
Abstract

A numerical procedure for modelling fully coupled thermal, hygral and mechanical
behaviour of concrete at anearly age is presented. Concrete is treated as a porous
material, composed of a solid skeleton and pores, filled with liquid water and moist
air. Hydration of cement which causes temperature rise, desiccation and changes in
porosity, permeability, stiffness and strength, is taken into account. A set of governing
equations is solved iteratively by a finite element method. A numerical example is
solved considering two different types of sorption isotherms. A comparison between
experimental and numerical results shows the adequacy of the proposed procedure.

Keywords: early age concrete, numerical analysis, porous material, fully coupled
problem, cement hydration, heat and mass transport, sorption isotherms.

1 Introduction

During the first days after casting concrete is subjected to drastic changes. Their main
reason is hydration of cement, a chemical reaction during which water is combined
with cement grains to form a solid cement structure. Whilst solidifying, concrete’s
physical properties are constantly changing: porosity and water content are decreasing
while strength and modulus of elasticity are increasing. The reaction is exothermic and
consequently it may lead to a significant temperature rise, depending on the geometry
of concrete structure and the temperature of the surrounding media. Additionally, the
hydration causes concrete desiccation which results in shrinkage. Both temperature
gradient and shrinkage give rise to tension stresses. As tension strength of concrete is
low, they have to be very limited to prevent cracking and ensure concrete durability.

A numerical modelling presents a possible and feasible method to address the de-
scribed problem, but is rather complicated as concrete is a porous material composed
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of solid, liquid and gaseous phase. Thus the temperature disposition affects water,
vapour and air flow and vice versa, the heat is transferred by moving liquids. Besides,
both temperature and humidity have influence on concrete deformations and concrete
displacements interfere with mass and heat movements. The last phenomenon is fre-
quently neglected [1, 2], nevertheless, a fully coupled problem is considered in works
of Gawin et al. [3, 4] and Davie et al. [5].

While most of the researchers concentrate on concrete after the hydration is almost
completed, in work [1, 3, 4], a model adapted to concrete at early age is described. Its
main advantage is that hydration of cement which causes temperature rise and desic-
cation of concrete is taken into account as an internal heat source. Besides, concrete
strength, stiffness, permeability and porosity are modelled as ageing quantities.

The present paper follows the model presented in work [3, 4], but incorporates
some different constitutive laws. Sorption isoterms are modelled according to the
modified Davie’s model [5] which enables their evaluation on the basis of water to
cement ratio and eliminates the need for experiment, unavoidable in the formulation
described in work [3]. Hydration of cement is described by a hydration curve, obtained
by an adiabatic test and modelled by a mathematical function that is different from the
one used in work [3].

Governing equations are expressed in terms of four primary state variables and
solved iteratively by a finite element method. A numerical example dealing with adi-
abatic test is presented and discussed.

2 Balance equations

Presented balance equations are developed on the basis of hybrid mixture theory which
was originally proposed by Hassanizadeh and Gray [6, 7, 8], applied for geomaterials
by Lewis and Schrefler [9], and for early-age concrete by Gawin [3, 4].

Concrete is treated as a multi-phase porous material consisting of solid (marked s),
liquid (w) and gaseous (g) phase. The last is assumed to behave as an ideal gas and
is a mixture of dry air (ga) and water vapour (gw). First, mass balance equation is
written for every constituent of concrete. For a constituent π, the equation reads:

π

Dρπ
Dt

+ ρπdivvπ = ρπe
π(ρ), (1)

where ρπ is the apparent density, vπ the velocity and ρπeπ(ρ) the volumetric mass
source of a phase π.

Apparent density of the π phase is a product of its intrinsic density ρπ and volu-
metric portion. If concrete porosity n is defined as a volumetric portion of pores, the
volumetric portion of solid skeleton ηs can be expressed as (1 − n). The volumetric
portion of liquid and gaseous phase are determined as nSw and n(1− Sw), where Sw
is a degree of saturation of the pores with liquid water.
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If mhydr is the mass of water in a cubic metre of concrete, then ṁhydr is the mass
sink of liquid water and a mass source of solid skeleton. Similarly, ṁvap is the mass
source of water vapour and the mass sink of liquid water, wheremvap is the volumetric
mass of evaporating water.

