
Abstract

This paper presents the advanced object-oriented design of finite element represen-

tations in a complex multi-physics finite element environment OOFEM [1], [2]. The

focus is on reuse of existing single-physics capabilities when implementing elements

for coupled simulations. This has been achived by decoupling the description of ele-

ment geometry, element problem specific capabilities, element interpolation, and inte-

gration schemes. The individual problem specific capabilities, represented by a hier-

archy of classes derived form ElementEvalautor, can be assembled together to define

an evaluator for coupled analysis. The presented design leads to an extremely flexi-

ble implementation, with clean modular design. The application is demonstrated on

coupled analysis using implicit gradient formulation of damage-plastic model.

Keywords: multi-physics simulations, fem software design.

1 Introduction

Numerical simulations are routinely used in research and industry and are accepted

as reliable analysis tools. However, in recent years, it is becoming clear, that further

progress in many scientific and engineering disciplines requires understanding of var-

ious complex multi-physics phenomena taking place at different scales of resolution.

Therefore, one of the actual chalenges in software engineering is to design an efficient

and modular modeling tools. The aim of the this contribution is to present advanced

object-oriented design of general multi-physics finite element kernel allowing to reuse

single physics formulations in development of coupled multi-physics problems.

The conventional designs of object-oriented finite element codes introduce an ab-

straction for finite element, which keep description of element geometry, properties

and integration scheme and providing services for evaluating characteristic terms, such
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Figure 1: Traditional approach in element definition.

as stiffness matrix or element load vector. In more elaborated designs, a hierarchy of

classes is developed, where base parent element class contains only problem indepen-

dent description (such as element geometry) and specific functionality is implemented

by derived classes, representing problem related base classes. This scheme works well

when elements are to be solely used for specific analysis, e.g. elements for structural

analysis.

The problem may arise, when one wants to combine capabilities of two or more

elements to obtain element for multi-physics analysis. Multiple inheritance provides

only a partial solution, allowing to inherit problem specific capabilities from individ-

ual (single physics) elements. This could be an issue in some programming languages

(C++ for example) where the use of multiple inheritance leads to duplication of par-

ent element class data, as illustrated in Figure. 1. Here, the StructuralElement and

Heat&MassTransportElement classes represent problem-specific base classes. For

example, all structural elements are derived from StructuralElement class. When an

element for coupled analysis has to be developed, one naturally wants to inherit from

StructuralElement and Heat&MassTransportElement classes to reuse existing imple-

mentations. However, as both parent classes are derived from Element, the attributes

defined at Element level are duplicated. Moreover, one has to manually fix name res-

olution problems with services defined on Element level.

The proposed solution consist in decoupling element geometry description (rep-

resented by ElementGeometry class) and problem-specific functionality (represented

by classes derived from Evaluator class). The particular element is then assembled

from base ElementGeometry class and suitable Evaluator class. The Evaluator class

evaluates the characteristic terms of governing equation and it is parameterized by

geometry, interpolation, and integration defined by element. The essential feature

is possibility to assemble individual Evaluator classes together to form a high-level

evaluator for coupled problem. Such design allows to naturally reuse not only evalua-

tor for different type of problem-specific elements, but also reuse of problem-specific
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Figure 2: Overall structure of OOFEM code.

evaluators when implementing complex evaluator for multi-physics problem.

2 Overall design of OOFEM code

The general structure of the OOFEM is shown in Figure 2, using the UML notation.

In short, abstract classes are represented by rectangles. The lines with a triangle mark

represent the generalization/specialization relation (inheritance), where line from tri-

angle vertex points to the parent class. The lines with a diamond mark represent the

whole/part relation, pointing to the “whole” class possessing the “part” class. Associ-

ation is represented by a solid line, drawn between classes. The details can be found

in [3].

