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Abstract 
 
Consideration is given to determining the exact natural frequencies and modes of 
vibration of a class of structures comprising two parallel members with uniform 
distribution of mass and stiffness, which have independent properties and which are 
linked to each other, and possibly also to foundations, by uniformly distributed 
elastic interfaces of unequal stiffness.  The formulation is general and applies to any 
structure in which the motion of the component members is governed by a second 
order linear differential equation.  Closed form solution of the governing differential 
equations leads either to an exact dynamic stiffness matrix or to a number of exact 
relationships between the natural frequencies corresponding to coupled and 
uncoupled motion.  An appropriate form of the Wittrick-Williams algorithm is 
presented for converging on the required natural frequencies to any desired 
accuracy.  Examples are given to confirm the accuracy of the approach and to 
indicate its range of application. 
 
Keywords: exact dynamic stiffness matrix, Wittrick-Williams algorithm, elastically 
supported structures. 
 
 
1 Introduction 
 
The dynamics of a family of simple, but extremely useful structural elements is 
governed by a linear second order differential equation.  This equation allows for the 
uniform distribution of mass and stiffness and enables the motion of strings and 
shear beams, together with the axial and torsional motion of bars to be described 
exactly.  As a result, each member type in this family has been treated exhaustively 
when considered as a single member or when joined contiguously to others, e.g. Rao 
[1].  However, when such members are linked in parallel by uniformly distributed 
elastic interfaces, their complexity becomes significantly more intractable and it is 
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this class of structures that has led to renewed interest and which forms the basis of 
the work that follows. 
   Spring-mass systems generally have been at the heart of structural dynamics for 
many years and their synthesis and analysis has been the subject of considerable 
interest [2-4].  Over time, extremely complex systems have evolved and much 
research effort has been expended.  However, relatively little work has been 
undertaken on the class of structures considered herein.  Perhaps most interest has 
been directed towards double string systems, which have attracted a number of 
authors [5-8], as have the problems associated with the longitudinal motion of spring 
linked bars [9-12], although the torsional vibration problem has seen less activity 
[13-14]. 
   The theory developed in Section 2 of this paper establishes a unified approach to 
solving the class of spring-linked structures described above.  Initially, differential 
equations governing the coupled motion of the system are developed from first 
principles.  A common solution procedure then leads either to an exact dynamic 
stiffness matrix (exact finite element) or to a series of exact relational models that 
link the uncoupled frequencies to the coupled ones that stem from them.  Both forms 
of solution therefore represent alternative ways of implementing precisely the same 
theory and can be used interchangeably with identical solution accuracy, depending 
on the most efficient way to solve the problem in hand.  A brief assessment of their 
relative merits is given below. 
   The exact dynamic stiffness approach enables all the powerful features of the finite 
element method to be utilized and hence enables structures with piecewise uniform 
members and distributed elastic connections to be modelled and analysed with nodal 
masses, cross-stiffnesses, elastic supports and any combination of classical or non-
classical boundary conditions.  The corresponding modes of vibration are then easily 
recovered by any of the well established methods, such as [15].  Furthermore, an 
appropriate formulation of the Wittrick-Williams algorithm is given, which 
guarantees that any desired frequency can be calculated to any desired accuracy with 
the certain knowledge that none have been missed. 
   The relational approach, on the other hand, enables all the natural frequencies of 
the coupled system to be determined from a knowledge of any single uncoupled 
frequency of one of the two component members.  Under certain conditions, not 
considered here, the theory can be extended to cover stepwise uniform members 
[16].  The approach thus enables ‘back of the envelope calculations’ to be 
undertaken quickly and efficiently.  In connection with this, it should be noted that 
the member theory has been developed in the context of two linked shear beams.  
This leads directly to the possibility of using well established simplification 
procedures that reduce multi-bay, multi-storey sway frames to equivalent one bay 
frames and then to simpler global models that can often retain sufficient accuracy for 
preliminary analysis and design procedures [17-19]. 
   Finally it is shown how the presented theory can be extended to cover systems 
comprising three or four spring-linked parallel members in which the structure 
modelled is symmetric about an axis parallel to the members.  The paper is 
concluded with a number of examples that confirm the accuracy of the proposed 
method and indicate its range of application. 
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2 Theory 
 
2.1 Dynamic stiffness matrix 
 
The equations of motion for the general two member, spring supported system 
shown in Figure 1 are initially developed in the context of two shear beams.  
Transformation to other systems, in which the motion of the members is also 
governed by a second order, linear differential equation is given in the Appendix. 
 