Regarding all given relations and definitions, four mass balance equations can be
written for solid skeleton, liquid water, water vapour and dry air. It turns out that
s

Dn/Dt can be expressed from the equation for the solid skeleton and inserted in the
other equations, and ṁvap can be expressed from the equation for liquid water and
inserted in the equation for water vapour. In this way, four governing equations reduce
to two mass balance equations:

(1− n)(1− Sw)ρga

ρs

s

Dρs

Dt
+ n(1− Sw)

s

Dρga

Dt
− nρga

s

DSw
Dt

+ (1− Sw)ρgadivvs+

div (Jgad ) + div (n(1− Sw)ρgavgs) =
(1− Sw)ρga

ρs
ṁhydr,

(1− n)((1− Sw)ρgw + Swρ
w)

ρs

s

Dρs

Dt
+ nSw

s

Dρw

Dt
+ n(1− Sw)

s

Dρgw

Dt
+

n(ρw − ρgw)

s

DSw
Dt

+ (ρwSw + ρgw(1− Sw))divvs + div (Jgwd ) +

div (n(1− Sw)ρgwvgs) + div (nSwρ
wvws) =

Swρ
w + (1− Sw)ρgw − ρs

ρs
ṁhydr,

(2)

where the dry air velocity vga is decomposed into the advective vg and diffusive part
uga, which is described by the diffusive mass flux Jgad . As gas is an ideal mixture of
dry air and water vapour, the following equation holds:

Jgad = n(1− Sw)ρgauga = −Jgwd = n(1− Sw)ρgwugw. (3)

Second group of balance equations are energy balance equations. After assuming
that, at any given point, all concrete constituents have the same temperature T , and
neglecting viscous dissipation and mechanical work, caused by density variations and
volume fraction changes, the energy balance equations for all concrete phases are
summed up which results in one energy balance equation:

(ρCp)eff

s

DT

Dt
+
(
nSwρ

wCw
p v

ws + n(1− Sw)ρgCg
pv

gs
)

gradT + divq−

ρwSwdivvs∆Hvap −

(1− n)Swρ
w

ρs

s

Dρs

Dt
+ nSw

s

Dρw

Dt

∆Hvap−

nρw

s

DSw
Dt

∆Hvap − div (nSwρ
wvws) ∆Hvap = ṁhydr∆Hhydr −

Swρ
w − ρs

ρs
∆Hvap,

(4)
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where ∆Hhydr is the specific heat of hydration, ∆Hvap is the specific heat of water
evaporation, q is the heat flux, Cπ

p is the specific heat of the phase π and the heat
capacity (ρCp)eff is:

(ρCp)eff = (1− n)ρsCs
p + nSwρ

wCw
p + n(1− Sw)ρgCg

p . (5)

Similarly as energy equation, the linear momentum balance equation is obtained
by summing up the equations for all four constituents. If neglecting inertial forces,
this equation reads as:

divσ + ρg = 0, (6)

where σ is the total stress, g the gravitational acceleration and ρ the density of concrete
which can be evaluated from:

ρ = ρs + ρw + ρg = (1− n)ρs + nSwρ
w + n(1− Sw)ρg. (7)

3 Constitutive equations

3.1 Hydration of cement

Hydration of cement is a chemical reaction, during which cement grains react with
water and, together with aggregate, create increasingly rigid structure. Because the
reaction is exothermic, heat is released during its progress. This heat can be measured
with the adiabatic test and described by the adiabatic curve, which shows temperature
increase in concrete due to the hydration in completely isolated (adiabatic) conditions.

