
Abstract

In many important practical problems, some decision should be made by finding the

global optimum of a multiextremal objective function subject to a set of constraints.

Frequently, especially in engineering applications, the functions involved in optimiza-

tion process are black-box with unknown analytical representations and hard to eval-

uate. Such computationally challenging decision-making problems often cannot be

solved by traditional optimization techniques based on strong suppositions about the

problem (convexity, differentiability, etc.). In this paper, some innovative and power-

ful approaches developed by the authors to construct efficient numerical methods for

solving the mentioned problems are presented.

Keywords: global optimization, black-box functions, derivative-free methods, Lips-

chitz condition, applied problems.

1 Introduction

Numerical approaches to efficiently find optimal parameters of mathematical mod-

els arising from different real-life problems are nowadays becoming more and more

significant in industrial processes. Optimization models characterized by the func-

tions with several local optima (typically, their number is unknown and can be very

high) have a particular importance for practical applications. When the best set of

parameters should be determined for these multiextremal models, traditional local op-

timization techniques can be insufficient and, therefore, global optimization methods

are used. Moreover, the objective functions and constraints to be examined are often

black-box and hard to evaluate functions with unknown analytical representations. For

example, their values can be obtained by executing some computationally expensive

simulation, by performing a set of experiments, and so on. Such a kind of functions
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is frequently met in various fields of human activity (as, e.g., automatics and robotics,

structural optimization, safety verification problems, engineering design, network and

transportation problems, mechanical design, chemistry and molecular biology, eco-

nomics and finance, data classification, etc.) and corresponds to computationally chal-

lenging global optimization problems, being actively studied around the world (see,

e.g., [1–12] and the references given therein).

To illustrate real world global optimization problems we deal with, let us con-

sider the field of geomechanics and geophysics where one has to work with dif-

ferent mechanical-mathematical optimization models. Generally, these models are

very complex since they can involve multidimensional linear or nonlinear partial dif-

ferential equations with multiple contact boundaries, regions with sharp changes in

functions values, ill-posedness, and so on. Knowledge of the properties and types

of geological rocks lying at a depth of several kilometers is of great interest, e.g.,

for prospecting seismology, which determines the location of oil fields by means of

acoustic waves. Its techniques allow one both to avoid the costly exploration meth-

ods (e.g., well drilling) and to accelerate the process of pinpointing oil resources.

Among these techniques, numerical methods for solving inverse problems are of fun-

damental importance in prospecting seismology. They aim at estimating parameters

of the Earth’s structure and material properties (e.g., location of the inhomogeneities

as cracks/cavities in the crust) based on data measured on the surface.

To give a concrete example of the resulting global optimization problem, a sim-

plified version of the prospecting seismology inverse problem can be taken: namely,

let us suppose that there is a fluid-filled crack of a given length located in the host

rock with known elastic properties (see, e.g., [13]). Then, the vector x of unknown

parameters defining the region geometry contains only two components: the depth of

the crack occurrence h, h1 ≤ h ≤ h2, and the crack inclination angle α, α1 ≤ α ≤ α2

(h1, h2, α1, and α2 are known constants).

One of the peculiarities of the stated problem is that information can be obtained

only from experimental measurements with the usage of acoustic sounding (see, e.g.,

[14]). A number of seismic detectors are located at points di on the surface of the

Earth, which record the vertical components Ṽy(di, tj) of particles velocity in the re-

flected wave at time instances tj . We look for such a value of x that best fits the

numerically simulated response Vy(x, di, tj) to a measured one. Computational sim-

ulation can be performed by some numerical integration algorithm: for example, the

grid-characteristic method (see, e.g., [15, 16]) can be used for this scope, thus taking

into account the physical features of the problem and allowing one to set correctly the

boundary and contact conditions.

Hereby, this particular problem can be formulated as the following least squares

optimization problem (see, e.g., [11, 12, 17–20]):

min f(x), x ∈ D = [h1, h2] × [α1, α2], (1)
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f(x) =
∑

i

∑

j

[Vy(x, di, tj) − Ṽy(di, tj)]
2. (2)

Function (2) is essentially multiextremal, it has no analytical representation and

its evaluation (sometimes called trial) is associated with performing computationally

expensive numerical experiments. Therefore, the usage of fast and robust global opti-

mization methods aimed at tackling this class of complex multiextremal problems is

required for solving efficiently the problem (1)–(2).

Because of the huge computational costs involved, typically a small number of

functions evaluations are available for a decision-maker (engineer, physicist, chemist,

economist, etc.) when optimizing such costly functions. Thus, the main goal is to

develop fast global optimization methods that produce acceptable solutions with a

limited number of functions evaluations. But to obtain this goal, there are still a lot of

difficulties that are mainly related either to the lack of information about the objective

function (and constraints, if any) or to the impossibility to adequately represent the

(poor) available information about the functions.

For example, gradient-based algorithms (see, e.g., [2,4,7]) cannot be used in many

applications because black-box functions are often non-differentiable or derivatives

are not available and their finite-difference approximations are too expensive to ob-

tain. Automatic differentiation (see, e.g., [21]), as well as interval-based approaches

(see, e.g., [22,23]), cannot be appropriately used in cases of black-box functions when

their source codes are not available. Probably, a simple alternative could be the us-

age of the so-called direct (or derivative-free) search methods (see, e.g., [24–28]),

frequently used now for solving engineering design problems (see, e.g., the DIRECT

method [2, 24, 29], the response surface, or surrogate model methods [30, 31], etc.).