 
 

 
 

Figure 1.  Positive sign convention for the instantaneous forces and displacements 
associated with a typical elemental length of the spring linked members in local co-

ordinates. 
 
 
  The required equations of motion for the system of Figure 1 are then easily shown 
to be 
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where q  is the shear force, m  is the mass / unit length, k  is the stiffness / unit 
length of an elastic interface and the subscripts refer to the respective components 
shown in Figure 1.  Imposing the assumption of harmonic motion and introducing 
the non-dimensional parameter, Lx /=ξ , the constitutive relationships and Eqs.(1) 
can be written, respectively, as 
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shear coefficient, iAGk ′  is the effective shear rigidity; and ω  is the circular 
frequency. 
 
   Equation (3) can be combined into one equation by eliminating 1V or 2V  to give 
the fourth order differential equation 
                                                                  0=ΓW                                                 (4a) 
in which W = 1V  or 2V .  
 
   The general solution of Eq.(4a) is found by substituting the trial solution 

ξsAW e=  to yield the characteristic equation 
 
                                                                  0=Γ                                                    (4b) 

in which 2s=τ . 
 
   It is easy to show that the discriminant of the frequency equation stemming from 
Eq.(4b) is always positive and hence that the two roots, 2

2
2
1 and ss , can be real or 

imaginary, but not complex.  The three possible combinations of roots are thus 
shown in Table 1, where βα and  are real, positive values to be determined.  The 
values of αJ  and βJ  are required in Eq.(19) and int( ) is the highest integer less 
than the bracketed term. 
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Case 2
1s  2

2s  a b αξC  αξS  βξC  βξS  
αJ  βJ  

           
1 aα2 bβ2 −1 −1 cosαξ sinαξ cosβξ sinβξ int(α⁄π) int(β⁄π) 
2 aα2 bβ2 −1 1 cosαξ sinαξ coshβξ sinhβξ int(α⁄π) 0 
3 aα2 bβ2 1 1 coshαξ sinhαξ coshβξ sinhβξ 0 0 

 
Table 1.  Possible combinations of the roots of the characteristic equation stemming 

from Eq.(4b). 
 
 
Hence the general solution to Eq.(4a) can be written for each case as 
 
                                      βξβξαξαξ SACASACAW 4321 +++=                                 (5) 
 
Since 21 or VVW =  from Eq.(4a), Eq.(5) yields 
 
                                      βξβξαξαξ SACASACAV 43211 +++=                                (6a) 
and 
                                      βξβξαξαξ SBCBSBCBV 43212 +++=                               (6b) 
 
where  )4,...,2,1(and =iBA ii  are independent sets of constants.  Substituting 
Eqs.(6) into Eq.(3) yields the following relationships between the constants 
 
                                              4,34,32,12,1 and ABAB μη ==                                        (7) 
where 
                                    )(//)( 2

222
2

1 αψαφη arkkar +−=+−=                           (8a) 
and 
                                    )(//)( 2

222
2

1 βψβφμ brkkbr +−=+−=                           (8b) 
 
 

 
(a) (b) 

 
Figure 2.  Positive sign convention for amplitudes of the nodal forces and 

displacements in (a) local; and (b) member co-ordinates. 
 
