
Abstract

It is known that the standard full integration ten node tetrahedral element is inaccu-

rate for thin nearly incompressible structures. The objective of this work is to develop

a ten node tetrahedral Cosserat Point Element (CPE) for nonlinear isotropic hyper-

elastic materials. Hyperelastic constitutive equations for the CPE are developed by

treating the element as a structure with a strain energy function that is restricted to sat-

isfy a nonlinear form of the patch test. A number of examples are considered which

demonstrate that the resulting CPE is accurate and robust.

Keywords: Cosserat point element, hyperelasicity, quadratic, tetrahedral element.

1 Introduction

It is well known that generating a mesh for a general three-dimensional region is easier

using tetrahedral elements than using brick elements. However, homogeneously de-

formable four node tetrahedral elements exhibit stiff response to bending and severe

volumetric locking for nearly incompressible materials. Therefore, a number of ele-

ment technologies have been proposed to improve the performance of the four node

tetrahedral element for nearly incompressible materials ([1], [2], [3], [4], [5], [6]).

Although the aforementioned technologies have improved the performance of the low

order tetrahedral element for nearly incompressible materials, the performance for

bending dominated deformations is still very poor.

Quadratic tetrahedral elements based on quadratic shape functions with full integra-

tion eliminate stiffness to bending modes but are known to exhibit inaccurate response

for nearly incompressible materials. Mixed methods can be used for nearly incom-

pressible materials, but they exhibit soft response to bending. Moreover, ABAQUS

[7] has developed an undocumented patented element (C3D10M) called a modified
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ten node tetrahedral element which is used to replace the full integration element for

contact problems. However, that modified element exhibits unphysical instabilities

in some problems. To the best of our knowledge, there are only a few technolo-

gies that have been proposed in the literature for improving the performance of the

quadratic tetrahedral element for nearly incompressible materials which retain accu-

racy for bending deformations and are applicable to large deformations. Specifically,

Lo and Ling [8] developed an improved 10-node tetrahedral element based on relax-

ing the compatibility condition for the constant strain term. The element stiffness

matrix was separated into two parts, namely the constant strain term and the higher-

order strain term. The incompressibility condition was imposed on the higher-order

strain term in order to enhance the accuracy of 10-node tetrahedral element for nearly

incompressible materials. However, their formulation is valid only for linear elasticity.

Another element technology produces a class of Cosserat Point Elements (CPEs)

which are based on the theory of a Cosserat Point ([9], [10], [11], [12] [13], [14],

[15], [16], [17]). In standard Bubnov-Galerkin methods a kinematic approximation

is assumed to be valid pointwise in the element and it is used at the Gauss points of

integration to the determine element stiffnesses. In contrast, in the CPE approach the

kinematic approximation is only used to connect nodal director vectors (i.e. nodal

positions) to element director vectors. Specifically, the hyperelastic constitutive equa-

tions of the CPE are developed by treating the element as a structure with a strain

energy function that models the response of the structure to all modes of deformation.

In particular, the nodal forces are related to derivatives of the strain energy function

through algebraic relations in a similar manner to the relationship of the stress to

derivatives of the strain energy function in the full three-dimensional theory of hyper-

elastic materials.

The objective of this paper is to discuss a ten node tetrahedral Cosserat Point El-

ement (CPE) for three-dimensional deformations of nonlinear isotropic hyperelastic

materials. The strain energy of the resulting CPE is restricted to satisfy a nonlinear

form of the patch test and analytical expressions for the coefficients of the inhomoge-

neous strain energy have been determined to produce accurate results which are nearly

insensitive to irregularity of the reference geometry of the CPE. Examples show that

this CPE is both accurate and robust and that it an be used for thin structures and for

nearly incompressible materials.

