
Abstract

Penalty methods are used in finite element analysis to model constraints for a wide

range of problem types. A major drawback of the method, however, is that the tra-

ditional formulation can introduce spurious eigenfrequencies of large magnitude. In

explicit dynamics the critical time step of an analysis depends on the maximum eigen-

frequency in such a way that it may be drastically decreased by the addition of penalty

constraints, increasing total expense and the risk of instability. This problem may be

solved using the bipenalty method, which includes mass penalties alongside the stan-

dard stiffness penalty formulation. In this paper, we formulate the bipenalty method

for an arbitrary set of constraint equations and show that the spurious eigenfrequen-

cies tend to a finite value determined by the ratio of the stiffness and mass penalty

parameters. Through numerical examples, we demonstrate that the method may be

utilised such that time step stability is ensured, whilst also displaying superiority over

the standard mass penalty method in terms of accuracy and versatility.

Keywords: finite element methods, constraints, penalty methods, stability, explicit

dynamics, critical time step.

1 Introduction

The imposition of constraints is necessary for many types of numerical analysis. They

are expressed as a set of equations that accompany the usual system of simultaneous

equations to be solved, often enforcing boundary conditions and any other special re-

lationships between degrees of freedom (DOF). In finite element (FE) analysis, one of

the most popular techniques for imposing constraints is the use of penalty functions.

Typically, penalty functions are applied by modification of the stiffness matrix of a

system. In fact, they can be understood to represent artificial springs of large stiffness
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which act to enforce the given constraints. Increasing these virtual stiffness values

gives greater accuracy of constraint imposition. Compared to other techniques (e.g.

Lagrange multipliers, direct transformation), the penalty method is simple to formu-

late and implement, and it has the advantage of preserving the size of the system. The

main disadvantage is that the constraints are not enforced exactly (although, if care is

taken, errors in constraint imposition can usually be kept within acceptable bounds).

However, when standard penalty methods are transferred to the field of explicit dy-

namic analysis the method has a further disadvantage. The stability of conditionally

stable time integrators is reliant on the time step of the analysis being below the crit-

ical time step ∆tcrit, which is related to the maximum eigenfrequency of the system.

Adding additional stiffness into the system causes an increase in the maximum eigen-

frequency, which decreases the critical time step. When this is accounted for by the

analyst the total simulation time may be drastically increased; if it is not accounted

for, instability may occur.

A related method which does not exhibit this disadvantage is the mass penalty

method [1]. Mass penalties operate on the mass matrix of the system rather than the

stiffness matrix (and therefore can only be used in dynamic analyses); they can be

understood as virtual inertia values which enforce constraints in a similar way to the

virtual springs of the stiffness penalty method. Adding additional mass to the sys-

tem does not increase the maximum eigenfrequency and so the critical time step is

not affected. However, they are ineffectual in circumstances where a violation of the

displacement constraint is not accompanied by a violation of the corresponding accel-

eration constraint. Perhaps the most prominent example of this is the field of contact-

impact, where penetration (displacement constraint violation) may occur without any

relative difference in acceleration.

In this paper, we investigate the bipenalty method: the use of both stiffness and

mass penalty functions simultaneously. The goal is to combine the accuracy and

versatility of the well-established stiffness penalty method with the superior stabil-

ity behaviour of mass penalties. In order to investigate this we examine dynamic finite

element systems, with time integration carried out using the explicit central difference

method (CDM). Some treatments of the bipenalty method already exist in the litera-

ture [2–6]; our goal in the present contribution is to formulate the method involving

a set of k arbitrary constraints (involving any number of DOF) and to give a precise

analysis of the resulting eigenproblem, so that robust guidelines for the selection of

penalty parameters can be developed.

2 Formulation of the bipenalty method

Presently, we consider the standard finite element discretisation of the equations of

elastodynamics, written in matrix form as

Mü+Ku = f (1)
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where M and K are the mass and stiffness matrices, respectively, u is the displacement

vector containing the n solution variables, f is the external force vector and dot notation

is used to indicate time derivatives. We assume this system has n degrees of freedom

in total.