 
   The nodal displacements then follow from Eqs.(6)-(8) in the member co-ordinate 
system of Figure 2, as follows 
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I  is the unit matrix, βαβα SSCC and,,  are respectively, αξβξαξ SCC ,,  and 

βξS when 1=ξ .                                                                                                        (11) 
 
In similar fashion, the general expressions for the corresponding force vector are 
established by substituting Eqs.(6)-(8) into Eq.(2) to give 
 
                               βξβξαξαξ μμηη CASbACASaAQ 141312111 −−−−=                (12a) 
and 
                              βξβξαξαξ μμηη CASbACASaAQ 242322212 −−−−=               (12b) 
where 
               Lrαη 11 −= ,     Lr ηαη 22 −= ,     Lr βμ 11 −=      and     Lr μβμ 22 −=      (13) 
 
The nodal forces then follow from Eqs.(6)-(8) in the member co-ordinate system of 
Figure 2, as follows 
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and the remaining variables are defined in Eq.(11) above.  The member dynamic 
stiffness matrix can then be developed from Eqs.(10) and (15) as 
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                                                                 1−∗= ssk                                                  (17) 
 
The symmetric elements of k can be stated symbolically using the normal row and 
column subscripts as 
 
      Δμηημ βαβα /)( 113311 SCCSkk −== ;           Δμη βαβα /)( 113412 CSSCkk −==  
                   Δημμη αβ /)( 1113 SSk −= ;                     Δημ βα /)( 112314 SSkk −==  
          Δμη βαβα /)( 224422 CSSCkk −== ;                        Δημ βα /)( 2224 SSk −=  
                                                              βαημΔ SS)( −=                                        (18) 
 
   Since a component member has only one translational degree of freedom at each 
node, the boundary conditions are easily modelled using lateral springs that offer a 
complete spectrum of support from free to fully clamped conditions.  The stiffness 
matrix itself can be used in the normal way to form a series of piecewise uniform 
spring linked structures, for which exact natural frequencies can be converged upon 
to any required accuracy using the Wittrick-Williams algorithm described in the 
following Section.  The mode shapes then follow directly using any appropriate 
method, such as that described in [15]. 
 
2.2  Formula for the Wittrick-Williams root counting algorithm 
 
The Wittrick-Williams root counting algorithm has been available for well over 
thirty years and the following formula can be established easily from many sources, 
such as reference [20].  In the current notation, it states that the number of coupled 
natural frequencies passed by a trial frequency, ∗ω , is given by 
 
                                  ( ) }{)(* KsJJJ

members
++= ∑ βαω                                               (19) 

where  αJ  and βJ  are given in Table 1 and  }{Ks is the sign count of  the dynamic 
structure stiffness matrix, which is equal to the number of negative elements on the 
leading diagonal of the upper triangular matrix obtained from K, when ∗= ωω , by 
the standard form of Gauss elimination without row interchanges. 
 
 
3 Relational formulation 
 
3.1 k1  =  k2 =  k3 = 0 
 
It is clear from Eq.(3) that when 0321 === kkk , the two shear beams in Figure 1 
are uncoupled and subjected only to the boundary conditions at their respective 
nodes.  Assuming that the boundary conditions are the same for each member, 
Eq.(4a) yields their uncoupled natural frequencies when 
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and 2,1, and ii ωω  are the i-th uncoupled natural frequencies of members 1 and 2, 
respectively.  Eqs.(20) and (21) then lead to the following relationship between the 
frequencies of the two members 
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   It is important to note here that for each of the two members taken in turn, it is 
easy to show [16] that the relationship between its i-th and (i + p)-th natural 
frequency is given by 
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when the member has fixed / free boundary conditions.  In turn these equations lead 
to the following relationship 
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3.2 k2  =  0 and either k1  and / or  k3  ≥  0 
 
For this case, Eq.(19) remains valid, but with  
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where jki,ω  )2,1( =j is the i-th natural frequency of the uncoupled, spring supported 
members, and leads to the following relationship 
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Furthermore, using Eqs.(21) and (25) in Eq.(20) yields 
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3.3 k2>0  and either k1  and / or  k3  ≥  0 
 