2 Basic equations of the CPE using the Bubnov-Galerkin

approach

Figure 1 shows a sketch of a ten node 3-D tetrahedral CPE. Here, and throughout

the text a superposed ( ∗ ) is used to denote some quantities related to the three-

dimensional which have counterparts in the CPE. A material point in the reference and

deformed configurations is characterized by the convected coordinates θi (i = 1, 2, 3)
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and is located by the position vector X∗ and x∗, respectively, defined by

X∗ =
9∑

j=0

N j(θi)Dj, x∗ =
9∑

j=0

N j(θi)dj(t) (1)

where Dj are constant element director vectors, dj(t) are the present values of the

element directors, t is time, and N j are tri-linear shape functions

N0 = 1, N1 = θ1, N2 = θ2, N3 = θ3,

N4 = θ1θ2, N5 = θ1θ3, N6 = θ2θ3,

N7 = θ1θ1, N8 = θ2θ2, N9 = θ3θ3,

(2)

The tetrahedral region P is bounded by the four surfaces ∂PJ (J = 1, 2, 3, 4) defined

by (Fig. 1)
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Also, the triads Di and di (i = 1, 2, 3) are restricted to be linearly independent with

D1/2 = D1 × D2 · D3 > 0, d1/2 = d1 × d2 · d3 > 0 (4)

The reciprocal vectors Di and di are defined by

Di · Dj = δi
j, di · dj = δi

j for (i, j = 1, 2, 3) (5)

where δi
j is the Kronecker delta symbol.

Using these representations it is possible to determine the reference base vectors

Gi, their reciprocal vectors Gi, the present base vectors gi, their reciprocal vectors gi

and the velocity field v∗, such that

Gi = X∗

,i, Gi · Gj = δi
j, (i, j = 1, 2, 3), G1/2 = G1 × G2 · G3,

gi = x∗

,i, gi · gj = δi
j, (i, j = 1, 2, 3), g1/2 = g1 × g2 · g3,

v∗ = ẋ∗ =
9∑

j=0

N jwj, wj = ḋj

(6)

where a comma denotes partial differentiation with respect to θi, a superposed ( ˙ )
denotes material time differentiation holding θi fixed and wj are the director velocities.
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Figure 1: Sketch of a quadratic tetrahedral element showing the 10 nodal directors

Di (i = 0, 1, ..., 9) and the surface ∂PJ .

For the CPE it is convenient to define a deformation tensor F associated with ho-

mogeneous deformations and deformation vectors βi associated with inhomogeneous

deformations by

F =
3∑

i=1

di ⊗ Di, βi = F−1di+3 − Di+3, (i = 1, ..., 6) (7)

It then can be shown that the three-dimensional deformation gradient F∗ associated

with the kinematic assumption (6) is given by

F∗ = F

(
I +

3∑

i=1

6∑

j=1

N j+3
,i βj ⊗ Gi

)
(8)

¿From this expression it can be deduced that βi are pure measures of inhomogeneous

deformations since when they vanish F∗ = F is independent of the coordinates θi.

It is well known (e.g. [18]) that the conservation of mass and the balance of linear

momentum can be expressed in the forms

ρ∗g1/2 = ρ∗

0G
1/2, ρ∗v̇∗ = ρ∗b∗ + div∗T∗ (9)

where ρ∗

0 and ρ∗ are the reference and current values of the mass density, respectively,

b∗ is the body force per unit mass, T∗ is the Cauchy stress tensor. Multiplying (9b) by

g1/2 and using the identity
(
g1/2gj

)
,j

= 0, the conservation of mass and the balance
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of linear momentum can be written in the alternative forms

m∗ = ρ∗g1/2 = m∗(θi),

m∗v̇∗ = m∗b∗ +
3∑

j=1

t
∗j
,j , with t∗j = g1/2T∗gj, (j = 1, 2, 3)

(10)

Next, the Bubnov-Galerkin weak form of the balance of linear momentum can

be obtained by multiplying (10b) by the shape functions N i and integrating over the

material region P ∗ with closed smooth boundary ∂P ∗ such that

9∑

j=0

myijẇj = mbi + mi − ti, (i = 0, 1, ..., 9) with t0 = 0 (11)