A hydration degree Γhydr is defined as a ratio between the mass of hydrated (chem-
ically combined) water mhydr and the mass of hydrated water at finished hydration
m∞hydr. Assuming the specific heat of hydration being constant during the whole course
of hydration, the hydration degree can be further expressed as a ratio between the heat
of hydration Qhydr and the total heat of hydration Q∞hydr.

Γhydr =
mhydr

m∞hydr
=
mhydr∆Hhydr

m∞hydr∆Hhydr

=
Qhydr

Q∞hydr
. (8)

Neglecting change of the heat capacity during adiabatic test (ρCp)
ad, the hydration

degree is:

Γadhydr =
T ad

T ad∞ − T ad0

, (9)

where T ad is the experimentally determined adiabatic curve and T ad∞ and T ad0 are the
final and the initial temperature of the adiabatic test, respectively.

Since the chemical reaction runs faster at higher temperatures, the adiabatic curve
needs to be corrected by Arrhenius function [1, 3] if the temperature does not follow
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the same adiabatic temperature rise. The rate of hydration degree then reads as:

Γ̇hydr =
Ṫ ad

T ad∞ − T ad0

exp

 Ea

R (ρCp)adTad

(ρCp)

 exp

(
− Ea
RT

)
, (10)

where Ea is the activation energy and R is the universal gas constant.
To simplify its numerical evaluation, the adiabatic curve is approximated by a math-

ematical function. The function proposed by [10] with the material parameters aa, ba,
ca and da is used here:

T ad = aa + ba exp
(
−(ca/t)

da
)
. (11)

The hydration rate is effected not only by the concrete temperature but also by the
moisture content which is affected by the relative humidity of the air in concrete pores
defined as a ratio between the actual and saturated water vapour pressure pgw/pgws.
To evaluate the influence of moisture content on hydration rate, it is multiplied by an
expression with the material parameter ah:

βϕ =

(
1 + a4

h

(
1− pgw

pgws

)4
)−1

. (12)

To evaluate ṁhydr from the equation (8), a mass of chemically combined water at
completed hydrationm∞hydr needs to be known. If there is enough water in the concrete
mixture so that entire cement is able to react, then 23 g of water is combined with 100
g of cement [11]. Because this condition is rarely fulfilled, this value is multiplied by
κ∞, which is defined as

κ∞ =
1.031w/c

0.194 + w/c
, (13)

where w/c is the water to cement ratio. If the apparent density of cement is denoted
mcem, ṁhydr can be expressed as:

ṁhydr = m∞hydrΓ̇hydr = 0.23κ∞mcemΓ̇hydr. (14)

The specific hydration heat can be evaluated from the equations (8 – 14) as:

∆Hhydr =
(ρCp)

adT ad

m∞hydr
. (15)

3.2 Porosity

Concrete is a highly porous material with many pores of different diameter, the diam-
eter being a typical dimension of the cross section of the pore. Pores with the diameter
smaller than 0.01 µm, are gel pores and are filled with gel water, which is physically
bound to the cement gel and thus it is a part of concrete’s solid skeleton. Pores with
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diameter greater than 0.01 µm are capillary pores and the capillary porosity is defined
as a volumetric portion of capillary pores in concrete.

During the course of hydration reaction, concrete is more and more dense and its
porosity is reducing. Several authors use different models to describe the change of
porosity of the cement paste, induced by the progress of hydration. In general, they
can be all expressed as:

n = n0 − n1Γhydr, (16)

where n0 (initial porosity) and n1 are constants, dependant on water to cement ratio
(w/c). For w/c = 0.45, initial porosity is about 0.59 and n1 ranges from 0.33 to
0.39 [3, 11, 12]. As these are values for the cement paste, some researchers multiply
them by a portion of the cement paste in concrete [13, 14], while the others equal the
porosity of concrete to the porosity of cement paste [3].

3.3 Densities, pressures and molar masses

The intrinsic density of liquid water depends on its temperature and is evaluated from:

ρw = ρw0(1− βwT ), (17)

where ρw0 = 999, 84 kg/m3 is the water density at 0 ◦C and βw = 207 · 10−6/ ◦C
is the thermal dilatation coefficient of water. In this and in the following equations,
temperature T is in ◦C.