Class DOF represents a single degree of freedom (DOF). It maintains its physical

meaning, the associated equation number, and keeps a reference to the applied bound-

ary and initial conditions. The base class DofManager represents an abstraction for

an entity possessing some DOFs. It manages its DOF collection, list of the applied

loadings and optionally its local coordinate system. General services include methods

for gathering localization numbers from the maintained DOFs, computing the applied

load vector, and computing the transformation to its local coordinate system. De-

rived classes typically represent a finite element node or an element side, possessing

some DOFs. Boundary and initial conditions are represented by the corresponding
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classes. Classes derived from the base BoundaryCondition class, representing par-

ticular boundary conditions, can be applied to DOFs (primary BC), DOF managers

(typically nodal load), or elements (surface loads, Neumann or Newton boundary con-

ditions, etc.).

The problem under consideration is represented by a class derived from the En-

gngModel class. Its role is to assemble the governing equation and use a suitable nu-

merical method (represented by the class derived from the NumericalMethod class), to

solve the system of equations. The discretization of the problem domain is represented

by the Domain class, which maintains the lists of objects representing nodes, elements,

material models, boundary conditions, etc. The Domain class is an attribute of the En-

gngModel and, in general, it provides services for accessing particular components.

For each solution step, the EngngModel instance assembles the governing equations

by summing up the contributions from the domain components. Since the governing

equations are typically represented numerically in the matrix form, implementation is

based on vector and sparse matrix representations to efficiently store components of

these equations. The modular design allows uncoupling the problem formulation, the

numerical solution and sparse storage being independent of each other.

3 Multi-physics design of element frame

The modular design has been achieved by decoupling of description of element geom-

etry (represented by ElementGeometry class), interpolation (represented by FEIInter-

polation class), integration (represented by IntegrationRule class), and evaluation of

problem-specific terms (represented by Evaluator class). The parent ElementGeom-

etry keeps list of element nodes defining its geometry, list of applied loading, list of

integration rules (defined by particular element implementation), reference to corre-

sponding cross section and material models. Its abstract interface include methods for

accessing element components, element evaluator, interpolation(s), and integration

rule(s). Integration rules, represented by classes derived from base IntegrationRule

class, define and provide list of integration points. Derived classes represent particu-

lar integration schemes. Individual elements can have one or more integration rules;

this allows to perform reduced or selected integration, or to have individual integration

schemes for different characteristic terms.

Element interpolation is represented by abstract FEIInterpolation, which defines

general services for evaluation of interpolation (shape) functions, their derivatives,

transformation Jacobians, etc. Derived classes implement particular interpolation.

The evaluation requires access to underling element geometry. In our approach, the

element geometry is compulsory parameter of every FEIInterpolation method. This

allows to share a single instance of FEIInterpolation between all elements of the same

type (static, class variable in C++). Similar to the integration rule concept, elements

can use several interpolations. This is essential for coupled simulation elements,

where interpolation of individual fields often vary, but also allows to have different

approximation for geometry and unknowns, for example.
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Figure 3: Collaboration diagram of Element class.

As already pointed out, a new abstract base Evaluator class has been introduced.

Derived classes represent problem specific functionality of an element. Base class

declares common abstract services for evaluating characteristic terms (giveCharac-

teristicMatrix, giveCharacteristicVector) and corresponding localization arrays. De-

rived classes provide corresponding implementation. The abstract interface, defined

by Evaluator, is essential, as it allows to treat all element evaluation and assembly

operations using the same general interface. As an example, consider the Structural-

AnalysisEvaluator class implementing structural analysis functionality, see Figure 3.

It provides methods for evaluation of element stiffness and mass matrices and element

load vectors, based on element geometry, its interpolation and integration. Particular

elements are supposed to be derived from one base Element class and one of classes

derived from Evaluator class.