These equations are the same as the director momentum equations of the CPE where

the mass m, director inertia quantities yij , external director couples bi due to body

forces and external director couples mi due to surface tractions are defined by

m =

∫

P ∗

ρ∗dv∗, myij =

∫

P ∗

N iN jρ∗dv∗ = myji,

mbi =

∫

P ∗

N iρ∗b∗dv∗, mi =

∫

∂P ∗

N it∗dv∗

(12)

In these expressions dv∗ is the current element of volume, da∗ is the current element

of area, t∗ is the traction vector applied to the surface ∂P ∗ and use has been made of

conservation of mass which yields

ṁ = 0, ẏij = 0 (13)

The intrinsic director couples ti, which require constitutive equations, will be defined

later. The balance of angular momentum is satisfied provided that the tensor T is

symmetric

T = d−1/2

9∑

i=1

ti ⊗ di = TT (14)

Moreover, it can be shown the T is related to the volume averaged Cauchy stress [16]

d1/2T =

∫

P ∗

T∗dv∗ (15)

For a three-dimensional hyperelastic solid a strain energy function Σ∗ and the

Cauchy stress tensor T∗ are proposed of the form

Σ∗ = Σ̂(C∗), C∗ = F∗TF∗, T∗ = 2ρ∗F∗
∂Σ̂(C∗)

∂C∗

F∗T (16)

5



Thus, within the context of the Bubnov-Galerkin approach with full integration

the constitutive equations for the intrinsic director couples ti can be determined by

numerically evaluating an integral which weights the Cauchy stress T∗ by gradients

of the shape functions N i. Specifically, for a given strain energy function Σ∗, it is

assumed that the kinematic approximation (1) for F∗ is valid pointwise and that T∗ is

determined by the expressions (16) at each Gauss point in the element.

3 Constitutive equations of the CPE using the direct

approach

Within the context of the direct approach, the kinematics of the CPE are characterized

by introducing reference element director vectors Di and their present values di

{Di, di(t)}, (i = 0, 1, ..., 9) (17)

which satisfy the restrictions (4). Then, the conservation of mass and the balances of

director momentum are proposed in the forms (13) and (11), respectively.

Constitutive equations for the intrinsic director couples ti of a hyperelastic CPE

are determined by procedures similar to those in the three-dimensional theory. Specif-

ically, the CPE is considered to be a structure and the resistance to all deformational

modes of the structure is characterized by a strain energy Σ (per unit mass) of the

structure of the form

Σ = Σ(C, βi), C = FTF (18)

Moreover, it is convenient to introduce the rate of dissipation D by the form

D = W − K̇ − mΣ̇ ≥ 0 (19)

where the rate of external work W done on the CPE and its kinetic energy K are defined

by

W =
9∑

i=0

(mbi + mi) · wi, K =
1

2

9∑

i=0

9∑

j=0

myijwi · wj (20)

Then, with the help of (11), (13), and (15) the rate of dissipation (19) can be rewritten

in the form

D = d1/2T · D +
6∑

i=1

FT ti+3 · β̇i − mΣ̇ ≥ 0 (21)

where D is the symmetric part of the rate tensor L defined by

L = ḞF−1 =
3∑

i=1

wi ⊗ di, D =
1

2

(
L + LT

)
(22)
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For an elastic CPE the rate of dissipation vanishes for all processes so that standard

methods can be used to deduce that the kinetic quantities are related to derivatives of

Σ, such that

d1/2T = 2mF
∂Σ

∂C
FT , ti+3 = F−T ∂Σ

∂βi

, (i = 1, 2, ..., 6),

t0 = 0, ti =

(
d1/2T −

9∑

j=4

tj ⊗ dj

)
· di, (i = 1, 2, 3)

(23)

3.1 Restrictions associated with a nonlinear form of the patch test

In [13] restrictions on the strain energy Σ of the CPE were developed which ensure

that the CPE will reproduce exact solutions for all homogeneous deformations of a

uniform homogeneous anisotropic elastic material for all reference element shapes.