For this case, Eq.(4a) is satisfied when 
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where ω  corresponds to the coupled natural frequencies of the system.  However, 
substituting Eqs.(25) in Eqs.(20) gives 
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   Substituting Eqs.(29) into Eq.(28) and re-arranging gives 
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   Since both cD and∗  are clearly always positive, the roots of Eq.(30) are both real 
and positive.  Finally, substituting Eqs.(22) and (27) into Eqs.(31) gives 
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where jci,ω   2,1=j      ....3,2,1=i    are the two coupled frequencies stemming 
from the i-th uncoupled frequency of one of the shear beams.  Since Eqs.(23) and 
(24) relate the i-th uncoupled frequency to any other uncoupled frequency, every 
coupled frequency of the system can be developed from the knowledge of a single 
uncoupled frequency. 
 
 
4  Alternative structural models 
 
It is clear that the theory of the preceding sections can be applied to find the natural 
frequencies of single and double beam systems merely by assigning appropriate 
numerical values to the member and spring data.  However, the same theory can be 
extended to cover three and four beam systems when they are symmetric about a 
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parallel East-West axis, since in this case the motion can only be symmetric or anti-
symmetric about the axis.  The required results are thus obtained by considering 
only the half structure to the north of the axis, imposing firstly symmetric (S) and 
then anti-symmetric (A) boundary conditions in turn along the axis and in each case 
assigning appropriate values to certain parameters, as shown in Figure 3 and Table 
2. 
 
 

 
 
                                 (a)                                                                 (b) 
 
Figure 3.  Structure to the north of the East – West line of symmetry: (a) three beam 

system and (b) four beam system. 
 
 

System Mode Parameter 
  k3 m2 r2 

     
3 beam S ∞ 0 ∞ 

 A 0 m2 / 2 r2 / 2 
     

4 beam S 2k3 original original 
 A 0 original original 

 
Table 2.  Imposed parameter values for solving three and four beam symmetric 

systems using the theory of Section 2.  All parameters retain their original values 
apart from those defined above. 

 
 
 
5 Examples 
 
Four examples are given that confirm the correctness and accuracy of the approach, 
while also giving an indication of its range of application. 
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5.1 Example 1 
 
Consideration is given to the problem of two different, but parallel, taut strings of 
length 1 m that are linked by an elastic interface of stiffness k = 200 N/m per metre 
length.  Five different combinations of mass/unit length and string tension, as 
defined in Table 3, are computed using Eq.(18) and the results compared with those 
of reference [6] in Table 4.  See the Appendix for equivalent string parameters. 

 
Data 
Set 
No. 

Member properties 

String 1 String 2 

 Mass/unit length 
kg/m 

Tension 
N 

Mass/unit length 
kg/m 

Tension 
N 

     
1 0.01 50.0 0.005 50.0 
2 0.01 50.0 0.01 50.0 
3 0.01 50.0 0.005 100.0 
4 0.01 50.0 0.01 100.0 
5 0.01 50.0 0.02 100.0 

 
Table 3.  Member data for the five string systems considered by Onisczcuk [6]. 

 
 

Data 
Set 
No. 

Frequency No. 
1 2 3 6 

Ref. [6] Eq.(18) Ref. [6] Eq.( 18) Ref. [6] Eq.( 18) Ref. [6] Eq.( 18) 
 

Synchronous 
 

1 243.5 243.465 462.4 462.355 680.0 680.011 1340.2 1340.18 
2 221.1 222.144 444.3 444.288 666.4 666.432 1332.9 1332.86 
3 254.4 254.392 465.0 464.853 680.8 680.838 1340.3 1340.29 
4 249.5 249.520 464.1 464.097 680.6 680.613 1340.3 1340.26 
5 222.1 222.144 444.3 444.288 666.4 666.432 1332.9 1332.86 