In this section we give a bipenalty formulation for a set of k constraint equations

written as

h = Cu−q (2)

where C is the constraint matrix of size k×n, q is a vector of prescribed displacements

and h = 0 implies exact satisfaction of the constraints. The constraint matrix describes

the relationships between DOF for each constraint and we assume here that its rows

are linearly independent (i.e., there are no duplicated constraints).

The stiffness and mass penalty methods may be derived by considering the potential

energy U and kinetic energy T of the FE system. The traditional penalty method

applies a penalty function to the potential energy only, so that [7]

U =
1

2
uT Ku−uT f+

1

2
hT Psh (3)

Here, the final term is the penalty function and Ps is a diagonal matrix of size k con-

taining the penalty parameters αs, j (where j = 1 . . .k). As the penalty parameters are

increased, the minimisation of U results in a smaller constraint violation.

The mass penalty method follows from writing the above constraints in rate form

[3] as

ḣ = Cu̇− q̇ (4)

where C is assumed constant. We then proceed by considering the kinetic energy T

of the system with a similar penalty term included, so that

T =
1

2
u̇T Mu̇+

1

2
ḣT Pmḣ (5)

where Pm is a diagonal penalty matrix with the same form as Ps, but containing instead

the mass penalty parameters αm, j. The penalised equilibrium equations then follow

from
d

dt

∂T

∂ u̇T
+

∂U

∂uT
=

[

M+MP
]

ü+
[

K+KP
]

u = f+ fP (6)

where KP = CT PsC (7)

MP = CT PmC (8)

fP = CT Psq+CT Pmq̈ (9)

In general, the matrix we must add to implement a constraint using inertial penalties

has the same form as the standard stiffness penalty matrix. Implementation of the

bipenalty method merely requires us to choose a second set of penalty parameters, and

include the mass penalty matrix MP alongside KP and fP. Additionally, we note that
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it is common for the prescribed values q j to be zero, so that q = q̈ = 0 and therefore

fP = 0 in many cases.

The penalty parameters αs, j and αm, j have units of N/m and kg, respectively. How-

ever, since the accuracy of constraint imposition is dependent on the magnitude of the

parameters relative to the existing entries in K and M, it is useful to define dimen-

sionless ‘penalty factors’ that quantify the size of the penalty parameters, denoted by

ps, j and pm, j. For example, for a constraint acting on the ith DOF we use the corre-

sponding entry in K and M to give ps, j = αs, j/Kii and pm, j = αm, j/Mii. For constraints

acting on multiple DOF we use the largest diagonal entry connected with those DOF.

3 Eigenvalue analysis of the bipenalised system

Having described the general formulation of the system, we now turn our attention to

the associated eigenproblem. As previously described, the critical time step associated

with conditionally stable integrators relies on the maximum eigenfrequency of the

system ωmax; for the CDM it is given by [8]

∆tcrit =
2

ωmax

(10)

The unpenalised eigenvalue problem (UP) can be stated as

(K−λiM)ui = 0 (11)

where K and M are the (symmetric) stiffness and mass matrices, respectively, and the

eigenvectors ui and corresponding eigenvalues λi form the n solutions (ordered so that

λ1 ≤ λ2 ≤ . . . ≤ λn ≡ λmax). The corresponding eigenfrequencies are then given by

ωi =
√

λi.

The bipenalised problem (BP) is given by

(

[K+Kp]− λ̃i [M+Mp]
)

ũi = 0 (12)

The n solutions of the BP are given by ũi and λ̃i (once again ordered so that λ̃1 ≤ λ̃2 ≤
. . . ≤ λ̃n ≡ λ̃max).

In the following proofs, we assume that the ratio between stiffness and mass penalty

parameters is constant for all constraint equations. We define this penalty ratio as

R =
αs, j

αm, j
for j = 1 . . .k (13)

where R is a scalar constant with units s−2. In this case, the magnitudes of the various

penalties may vary as long as the ratio of parameters is the same for all constraint

equations, and, from (7) and (8),

KP = RMP (14)
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We shall also utilise the Rayleigh quotient, given by [8]

ρ(v) =
vT Kv

vT Mv
(15)

in the case of the unpenalised problem, where v is any non-zero vector. A useful

property of this quotient is that

ρ(βui) = λi (16)

where β 6= 0. That is, the Rayleigh quotient of any eigendirection βui is equal to its

associated eigenvalue.