Specifically, it was shown there that these restrictions will be satisfied if Σ is related

to the strain energy function Σ∗ of the three-dimensional material such that

mΣ(C, βi) = Σ∗(C) + Ψ(βi, Di), C = F
T
F (24)

where F is the average deformation gradient (see [14]) defined by

F =
1

V

∫

P ∗

0

F∗ dV ∗ = F

(
I +

6∑

j=1

βj ⊗ Vj

)
(25)

and the vectors Vi are determined by the reference geometry of the CPE

V ∗Vj =
3∑

i=1

∫

P ∗

0

N j+3
,i GidV ∗, (j = 1, 2, ..., 6), V ∗ =

∫

P ∗

0

dV ∗ (26)

Here, Ψ represents the strain energy per unit mass of inhomogeneous deformations

which for the CPE includes bending, torsional and higher-order hourglass modes of

deformation. Also, Ψ must satisfy the restrictions that

∂Ψ

∂βi

= 0 for βi = 0 (27)

which ensure that a nonlinear form of the patch test is satisfied by the CPE.

In the remaining sections of the paper attention is limited to an isotropic compress-

ible Neo-Hookean material which is characterized by the strain energy function

ρ∗

0Σ
∗ =

1

2
K

(
J̃ − 1

)2
+

1

2
µ
(
α1 − 1

)2
,

J̃ = J + ηJ, J = det(F), J = det(F), α1 = J −2/3 C · I

(28)

7



where K and µ are the small deformation bulk and shear moduli, respectively, and

use has been made of the work of Flory [19] to define α1 as a scalar pure measure

of distortional deformation. J̃ is a new measure of volume change the approximates

the ratio between the current volume of the element and its reference volume, and

the scalar η is defined in [20]. In particular, for examples of compressible material re-

sponse the quantities {K, µ} and the small deformation Poisson’s ratio ν are specified

by

K = 1 GPa, µ = 0.6 GPa, ν = 0.25 (29)

whereas for nearly incompressible response these parameters are specified by

K = 1000GPa, µ = 0.6 GPa, ν = 0.4997 (30)

3.2 Determination of the constitutive coefficients

In [20] the strain energy of inhomogeneous deformation Ψ was taken to be a quadratic

function of βi which can be written in the form

2mΨ =
V ∗µ

160

18∑

i=1

18∑

j=1

Bijbibj, Bji = Bij (31)

where the inhomogeneous strains are defined by

b(i+3(j−1)) = βj · D
i, (i = 1, 2, 3), (j = 1, 2, ..., 6) (32)

The coefficients Bij can be determined by comparison with exact solutions of pure

bending and adopting the nonsingular coefficients of Bubnov-Galerkin when the ma-

terial becomes nearly incompressible.

4 Numerical examples

The tetrahedral CPE was implemented into the commercial finite element package

ABAQUS [7] through the user subroutine UEL for the numerical study. Also, compar-

ison is made with two ten node tetrahedral elements in ABAQUS. Predictions based

on the full integration element (C3D10) are denoted by (F) and those based on the

modified element (C3D10M) are denoted by (M).

For all examples, the region of the structure is meshed by rectangular bricks. A

representative mesh is denoted by {n1, n2, n3} with n1 bricks in the e1 direction,

n2 bricks in the e2 direction and n3 bricks in the e3 direction. Each brick is further

meshed by dividing the brick along its diagonal to obtain two wedges, each of which

is meshed with three tetrahedral elements.
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4.1 Shear load on a thin cantilever beam (small deformations)

Figure 2 shows a sketch of a thin cantilever beam with rectangular cross-section de-

fined by

L1 = 200 mm, L2 = L3 = 10 mm (33)

The beam is fully clamped at its end X1 = 0 and is subjected to a uniform shear stress

τ applied in the e2 direction on its end X1 = L1. The lateral surfaces are traction free.

Also, the beam is meshed by {20n, n, n} bricks with 20n bricks in the e1 direction.

Figure 2: Uniform shear stress τ applied to the end of a thin cantilever beam.