Analogously, the intrinsic density of solid skeleton is:

ρs = ρs0(1− βsT ). (18)

The capillary pressure is defined as a difference between the pressure of gaseous
phase pg and liquid phase pw [9]:

pc = pg − pw. (19)

Gaseous phase is a binary mixture of two ideal gasses: dry air and water vapour.
Therefore, the following relation holds:

pga = pg − pgw, (20)

where pga and pgw are the partial pressures of dry air and water vapour. The last one
can be evaluated by Kelvin’s law:

pgw = pgws exp

(
− p

c

ρw
Mw

R(T + 273)

)
, (21)

where Mw = 18 kg/kmol is the molar mass of water and pgws is the saturated water
pressure which can be evaluated from:

pgws = 618.8710−
7.5T

T+237 , (22)
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where the pressure pgws is in Pa.
Because the air is assumed to be an ideal gas, ρg = ρga + ρgw holds. The density

of the ideal gas π depends on its pressure, temperature and molar mass:

ρπ =
pπMπ

(T + 273)R
. (23)

If the molar mass of dry air is denoted as Ma = 29 kg/kmol, then the molar mass of
humid air Mg is:

Mg =

(
ρgw

ρgMw

+
ρga

ρgMa

)−1

. (24)

3.4 Sorption isotherm

The sorption isotherms describe relationship between moisture content and relative
humidity of the air in pores. Gawin et al. [3] apply the rule suggested by Baroghel-
Bouny et al. [15]:

Sw =

(
1 +

(
pc

as

)bs/(bs−1)
)−1/bs

, (25)

where as and bs are material parameters which must be experimentally determined for
every concrete mixture and for the whole temperature range to be modelled. As these
experiments are difficult to conduct, Davie et al. [5] propose another expression:

nSw =


mcem

ρw

(
n0ρw0
mcem

pgw

pgws

)1/m

for pgw

pgws ≤ 0.96

a
(
pgw

pgws

)3

+ b
(
pgw

pgws

)2

+ c p
gw

pgws + d for 0.96 < pgw

pgws < 1

n for pgw

pgws = 1

,

m = 1.04− (T + 10)2

(T + 10)2 + 22.3(25 + 10)2
,

(26)

where ρw0 is the initial water density and a, b, c and d are parameters, determined in a
way that Sw is a continuously differentiable function of pgw/pgws. Using a polynomial
to bridge the gap between 96% and 100% of relative humidity can result in saturation
degree greater than 1, which is physically impossible and causes numerical problems.
Therefore, this expression is replaced by:

Sw = 1− c exp

(
−a
(

1

1− pgw/pgws

)b)
, (27)

where a, b and c are parameters, determined in a way that Sw is a continuous and
differentiable function of pgw/pgws which reaches value 1 at pgw/pgws = 1.
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3.5 Fluids flow and diffusion

Even if the structure of concrete is very complex, as the size of pores ranges from
micropores to cracks, the average fluid flow can be still described by Darcy’s law:

nSπv
πs = −k

rπk

µπ
(gradpπ − ρπg) , (28)

where π is air (g) or water (w), Sg = 1 − Sw is the saturation degree of pores with
air, k is the intrinsic permeability tensor, krπ and µπ denote relative permeability and
dynamic viscosity of air and liquid water and can be evaluated from [16, 17]:

krw =
√
Sw

(
1−

(
1− S1/m

w

)m)2

, (29)

krg =
√

1− Sw
(
1− S1/m

w

)2m
, (30)

µw = 0.6612(T + 44.15)−1.562, (31)

µg = µgw + (µga − µgw)

(
pga

pg

)0.608

, (32)

µgw = 8.85 · 10−6 + 3.53 · 10−8T, (33)

µga = 17.17 · 10−6 + 4.73 · 10−8T + 2.22 · 10−11T 2, (34)

where the dynamic viscosity µπ is in Pa s, m is 1/b, where b is 2.27 for ordinary and
2.06 for high-strength concrete [15]. The presented model neglects influence of cracks
which appear due to large tensile stresses.