In coupled multi-physics simulations, one needs to combine functionality from in-

dividual sub-problems in one element (represented by corresponding classes derived

from Evaluator) and complemented by definition of coupling terms, which will be

also provided by corresponding evaluator. In order to combine individual evaluators

into an evaluator for a coupled problem, the CoupledEvaluator class has been de-

signed. It is derived from base Evaluator class and comes with the capability to group

individual low-level evaluators together by performing local assembly from individ-

ual contributions. The CoupledEvaluator class constructor allows to set up an matrix

of slave evaluators whose contributions will be assembled (locally on element level)

to obtain characteristic components of coupled problem formulation. This is shown

in Figure 4, illustrating mutual class relations for the case of coupled structural and
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Figure 4: Collaboration diagram of Element in coupled analysis.

heat&mass analyses.

When problem-specific evaluator is available, the definition of particular elements

is straightforward. It consist in (i) defining a new class, derived from ElementGeome-

try and class representing problem-specific evaluator, and (ii) setting up its interpola-

tion and integration rules. No additional coding is necessary.

4 Example

In this section we demonstrate already described concept on the implementation of

an implicit gradient formulation of damage-plastic model. At first, a brief descrip-

tion of the continuum damage mechanics and its coupling with the plasticity theory

is presented, see [4] for more details. The isotropic damage behavior is considered

for simplicity, which means that one single scalar damage variable is introduced. It

describes the reduction of stiffness and strength of material due to the creation, coa-

lescence and growth of voids and microcracks.

Stress-strain law has the following form:

σ = (1 − ω)σ̄ = (1 − ω)De : (ε − εp) (1)

where σ is the nominal stress, σ̄ is the effective stress and ω is the damage variable that

evolvs from zero (virgin material) to one (completely damaged material), De is the

elastic stiffness, ε is the total strain, and εp is the plastic part of strain. The coupling

between damage and platicity is based on formulation of the plasticity problem in the

effective (i.e.undamaged) stress space.

The plastic behavior is characterized by

• yield function

f(σ̄, κ) = σ̃(σ̄) − σY (κ) (2)
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• loading-unloading conditions

f(σ̄, κ) ≤ 0 λ̇ ≥ 0 λ̇f(σ̄, κ) = 0, (3)

• evolution law for the plastic part of strain

ε̇p = λ̇
∂f

∂σ̄
, (4)

• definition of the cumulated plastic strain

κ̇ =
√

(ε̇p : ε̇p), (5)

Moreover, damage law has to be introduce

ω = g(κ) (6)

In the equations above, σ̃ is a seminorm of the stress tensor, λ is the plastic multiplier,

κ is the cumulated plastic strain, σY is the yield stress, and ω is the damage variable.

A superior dot marks the derivative with respect to time.

Implementation of the described damage-plastic model leads to the return mapping

algorithm followed by the explicit evaluation of damage.

In the regularized implicit gradient formulation, constitutive equations are enhanced

by the nonlocal cumulated plastic strain which is computed from the Helmholtz equa-

tion, see [5]. Thus, its finite element implementation is based on the mixed formula-

tion. To derive finite element formulation, we start from the strong form of the set of

governing differential equations

∇ · [(1 − ω(κ̄))De : (ε − εp)] = 0 (7)

κ̄ − l2∇2κ̄ = κ (8)

where l is the length scale parameter, ∇ is the Laplace operator, and κ̄ is the nonlocal

cumulated plastic strain. Note that, the nonlocal cumulated plastic strain affects only

damage evolution while the yield condition remains local. Following the standard

procedure, equations (7) are recasted in the weak form,

∫

V

(∇ · σ) · ηdx = 0 (9)

∫

V

(κ̄ − l2∇2κ̄)ζdx =

∫

V

κηdx (10)

where η and ζ are suitable test functions. The displacements and the nonlocal cumu-

lative plastic strains are discretized at the element level by

u = Nd κ̄ = N κ̄dκ̄ (11)
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After discretization, we obtain the set of nonlinear algebraic equations







f int

φint







=







f ext

0







(12)

in which f int =
∫

V
BT σdx and f ext =

∫

Γt

NT tdS are the standard vectors of inter-

nal and external forces, and φint =
∫

V
(NT

κ̄ N κ̄dκ̄ + l2BT
κ̄ Bκ̄dκ̄ − κNT

κ̄ )dx are gen-

eralized internal forces. The set of nonlinear equations (12) is solved by the Newton-