 
Asynchronous 

 
1 385.7 385.706 662.1 662.121 964.4 964.356 1895.7 1895.65 
2 298.9 298.911 487.2 487.229 695.8 695.796 1347.8 1347.79 
3 492.0 491.960 911.5  911.522 1348.0 1348.01 2673.3 2673.25 
4 354.7 354.660 645.6 645.593 953.5 953.500 1890.3 1890.31 
5 281.7 281.688 476.9 476.857 688.6 688.573 1344.1 1344.07 

 
Table 4.  Comparison between the natural frequencies (rad/sec) given by Onisczcuk 
[6] and those from the theory presented for the data given in Table 3.  Onisczcuk’s 
result of 221.1 in column 2 should be 222.1 by comparison with the result of Data 

Set 5, since doubling one member’s stiffness and mass leaves the frequency 
unaltered. 
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5.2 Example 2 
 
This example compares Onisczcuk’s results [6] for data set 3 of Table 3 above, with 
those obtained from the stiffness and relational matrices presented herein.  The 
uncoupled results are included for hand confirmation.  
 
 

Freq. 
No. 

i 

Coupled frequencies 
(rad/sec) 

Uncoupled frequencies 
(rad/sec) 

 Ref [6] Eq.(18) Eq.(33) Eq.(20) Eq.(22) 
ωi,1c ωi,2c ωi,1 ωi,2 ωi,2 

        
1 254.4 S 254.392 254.392 (1) 491.960 (3) 222.144 444.288 444.288 
2 465.0 S 464.853 464.853 (2) 911.522 (6) 444.288 888.577 888.577 
3 492.0 A 491.960 680.838 (4) 1348.01 (9) 666.433 1332.87 1332.87 
4 680.8 S 680.838 899.574 (5) 1788.47 (12) 888.577 1777.15 1777.15 
5 899.6 S 899.574 1119.59 (7) 2230.48 (15) 1110.72 2221.44 2221.44 
6 911.5 A 911.522 1340.29 (8) 2673.25 (18) 1332.87 2665.73 2665.73 
7 1119.6 S 1119.59 1561.39 (10) 3116.46 (21) 1555.01 3110.02 3110.02 
8 1340.3 S 1340.29 1782.75 (11) 3559.94 (24) 1777.15 3554.31 3554.31 
9 1348.0 A 1348.01      

10 - 1561.39      
11 - 1782.75      
12 1788.5 A 1788.47      

 
Table 5.  Comparison of results for data set 3 of Table 3 above.  The modal shapes 

are indicated by S and A, where S = Synchronous and A = Asynchronous.  The 
coupled frequency number is given in brackets and the table clearly shows that the 

eigenpairs in columns 3 and 4 do not yield sequential coupled frequencies. 
 

 
 
5.3 Example 3 
 
This example solves the symmetric three beam and four beam systems depicted in 
Figure 3.  The beam and spring data for both systems are the same and given in 
Table 6.  These values must be modified according to Table 2 to achieve the 
required results, which are given in Table 7.  
 
 

Beams Springs 
Length 

 
m 

Mass / unit 
length 
kg/m 

Shear 
rigidity 

N 

k1 
 

N/m2 

k2 
 

N/m2 

k3 
 

N/m2 
      

8.0 90.0 6.0×104 1.0×102 1.0×103 1.0×104 
 

Table 6.  Beam and spring data for Example 3. 



13  

System Natural Frequencies (rad/sec) 
3 Beam 4 Beam 

Anti-symmetric Symmetric Anti-symmetric Symmetric 
    

5.14145  (1) 6.15827  (2) 5.12287  (1) 6.11289  (2) 
7.70806  (3) 15.6058  (5) 6.96375  (3) 15.5879  (5) 
15.2332  (4) 25.5886   (8) 15.2270  (4) 16.1119  (7) 
16.2798  (6) 35.6598  (11) 15.9408  (6) 21.5687  (8) 
25.3631  (7) 45.7612  (14) 25.3593  (9) 25.5777  (10) 

 

Table 7.  Natural frequencies (rad/sec) for the three and four beam systems shown in 
Figure 3, whose data are given in Table 6.  The coupled frequency number is given 

in brackets. 
 