3.1 Physical and non-physical eigenmodes

Our goal is to determine how bipenalisation affects the eigensolutions of an FE system

so that we may assess its influence on the maximum eigenfrequency, and therefore the

critical time step, of the system. We note also that using direct transformation in

order to impose the set of constraints given in (2) results in a reduced system of size

n− k [7]. Thus, compared to the equivalent reduced (fully constrained) system, the

penalised system has k additional eigensolutions, which are of special interest in this

case. In fact, our first observation is that it is not possible for all n eigenmodes to

satisfy the given constraints.

Proposition 1. When applying k linearly independent constraint equations to a system

of size n using the bipenalty method, at most n− k of the eigenmodes associated with

the system satisfy those constraints.

Proof. The constraint equations may be written in terms of the bipenalised eigen-

modes ũi as

hi = Cũi (17)

where hi = 0 implies the satisfaction of all constraints for the ith eigenmode. The

rank-nullity theorem states that

rank(C)+nullity(C) = n (18)

Since it is assumed that the rows of C are linearly independent, rank(C) = k. There-

fore,

nullity(C) = n− k (19)

meaning that hi = 0 is possible for n− k eigenmodes at most.

Using this information, we may go on to that in fact there are exactly n− k eigen-

modes that (approximately) satisfy the imposed constraints.

Proposition 2. When applying k linearly independent constraint equations to a system

of size n using the bipenalty method, exactly n− k of the eigenmodes associated with

the system satisfy those constraints, while exactly k of the eigenmodes associated with

the system do not, for large αm.
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Proof. Firstly, we note the orthonormal property of eigenvectors, so that for the BP,

ũT
i (M+Mp)ũ j = δi j (20)

where δi j is the Kronecker delta. For the case of i 6= j and taking into account (8) we

have

ũT
i Mũ j +(Cũi)

T Pm(Cũ j) = 0 (21)

Next, we rewrite the matrix of penalty parameters so that Pm = αmDm, where Dm is

a square diagonal matrix of size k and all its entries have the same sign (i.e., all positive

or all negative). In this case, negative penalties can be used (a useful technique in

certain situations [1]) as long as they are not used alongside positive penalties in the

same analysis. This substitution leads to

ũT
i Mũ j +αm(Cũi)

T Dm(Cũ j) = 0 (22)

from which,

lim
αm→∞

[

(Cũi)
T Dm(Cũ j)

]

= 0 (23)

With the assumption that all entries in Dm have the same sign (which rules out

compensation during matrix multiplication) we are left with two possibilities for the

vector Cũi, assuming large αm:

1. Cũi = 0,

2. Cũi and Cũ j are non-zero and orthogonal.

From Proposition 1, the first case is possible for at most n− k of the n eigenmodes.

The second case is possible for at most k of the n modes, since the vector Cũi is of

dimension k. Therefore, we can say that

1. Cũi = 0 for n− k of the n eigenvectors,

2. Cũi 6= 0 for k of the n eigenvectors.

This implies that the bipenalty method results in k non-physical (spurious) eigen-

modes: the corresponding eigenvalues are as yet unknown. The n− k constrained

modes, on the other hand, tend to those of the fully constrained system for large

penalty parameters, and therefore, from Rayleigh’s theorem of separation, the eigen-

values are bounded by those of the unconstrained system. Hence, it is clearly one

or more of the k non-physical eigensolutions which are responsible for introducing

problematic eigenfrequencies.

Proposition 3. For any system subject to k bipenalty constraints with large αm, k of

the associated eigenvalues tend to the penalty ratio, R.
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Proof. Substituting the n bipenalised eigenvectors into the Rayleigh quotient of the

BP, we find

ρBP(ũi) =
ũT

i Kũi + ũT
i Kpũi

ũT
i Mũi + ũT

i Mpũi

=
ũT

i Kũi +R · ũT
i Mpũi

ũT
i Mũi + ũT

i Mpũi

(24)

For eigenmodes with ũT
i Mpũi 6= 0 the penalty terms dominate, so that in the limit

lim
αm→∞

ρBP(ũi) =
R · ũT

i Mpũi

ũT
i Mpũi

= R (25)

Hence, any eigenvalue whose eigenvector gives a non-zero ũT
i Mpũi tends to R for large

αm. From Lemma 2, in the limit exactly k eigenmodes have ũT
i Mpũi 6= 0. Therefore,

the k eigenvalues associated with these modes tend to R for large αm.