The error E in the vertical displacement uA2 of the point A (Fig. 2) plotted for this

example is defined by

E =
uA2 − u∗

A2

|u∗

A2|
(34)

with the reference value u∗

A2 being equal to the value uA2 predicted by the CPE with

the refined mesh (n = 10). Figure 3 shows the convergence of the error E of the

displacement uA2 for the (CPE), (F ) and (M) for both compressible (ν = 0.25)
and nearly incompressible (ν = 0.4997) materials. Figures 3a, b check standard

convergence with mesh refinement in all three directions {20n, n, n). These figures

indicate that the (CPE) converges faster than (F ) and (M), especially for the com-

pressible material (Fig. 6a). Figures 6c, d examine accuracy of the elements as the

elements develop very poor aspect ratios with mesh refinement only in the axial direc-

tion {n, 1, 1}. These results indicate that the (CPE) and (F ) are more accurate than

(M) for both compressible and nearly incompressible materials. Since Fig. 6a shows

that the (CPE) is nearly converged for the mesh {20, 1, 1}, which corresponds to

n = 20 in Fig. 6c for the compressible material, it can be concluded that the (CPE)
for the compressible case is slightly more accurate than (F ) and is much more ac-

curate that (M). The results for the nearly incompressible material shown in Fig. 6d

indicate that the predictions of the (CPE) are slightly less accurate than those of (F )
are more accurate than those of (M).

9



Figure 3: Shear load on a thin cantilever beam (small deformations). Convergence

of the error E in the displacement uA2 for the (CPE), (F ) and (M) elements for

both compressible (ν = 0.25) and nearly incompressible (ν = 0.4997) materials with

τ = 1 kPa.

4.2 Plane strain of a nearly incompressible block (large deforma-

tions)

Figure 4 shows a block with dimensions (2L1, L2, L3)

L1 = L2 = 1.0 m, L3 = 0.2 m (35)

which is loaded by a rigid plate that is perfectly bonded to half of the block’s top

surface (X2 = L2). The plate remains horizontal and loads the block by moving only

in the vertical direction. The edge (X1 = 0) is free to slide on a vertical plane, the

bottom (X2 = 0) is free to slide on a horizontal plane, the edge (X1 = 2L1) and the

remaining top surface are traction free. This block is meshed by {10n, 5n, 1} bricks

with 10n elements in the e1 direction and with the depth W of the brick in the e3

direction given by

W =
L3

n
(36)
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so that the bricks remain cubes during mesh refinement. The block is modeled as a

nearly incompressible material (ν = 0.4997). Although this problem is one of plane

strain, since the six tetrahedral CPEs in each brick element are not arranged symmet-

rically the numerical solution does not predict plane strain deformations exactly.

Figure 4: Plane strain of a block loaded by a rigid plate (large deformations).

For this problem let F2 be the e2 component of the force applied by the plate on the

block of depth L3 and uA2 be the e2 component of the displacement of point A at the

edge of the plate. The force F2 is obtained by multiplying the vertical force applied to

the plate for a block of depth W by the factor n for the refined meshes.

Figure 5 shows the force F2 versus displacement uA2 of the plate for the {(CPE),
(F ), (M)} for the coarse mesh {10, 5, 1} (i.e. n = 1) and for the (CPE) with

refined mesh {100, 50, 1} (i.e. n = 10) denoted by (CPE∗). The values of the

last points of convergence depend slightly on the final displacements specified for the

calculations, which were taken to be uA2/L1 = 1.50 and − 0.75, respectively for

tension and compression. These last points of convergence are denoted by symbols in

Fig. 5. Moreover, from Fig. 5 it can be seen that all of the solutions for the coarse

mesh {10, 5, 1} are relatively accurate in the range of convergence of the refined mesh

{100, 50, 1}. It can also be seen that the (CPE) exhibits more robust response than

(F ) and (M) in tension and less robust response than these elements in compression,

and that the response predicted by (F ) in compression is too stiff.