5.4  Example 4 
 
The final example considers the structure indicated in Figure 4.  It comprises a 
piece-wise uniform, stepped shear beam that is suspended by a stepped elastic 
interface from a uniform taut string that also carries two point masses. The string is 
supported at each end by a single nodal spring and across its central portion by an 
elastic interface.  The structure can be envisaged as three collinear segments, each of 
which can be modelled by an exact finite element developed from Eq.(18).  Once the 
global dynamic stiffness matrix has been established, the nodal stiffnesses and point 
masses can be added in the usual way.  The data for each segment are given in Table 
8 and the first ten natural frequencies of the structure are given in Table 9. 
 

 
Figure 4.  A contrived structure to indicate the range of application of the proposed 

theory. 
 

Segment 
No. 

Member 
Length 

 
m 

String 
mass / 
length 
kg/m 

String 
tension 

 
N 

Beam 
mass / 
length 
kg/m 

Shear 
rigidity 

 
N 

k1 
 
 

N/m2 

k2 
 
 

N/m2 

k3 
 
 

N/m2 
         

1 3.0 10.0 2.0×103 60.0 5.0×104 0.0 1.0×103 0.0 
2 2.0 10.0 2.0×103 90.0 8.0×104 2.0×103 5.0×102 0.0 
3 3.0 10.0 2.0×103 70.0 6.0×104 0.0 1.0×103 0.0 

 

Table 8.  Member and elastic interface data for the structure shown in Figure 4.  The 
values of KL, KR, M1 and M2 are 1.0×104 N/m, 2.0×104 N/m, 2.0×102 kg and 2.5×102 kg, 

respectively. 
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Natural 
frequency 

No. 
1 2 3 4 5 

Frequency 
(rad/sec) 2.26521 4.05080 4.42246 12.5842 17.3593 

      
Natural 

frequency 
No. 

6 7 8 9 10 

Frequency 
(rad/sec) 17.7284 21.9757 27.4831 29.6695 30.4288 

 
Table 9.  The first ten natural frequencies (rad/sec) of the structure shown in  

Figure 4. 
 
6 Summary and Conclusions 
 
Consideration has been given to determining the exact natural frequencies of a class 
of structures comprising two parallel members with uniform distribution of mass 
and stiffness, which have independent properties and which are linked to each other, 
and possibly also to foundations, by uniformly distributed elastic interfaces of 
unequal stiffness. 
   The approach differs from all previous work in three distinctly different ways.  
Firstly, it is based on an exact dynamic stiffness approach.  This is important 
because, at the heart of any exact solution procedure for this type of structure, it is 
necessary to solve a transcendental eigenvalue problem.  Currently this can only be 
achieved exactly by using an exact dynamic stiffness formulation in conjunction 
with the Wittrick-Williams algorithm, in which the latter enables any required 
eigenvalue to be converged upon to any desired accuracy with the certain knowledge 
that none have been missed.  Secondly, a comprehensive set of inter-relationships 
between the natural frequencies of the component elements comprising the structure 
have been formulated for the first time using a simple and novel procedure.  Finally, 
the theory has been developed in the context of two linked shear beams.  This has 
not been done previously and leads directly to the possibility of using well 
established simplification procedures that reduce multi-bay, multi-storey sway 
frames to equivalent one bay frames and then to simpler global models that can 
often retain sufficient accuracy for preliminary analysis and design procedures. 
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Appendix 
 
The foregoing theory governs the spring-linked motion of strings, shear beams and 
the axial and torsional motion of bars, or any appropriate combination of these, 
when the relevant member properties are selected from Table A below. 
 

Member type Motion Member properties 
    

Shear beam Lateral m AGk ′  
String Lateral m T 

Bar 
Axial m EA 

torsional mrθ  GJ 
 

Table A.  Corresponding member properties list.  m is the mass / unit length, θr is 
the radius of gyration, T is the string tension and AGk ′ , EA and GJ are the shear, 

axial and torsional rigidities, respectively. 
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