The unpenalised system has a set of n eigensolutions: the eigenvectors and eigen-

values associated with the unconstrained problem. As the constraints are introduced

(by increasing the magnitudes of the penalty parameters) n− k of the eigensolutions

tend to those of the fully constrained system. About the remaining eigensolutions we

may say this: the eigenmodes do not satisfy the constraints, and the eigenvalues tend

to R, the ratio of penalty parameters. This means that the spurious eigenvalues can

controlled by variation of the penalty parameters αs and αm.

If our goal is to ensure that the bipenalised eigenfrequencies ω̃i do not exceed those

of the unpenalised system (so as not to decrease the critical time step, for instance)

then there is a maximum ratio that should not be exceeded,

Rcrit = λmax (26)

which we shall refer to as the critical penalty ratio (CPR). If a penalty ratio R ≤ Rcrit

is selected then we can safely use a time step based on the critical time step of the

unconstrained system. To find Rcrit we need only to know the maximum eigenvalue of

the unconstrained system.

3.2 Selecting a suitable penalty ratio

Calculating (or finding a good estimate for) the maximum eigenvalue of a system λmax

is a well-known problem, since it is required to ensure a safe selection of the critical

time step via Equation (10). Methods such as direct iteration provide efficient methods

of computing only the maximum eigenvalue (without requiring a full solution of the

eigenproblem). However, if a suitable time step has already been selected using an

approximate method it may be easier to calculate a penalty ratio directly. Combining

(10) and (26) we can say that that the critical time step of the BP is lower than the

chosen time step ∆t if

R ≤ 4

∆t2
(27)
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A safe time step, calculated based on the unconstrained system, sets an upper limit

on the eigenfrequencies which may be present in the constrained system. Using the

bipenalty method, the spurious eigenfrequencies can be set using the penalty ratio R

to fall within this limit by ensuring it conforms to the above inequality.

4 Numerical examples

In the present work we limit ourselves to one-dimensional FE analysis, specifically

to two-noded linear elements (structural bar elements), with elemental stiffness and

mass matrices given by

Ke =
EA

h

[

1 −1

−1 1

]

Me =
ρAh

2

[

1 0

0 1

]

(28)

where E is the Young’s modulus, ρ the mass density, A the cross-sectional area and h

the length of the element.

4.1 Node-to-node tyings

One of the simplest multipoint constraints is the enforcement of zero relative dis-

placement between two nodes (referred to here as a tying or interface element). In this

section we will implement tyings in one dimension in order to assess the accuracy and

time step stability of the bipenalty method in comparison to the standard stiffness and

mass penalty methods.

We consider a 1D bar of length 1 m, discretised into 100 finite elements of equal

length, each with a Young’s modulus E = 1 N/m2, mass density ρ = 1 kg/m3 and

cross-sectional area A = 0.01 m2. The bar is fixed at position x = 0 and a force of

F = 1 mN is applied at x = 1 m for a duration of 0.01 s. The displacement profile

is computed using the CDM until t = 0.5 s. This final solution forms the reference

solution, as shown in Figure 1.

To obtain the comparison solutions, the topology of the problem is altered so that

the elements are unconnected; tyings of zero length are then added between all el-

ements using a penalty method. As the relevant penalty parameters are increased

the penalised solutions are expected to converge towards the unpenalised reference

solution. The error e between the penalised solution and the reference solution is

calculated according to

e = utest −uref (29)

in each case, where utest and uref are the computed displacement vectors for the solu-

tions with and without tyings, respectively. The L2 norm of the error vector is then

taken to obtain a scalar measure of the overall error, which is denoted by ‖e‖. This

value measures only the error introduced by the constraint imposition.

The results are shown in Figure 2 for a range of penalty factors. The penalty fac-

tor p shown on the plots refers to the mass penalty factor pm for the mass penalty
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Figure 1: The bar and its reference displacement profile at time t = 0.5 s, generated

from an analysis without interface elements.

analysis, and the stiffness penalty factor ps otherwise. For the bipenalty analyses, a

penalty ratio of R = Rcrit = 4×10−4 s−2 is used.