Fick’s law describes diffusion of dry air and water vapour in the gaseous phase
[3, 9, 17]:

Jgwd = −ρgDgw
d grad

(
ρgw

ρg

)
, (35)

where Dgw
d is the effective diffusivity tensor of vapour in the air and may be evaluated

from [15, 17]:

Dgw
d = Dga

d = n(1− Sw)1.87 · 10−5 (T + 273)2.072

pg
δ

τ 2
, (36)

where δ = 0.5 and τ = 3.

3.6 Heat conduction

The specific heat of dry air, liquid water and water vapour, are determined by the
following equations (specific heat is in J/kg ◦C) [17]:

Cga
p = a(T + 273)3 + b(T + 273)2 + c(T + 273) + d, (37)
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where a = −9.8494·10−8, b = 3.5644·10−4, c = −1.2162·10−1 and d = 1.0125·103,

Cgw
p = 7.1399(T + 273)− 443 +

(
a(T + 273)

513.15

)b
, (38)

where a = 1.1377 and b = 29.444,

Cw
p = 2.4768(T + 273) + 3368.2 +

(
a(T + 273)

513.15

)b
, (39)

where a = 1.0854 and b = 31.445.
The specific heat of evaporation of water ∆Hvap is assumed to be constant and has

the value of 2.26 · 106 J/kg.
To model the heat conduction through concrete, Fourier’s law is used in the follow-

ing form:
q = −λeff gradT, (40)

where λeff is the effective thermal conductivity.

3.7 Principle of effective stresses and deformation

Concrete is composed of the solid skeleton and the pores filled with air and water. The
total stress σ which is in balance with external load is the sum of the stress of the solid
skeleton (effective stress) σeff and the pressure exerted on the skeleton by pore liquids
ps:

σ = σeff − psI, (41)

where I is [1 1 1 0 0 0]T. The stresses σ and σeff are positive in tension, while the
pressure ps is positive in compression. Vectors of stresses (and deformations) have the
form:

σ =
[
σxx σyy σzz σxy σxz σyz

]T
. (42)

If χws is the portion of the solid skeleton’s surface which is in contact with water
then ps reads as:

ps = pg − patm − χwspc. (43)

For geomaterials, χws = Sw is usually valid, but this relation is not appropriate
for the concrete because it has a large portion of very thin pores and huge internal
surface. Therefore, the connection χws(Sw) is established in work [4] on the basis of
experimental results obtained by Baroghel-Bouny et al. [15] and it is approximated by
the following function (for the ordinary concrete):

χws = 0.1759 exp

(
−
(

0.1463

Sw

)1.391
)
. (44)

Total deformation of the concrete skeleton εtot can be decomposed in:

εtot = εe + εc + εt + εch, (45)
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where εe is the elastic deformation caused by external load and drying, εc is the de-
formation because of the creep, εt is the deformation due to changes in the tempera-
ture and εch are the deformation on the account of chemical shrinkage. Deformations
which are the result of cracking are not considered. Because elastic deformation is in
correlation with effective stress, which is influenced by the change in relative humid-
ity, it includes drying shrinkage.

If E is the modulus of elasticity, dependant on the hydration degree, the following
holds:

dσeff = E D dεe + dE D εe (46)

where D is the stiffness tensor with an inverse G. If ν is the Poisson’s ratio, it reads
for three dimensional state as:

D = G−1 =


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 (1− 2ν)/2 0 0
0 0 0 0 (1− 2ν)/2 0
0 0 0 0 0 (1− 2ν)/2

 .
(47)

The deformation caused by a change of temperature is:

dεt = βs/3 dT I. (48)