Raphson method. This numerical method requires a tangent matrix, which is obtained

by differentiating the internal force vector {f int φint}
T

with respect to the nodal

unknowns:

K =





Kdd Kdκ̄

K κ̄d K κ̄κ̄



 (13)

where

Kdd =

∫

V

(1 − ω)BT ∂θ

∂ε
Bdx Kdκ̄ = −

∫

V

dω

dκ
BT σ̄N κ̄dx

K κ̄d = −

∫

V

NT
κ̄

∂θκ

∂ε
Bdx K κ̄κ̄ =

∫

V

(

NT
κ̄ N κ̄ + l2BT

κ̄ Bκ̄

)

dx

In the equations above, function θ maps the strain at the end of step εn+1 onto the

stress at the end of step σn+1 and function θκ maps the strain at the end of step εn+1

onto the cumulated plastic strain at the end of step κn+1. Both functions are supplied

by the return mapping algorithm. Matricies B and Bκ̄ contains derivatives of the

shape functions.

4.1 Implementation

To implement present model within the structure described in previous chapters, four

Evaluator classes have to be combined. The first one, Structural Evaluator, evaluates

Kdd,f int, and f ext which corresponds to the classical stiffness matrix, internal forces

vector, and external forces vector. The second one, ImplicitGradient Evaluator, evalu-

ator evaluates terms K κ̄κ̄,φint, and φext which are related to the Helmholtz equation.

Remaning two evaluators provide coupling terms Kdκ̄ and K κ̄d. The Coupled Evalua-

tor is set up using a matrix of individual sub-problem evaluators. This matrix naturally

maps the individual terms in problem Jacobian (13) to the corresponding Evaluator in-

stances and also the characteristic vectors of the problem (12) to the evaluators on the

diagonal of evaluators matrix.

The set up of Element and corresponding CoupledEvalauator is demonstrated in

the code listing, see Listings 1 and 2. In this example, a new MyElement class is de-

fined with capabilities required by above described problem. The objects representing

displacement and gradiend field interpolations, as well as sub problem evaluators are
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/ / d e c l a r a t i o n o f new ” MyElement ” c l a s s

c l a s s MyElement : p u b l i c ElementGeometry ,

p u b l i c C o u p l e d E v a l u a t o r {
p u b l i c :

/ / d e c l a r e i n d i v i d u a l i n t e r p o l a t i o n s

/ / a s s t a t i c ( c l a s s ) v a r i a b l e s

/ / d i s p l a c e m e n t i n t e r p o l a t i o n ,

s t a t i c FEI2dQuadLin d i p l i n t e r p ;

/ / g r a d i e n t i n t e r p o l a t i o n

s t a t i c FEI2dQuadQuad g r a d i n t e r p ;

/ / sub−problem e v a l u a t o r s , common t o a l l

/ / i n s t a n c e s o f MyElement −> s t a t i c v a r i a b l e

s t a t i c S t r u c t u r a l E v a l u a t o r E dd ;

s t a t i c H e l m h o l z E v a l u a t o r E kk ;

s t a t i c S t r u c t u r a l H e l m h o l z E v a l u a t o r E dk ;

s t a t i c H e l m h o l z S t r u c t u r a l E v a l u a t o r Ekd ;

MyElement ( i n t n , Domain∗ d ) ;

} ;

Listing 1: MyElement declaration

/ / i m p l e m e n t a t i o n

FEI2dQuadLin MyElement : : d i p l i n t e r p ( ) ;

FEI2dQuadQuad MyElement : : g r a d i n t e r p ( ) ;

/ / s e t up i n d i v i d u a l sub−problem e v a l u a t o r s

S t r u c t u r a l E v a l u a t o r MyElement : : E dd ( 1 ) ;