The plots show that for equal penalty ratios the stiffness penalty method gives the

lowest error. However, with standard stiffness penalties, penalty factors of 104 and

above lead to instability, even when the time step is set two orders of magnitude

lower than the original ∆tcrit. Above this limit the error measure for both the mass

and bipenalty methods continues to decrease monotonically, although the bipenalty

method consistently produces lower errors for equal penalty factors ps = pm.

4.2 Contact-impact

The field of contact-impact provides a class of problems for which penalty methods

are commonly employed in practice. Here, we consider a one-dimensional problem

(shown in Figure 3), which is taken from the work of Huněk [9]. The first bar has

length L = 10 m and the second has a length of 2L = 20 m, discretised into 50 and 100

finite elements, respectively. Each bar has the same material properties, with Young’s

modulus E = 100 N/m2, density ρ = 0.01 kg/m3 and a cross-sectional area A = 1 m2.

Bar 2 is fixed at one end, while bar 1 is given an initial velocity of v1 = 0.1 m/s. The

analytical solution for the first 0.6 s is shown in Figure 4.

It should be noted that the mass penalty method cannot be used in this case; all

nodes have zero initial acceleration and therefore there is no difference in relative

acceleration to activate the mass penalty force, even as penetration occurs. Stiffness

penalties are therefore required in order to ensure that the displacement constraint is

enforced.

In Reference [9], Huněk shows is that contact-impact using the standard stiffness

penalty method is very sensitive to the choice of penalty parameter, with low penalties

leading to high levels of (non-physical) penetration and high penalties creating spu-
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Figure 2: Measures of error at time t = 0.5 s for the case of wave propagation through

a bar with node-to-node tyings between each element. The time steps used are 0.1∆tcrit

(top) and 0.01∆tcrit (bottom).
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Figure 3: Initial conditions for the bar impact problem.
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Figure 4: Analytical solution for the bar impact problem.

rious oscillations in the contact force. Figure 5 shows that increasing the penalty pa-

rameter, rather than leading to convergence towards the analytical solution, causes the

contact force and displacement solutions to become increasingly erratic. By adding

mass penalties alongside the standard formulation, we find firstly that for relatively

low parameters (the left-hand plot in Figure 6) the spurious contact force oscillations

are mitigated by the extra restraint provided by the mass penalties. Secondly, although

contact force oscillations are still present for larger penalty magnitudes, the displace-

ment solutions do not deteriorate (see Figure 7). The bipenalty method also ensures

time step stability throughout the analysis.

5 Conclusions

The bipenalty formulation given in this paper allows for multiple constraints, with

each constraint involving multiple degrees of freedom. It has been shown that the re-

sulting system has as many spurious eigenmodes as there are constraint equations, and

that the eigenfrequencies associated with these modes tend to the ratio of stiffness to

mass penalty parameters as the parameters are increased. This allows for control over

the spurious eigenfrequencies through suitable selection of the relevant parameters,

and therefore control over the effect that the penalty constraints have on the critical

time step of explicit time integration schemes.

Through simple one-dimensional examples, we have shown that the bipenalty meth-

od can therefore be used to obtain results with accuracy approximately equal to, or

greater than, the accuracy obtained using traditional stiffness penalty methods, with-

out requiring any adjustment of the time step. It has also been demonstrated that the

use of mass penalty methods alone give results of low accuracy (for equal penalty

ratios), if they are effective at all. Therefore, the bipenalty method combines the

advantages, and avoids the respective disadvantages, of both the stiffness and mass

penalty methods.
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Figure 5: Contact force (on node B) and displacement (at nodes A and B) for the

stiffness penalty analysis with varying penalty parameters: from left to right, αs =
5 × 102, 5 × 104 and 5 × 106 N/m.
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bipenalty analysis with varying penalty parameters: from left to right, αs = 5 × 102,

5 × 104 and 5 × 106 N/m with a constant penalty ratio of R = Rcrit = 106 s−2.
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[9] I. Huněk, “On a penalty formulation for contact-impact problems”, Computers &

Structures, 48(2): 193–203, 1993.

14