Impact of the chemical shrinkage may be expressed by:

dεch = βch/3 dΓhydr I, (49)

where βch is a material parameter.
Modelling of creep is based on the Bažant’s formulation [19, 20], where creep

deformation is composed of a viscoelastic part, described by a Kelvin’s chain and
dependant on the hydration degree, and viscous part, describing the long term creep
which takes place even if the hydration has already finished. Presented model follows
the one represented by Gawin et al. [4] who connected creep with effective instead of

10



total stress. The total creep may be evaluated from the following algorithm [23]:

∆εc =
G∆σ

eff

E ′′
+ ∆ε

′′
c ,

1

E ′′
=

1

vi+1/2

N∑
µ=1

1− λµ
Eµ

,

∆ε
′′
c = RT (T i+1/2)F (σeff,i+1/2)[

1

vi+1/2

N∑
µ=1

(1− exp(−∆yµ))

(
Gσeff,i

Eµ
− γiµ

)
+ 2ccS

i+1Gσeff,i
∆t

]
,

γi+1
µ = γiµ exp(−∆yµ) +

Gσeff,i

Eµ
(1− ∆yµ) +

1− λµ
Eµ

G∆σ
eff,

∆yµ =
∆t

τµ
, λµ =

1− exp(−∆yµ)

∆yµ
,

(50)

where v = Γhydr, Eµ are coefficients of the Kelvin’s chain and are evaluated in
the sense of continuous retardation spectrum (f̄c is an average 28-day compression
strength in MPa) [22]:

Aµ =
1

Eµ
= L(τµ)∆(lnτµ), τµ+1 = 10τµ,

L(τ) =

(
−2n2(3τ)2n−3(n− 1− (3τ)n)

(1 + (3τ)n)3

+
n(n− 2)(3τ)n−3(n− 1− (3τ)n)− n2(3τ)2n−3

(1 + (3τ)n)2

)
(3τ)3

2
q2,

n = 0.1, λ0 = 1 day, q2 = 185.4m0.5
cemf̄

−0.9
c ,

(51)

Si+1 is concrete microprestress [20]:

Si+1 =
Si − c1ω∆(lnh)

1 + c0Siω∆t
, (52)

where c1 and c0 are material parameters, h = pgw/pgws is relative humidity of the air
in pores and:

ω =


(tan ∆ξ)/∆ξ for ∆h > 0 in ∆ξ > 10−5,
(tanh ∆ξ)/∆ξ for ∆h < 0 in ∆ξ > 10−5,
1 for ∆ξ < 10−5;

∆ξ =
√
c0c1∆t|∆lnh|. (53)

F (σeff,i+1/2) and RT (T i+1/2) give consideration to the influence of high stress and
temperature on creep and read as [23, 24]:

F (σ(t)) =
1 + s2

1− s10
, s =

σ(t)

f̄c
, (54)

RT = exp

(
U ′c
R

(
1

T0

− 1

T0

))
, T0 = 293K,

U ′c
R

= 0.18 · 110m−0.27
w f̄ 0.54

c . (55)
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4 System of governing equations and its solving

To solve four equations (2, 4, 6), four state variables need to be chosen. The choice of
displacement vector u, temperature T and gas pressure pg is somehow obvious while
the selection of the variable to describe moisture state is more difficult. As suggested
by Gawin et al. [3, 4], the last variable is capillary pressure, its meaning being formally
generalised to cover complete range of moisture in pores [3].

After inserting constitutive equations in the balance equations and thus expressing
them with the chosen state variables, discretization in space is carried out by means of
the finite elements method. The principle of virtual work is implied to get the system
of governing equations in the following form:
Cgg Cgc Cgt Cgu

0 Ccc Cct Ccu

0 Ctc Ctt Ctu

Cug Cuc Cut Cuu



ṗg

ṗc

Ṫ
u̇

+


Kgg Kgc Kgt 0
Kcg Kcc Kct 0
Ktg Ktc Ktt 0
Kug Kuc Kut Kuu



pg

pc

T
u

 =


f g
f c
fT
fu

 ,
(56)

whereCij ,Kij and f i are dependant on pg, pc, T and u which is why the system has
to be solved iteratively.

