (Editor), Elsevier, Amsterdam, 483-717, 2011.
[10] J. Gwinner, "Discretization of semicoercive variational inequalities", Aequationes Math. 42, 72-79, 1991.
[11] C. Eck, J. Jarušek, M. Krbec, "Unilateral contact problems - Variational methods and existence theorems", Chapman \& Hall / CRC, Boca Raton, 2005.
[12] I. Hlavaček, J. Haslinger, J. Nečas, J. Lovišek, "Numerical Solution of Variational Inequalities", Springer, New York, 1988.
[13] I. Babuska, M. Suri, "The p and h-p version of the finite element method, basic principles and properties", SIAM Rev., 36, 578-632, 1994.
[14] Ch. Schwab, , " p - and $h p$-finite element methods. Theory and applications in solid and fluid mechanics", Clarendon Press, Oxford, 1998.
[15] C. Bernardi, Y. Maday, "Spectral Methods", in "Handbook of Numerical Analysis V, part 2", P.G. Ciarlet, J.L. Lions (Editors), Elsevier, Amsterdam, 209-485, 1997.
[16] R.A.D. Vore, G.G. Lorentz, "Constructive Approximation: Polynomials and Splines Approximation", Springer, Berlin, 1993.