H e l m h o l z E v a l u a t o r MyElement : : E kk ( 2 ) ;

S t r u c t u r a l H e l m h o l z E v a l u a t o r MyElement : : E dk ( 1 , 2 ) ;

H e l m h o l z S t r u c t u r a l E v a l u a t o r MyElement : : E kd ( 2 , 1 ) ;

/ / s e t up m a t r i x o f sub−problem e v a l u a t o r s

s t a t i c E v a l u a t o r e M a t r i x [ 2 ] [ 2 ] =

{{&MyElement : : E dd , &MyElement : : E dk } ,

{&MyElement : : E kd , &MyElement : : E kk }} ;

/ / C o n s t r u c t o r

MyElement : : MyElement ( i n t n , Domain∗ d ) :

ElementGeometry ( n , d ) , C o u p l e d E v a l u a t o r ( e M a t r i x )

{
/ / s e t up i n t e g r a t i o n scheme

n u m b e r O f I n t e g r a t i o n R u l e s = 1 ;

i n t e g r a t i o n R u l e s A r r a y =

new I n t e g r a t i o n R u l e ∗ [ 1 ] ;

i n t e g r a t i o n R u l e s A r r a y [ 0 ] =

new G a u s s I n t e g r a t i o n R u l e ( 1 , t h i s ) ;

}

Listing 2: MyElement class
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declared as static class variables. These are associated with the class itself rather than

with any class object and every instance of a class shares the same class variable(s).

The MyElement class constructor demonstrates also initialization of parent coupled

evaluator class using a matrix of sub-problem evaluators instances. In the constructor,

the element integration rules are set up, in this case each instance of new element

creates its own copy of integration rules, as the integration point and associated load-

time history internal variables are unique for each element. This concludes the element

definition, and in principle, no additional coding is necessary when introducing a new

element as all the functinality is provided by parent ElementGeometry and problem

related ElementEvaluator class. The role of element definition is just to assemble

together right combination of evaluator capabilities, interpolations, and integration

rules.

4.2 Biaxial compression test

The regularization capabilities of the implicit gradient model are explored using the

classical biaxial compression test [6] with hardening Mises plasticity coupled with

isotropic damage, see Figure 5 for the problem statement. The problem is modeled

as a plaine-strain problem with material and geometrical parameters summarized in

Table 1.

Height of the specimen L 120 mm

Width of the specime B 60 mm

Young modulus E 20 GPa

Poisson ration ν 0.2
Isotropic hardening law σY = σ0 + Hκ

Initial yield stress σ0 100 MPa

Hardening modulus H 400 MPa

Damage law ω = 1 − exp−aκ̄

Dimensionless damage parameter a 30

Characteristic length l 5 mm

Table 1: Biaxial compression test: Geometry and material parameters

The problem was discretized by a quadrilateral finite elements with a quadratic

interpolations of the dispalcement and a linear interpolation of the cumulated plastic

strain. The mesh insensitivity is illustrated by results on two different meshes with a

constant imperfection of size 10 mm x 10 mm, see Figure 6 and Figure 7.

5 Conclusions

The advanced object-oriented design of finite element representations in a complex

multi-physics finite element environment has been presented. It allows to reuse of
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Figure 5: Biaxial Compression Test: Geometry and Loading

Figure 6: 20x60 elements Figure 7: 40x120 elements

Figure 8: Biaxial Compression Test: Damage Patterns
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existing single-physics capabilities when implementing elements for coupled simu-

lations. This has been achived by decoupling the description of element geometry,

element problem specific capabilities, element interpolation, and integration schemes.

The individual problem specific capabilities, represented by a hierarchy of classes de-

rived form ElementEvalautor, can be assembled together to define an evaluator for

coupled analysis. Presented design leads to extremely flexible implementation, with

clean modular design. The application has been demonstrated for a coupled analysis

using an implicit gradient formulation of damage-plastic model.
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