Specifically, Figs. 6 and 7 show the deformed shapes of the (CPE) and (M) for

the last points of convergence in tension and compression, respectively. From these

figures it can be seen that the (CPE) predicts stable response, whereas (M) exhibits

instabilities in both tension and compression. The instability is clearly seen in Fig. 6b
and 7b near the free edges.

4.3 Indentation of a smooth rigid sphere into a block (large defor-

mations)

Figure 8 shows a sketch of indentation of a smooth rigid sphere into a nearly incom-

pressible (ν = 0.4997) block. The total length 2L1, total depth 2L2, total height L3 of

11



Figure 5: Plane strain extension and compression of a nearly incompressible block

loaded by a rigid plate (large deformations). Force F2 versus displacement uA2 of the

plate for the {(CPE), (F ), (M)} with the coarse mesh {10, 5, 1} and (CPE∗) with

the refined mesh {100, 50, 1}. The last points of convergence are marked by symbols.

the block and the radius R of the spherical punch are specified by

L1 = L2 = L3 = 1.0 m, R = 0.5 m (37)

The bottom (X3 = 0) of the block remains in contact and slides freely on the plane

(X3 = 0) and the remaining surfaces of the block are traction free except at the points

of contact of the rigid spherical punch with the deformed top surface (X3 = L3).
The rigid punch can only move vertically with displacement u3 in the e3 direction.

Moreover, only one fourth of the block is analyzed and is modeled by the mesh

{5n, 5n, 5n} of bricks. Also, use is made of symmetry planes for X1 = 0 and X2 = 0.

The vertical force F3 applied to one quarter of the punch and the vertical displace-

ment uA3 of the point A of the punch are plotted in Fig. 9 for the (CPE) and (M)
with two different meshes. In this regard, it is noted that ABAQUS does not allow the

use of (F ) for contact problems. Figure 9 shows that the refined meshes (n = 5) of

both the (CPE) and (M) predict nearly identical results and the coarse mesh (n = 1)
of the (CPE) is very accurate. The (CPE) with the refined mesh (n = 5) con-

verged for the full range of deformation shown in Fig. 9 and ceased to converge at

uA3/L3 = −0.46403 for the coarse mesh (n = 1). In contrast, the element (M)
ceased to converge for the coarse mesh (n=1) at uA3/L3 = −0.41264 and for the re-

fined mesh (n = 5) at uA3/L3 = −0.41337. These points where the elements ceased

to converge in marked by symbols in Fig. 9. These results indicate that the (CPE) is

more robust that (M).

Moreover, Fig. 10 shows the deformed shape predicted by the (CPE) with the

refined mesh (n = 5) for uA3/L3 = −0.5, both with and without the spherical punch.
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Figure 6: Plane strain extension of a nearly incompressible block loaded by a rigid

plate (large deformations). Deformed shapes predicted by the (CPE) and the mod-

ified element (M) for tension with the coarse mesh {10, 5, 1} at the last point of

convergence associated with the displacement uA2/L2.

5 Conclusion

In the previous sections a ten node tetrahedral Cosserat Point Element (CPE) has been

discussed for large deformations of nonlinear isotropic hyperelastic materials. The

constitutive equations treat the CPE as a structure and the kinetic quantities are deter-

mined by hyperelastic equations as derivatives of the strain energy function. In partic-

ular, these constitutive equations are algebraic and no integration is required over the

element region.

Examples of a thin cantilever beam, plane stain deformations of a block and in-

dentation of a smooth rigid spherical punch into a three-dimensional block show that

the resulting tetrahedral CPE is accurate, robust and is valid for thin structures as well

as three-dimensional bodies. Also, the CPE can be used for contact problems and

it exhibits a smooth transition from compressible to nearly incompressible material

behaviour.
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Figure 10: Indentation of a smooth rigid sphere into a nearly incompressible block

(large deformations). Deformed shape predicted by the (CPE) with the refined mesh

{25, 25, 25} for uA3/L3 = −0.5, both with and without the spherical punch.
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