5 Numerical example

To validate presented numerical procedure, a numerical model of adiabatic test con-
ducted by Bentz et al. [25] is made and the results are compared to the experiment and
to those obtained by Gawin et al. [3].

A specimen is a 60 cm long concrete cylinder with a diameter of 4 cm. It is sealed
and thermally isolated. Because the length of cylinder is much larger than its ra-
dius, only a slice of it is modelled. Considering axial symmetry of the specimen, the
problem is one dimensional and is modelled by 26 four-node isoparametric axially
symmetric finite elements, whose length diminishes towards the surface (Figure 1).

Figure 1: Finite elements mesh and boundary conditions for the example

The initial temperature of the concrete is 20 ◦C, the initial relative humidity is
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99.9% and the initial hydration degree 0.1. Material parameters of concrete are sum-
marized in Table 1.

Parameter Symbol Value Unit
Water / cement ratio w/c 0.45
Cement content mcem 420 kg/m3

Porosity n 30.6 %
Intrinsic permeability k 3 · 10−18 m2

Apparent density ρeff 2285 kg/m3

Specific heat Cp,eff 1020 J/kgK
Thermal conductivity λeff 1.5 W/mK
Thermal dilatation coefficient βs 3.6 · 10−5 1/K
Young modulus E 24.11 GPa
Poison’s ratio µ 0.2
Compressive strength fc 26 MPa
Parameters in (11) aa 0 ◦C

ba 40 ◦C
ca 72000 s
da 2.5

Parameter in (12) ah 5
Activation energy Ea 41570 K
Parameters in (25) as 25.4 MPa

bs 1.8
Parameter in (50) cc 13.55 · 10−9 1/MPa2 s
Parameters in (52) c0 2.72 · 10−3 1/MPa s

c1 1.98 MPa

Table 1: Material parameters of concrete

Numerical results are compared to the experimental results and to the results of
numerical simulation presented by Gawin et al. [3] (Case 0) in Figure 2. Two cases
are considered. In the first one (Case 1), sorption isotherm given by (25) which are the
same as are used in work [3], are applied. Since material parameters in this model are
difficult to experimentally define, sorption isotherms represented by (26, 27) whose
parameters depend solely on the mixture properties are employed in the second case
(Case 2).

The results compared in Figure 2 show good agreement, which indicates the ade-
quacy of the applied model. Using different mathematical functions to model adiabatic
temperature rise (equation given in work [3] for case 0 and Equation (11) for cases 1
and 2) cause slightly different values of temperature, but temperature rises of cases 1
and 2 are almost the same, from which it can be concluded that the type of sorption
isotherm used does not affect temperature distribution. However, relative humidity is
influenced by the sorption isotherms, but the results are still close enough.
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Figure 2: Comparison of experimental and numerical results

6 Conclusion

The numerical procedure for modelling fully coupled thermal, hygral and mechanical
behaviour of concrete at early ages has been presented. Concrete has been treated
as the porous material, composed of the solid skeleton and pores, filled with liquid
water and moist air. Hydration of cement which causes temperature rise and desicca-
tion of concrete has been taken into account as an internal heat source. Strains have
been connected to the effective stresses, what holds for the creep strains modelled by
microprestress-solidification theory as well. The set of partially differential governing
equations has been solved iteratively by a finite element method.

A numerical example dealing with adiabatic test has been made. Good agree-
ment between experimental and numerical results has shown adequacy of the pro-
posed model. In addition to the sorption isotherms suggested in work [3], calculation
was repeated using different sorption isotherms (26, 27) having parameters which are
easier to determine. Getting results which do not differ much from the original one,
the novel sorption isotherms have proved to be adequate as well.
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[19] Z. P. Bažant, A. B. Hauggaard, S. Baweja, F.-J. Ulm, “Microprestress-
solidification theory for concrete creep. I: Aging and drying effects”, Journal
of Engineering Mechanics (ASCE), 123(11), 1188-1194, 1997.
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