But unfortunately (see, e.g., [32–34]), these methods either are designed to find only

stationary points or can require too high computational effort for their work.

Therefore, solving the described global optimization problems is actually a real

challenge both for theoretical and applied scientists. In this context, deterministic

global optimization is a well developed mathematical theory which has many impor-

tant applications (see, e.g., [2, 4, 8, 9, 11, 35, 36]). One of its main advantages is the

possibility to obtain guaranteed estimations of global solutions and to demonstrate

(under certain analytical conditions) rigorous global convergence properties. How-

ever, the currently available deterministic models can still require too large number of

functions evaluations to obtain adequately good solutions for these problems.

Stochastic approaches (see, e.g., [2, 4, 6, 7, 12, 37]) can often deal with the stated

problems in a simpler manner than the deterministic algorithms (being also suitable

for the problems where the evaluations of the functions are corrupted by noise). How-

ever, there can be difficulties with these methods, as well (e.g., in studying their

convergence properties). Several restarts can also be involved, requiring even more

functions evaluations. Moreover, solutions found by many stochastic algorithms (es-

pecially, by heuristic methods like evolutionary algorithms, simulated annealing, etc.;

see, e.g., [5, 7, 38, 39]) can be only local solutions to the problems, far from global
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ones. This can preclude such methods from their usage in practice. That is why we

concentrate, hereafter, on deterministic approaches.

The possibility to outperform the ‘brute-force computation’ techniques in solv-

ing global optimization problems is fundamentally based on the availability of some

realistic a priori assumptions characterizing the objective function and eventual con-

straints (see, e.g., [4, 7–9, 11, 12]). They serve as mathematical tools for obtaining

estimates of the global solution related to a finite number of function trials and, there-

fore, play a crucial role in the construction of any efficient global search algorithm.

As observed, e.g., in [4, 40], if no particular assumptions are made on the objective

function and constraints, any finite number of function evaluations cannot guarantee

getting close to the global minimum value, since this function may have very high and

narrow peaks.

One of the natural and powerful (from both the theoretical and the applied points

of view) assumptions on the global optimization problem is that the objective func-

tion (and constraints) have bounded slopes. In other words, any limited change in the

object parameters yields limited changes in the characteristics of the objective per-

formance. This assumption can be justified by the fact that in technical systems the

energy of change is always limited (see the related discussion in [11]). One of the

most popular mathematical formulations of this property is the Lipschitz continuity

condition, which assumes that the difference (in the sense of a chosen norm) of any

two function values is majorized by the difference of the corresponding function ar-

guments, multiplied by a positive factor L < ∞. In this case, the function is said to

be Lipschitz and the corresponding factor L is said to be the Lipschitz constant. The

problem involving Lipschitz functions (the objective function and constraints) is said

to be the Lipschitz global optimization problem (see, e.g., [4, 8–12, 41, 42] and the

references given therein).

The Lipschitz continuity assumption, being quite realistic for many practical black-

box problems, is also an effective tool for obtaining accurate global optimum estimates

after performing a limited number of functions evaluations. It is used by the authors to

develop new efficient and reliable deterministic methods for solving multidimensional

constrained global optimization problems from different real-life applied areas (as,

e.g., the problem (1)–(2)), which are characterized by black-box multiextremal and

hard to evaluate functions.

In the next Section, the Lipschitz global optimization problem is formally stated

and examined more in detail. Some new approaches proposed by the authors to con-

struct efficient numerical methods for solving the mentioned problems are briefly pre-

sented in Section 3. Section 4 concludes the paper by presenting some results of

numerical experiments.
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2 Lipschitz global optimization problem

A general Lipschitz global optimization problem can be formalized as follows (see,

e.g., [8, 9, 11, 12, 42]):

f ∗ = f(x∗) = min f(x), x ∈ Ω ⊂ R
N , (3)

where Ω is a bounded set defined as

Ω = {x ∈ D : φi(x) ≤ 0, 1 ≤ i ≤ p}, (4)

D = [a, b ] = {x ∈ R
N : a(j) ≤ x(j) ≤ b(j), 1 ≤ j ≤ N}, a, b ∈ R

N , (5)

with N being the problem dimension. In (3)–(5), the objective function f(x) and the

constraints φi(x), 1 ≤ i ≤ p, are multiextremal, non necessarily differentiable, black-

box and hard to evaluate functions that satisfy the Lipschitz condition over the search

hyperinterval D:

|f(x′) − f(x′′)| ≤ L‖x′ − x′′‖, x′, x′′ ∈ D, (6)

|φi(x
′) − φi(x

′′)| ≤ Li‖x′ − x′′‖, x′, x′′ ∈ D, 1 ≤ i ≤ p, (7)

where ‖ · ‖ denotes, usually, the Euclidean norm, L and Li, 1 ≤ i ≤ p, are the

(unknown) Lipschitz constants such that 0 < L < ∞, 0 < Li < ∞, 1 ≤ i ≤ p. If

p = 0 in (4), the problem is said to be box-constrained.

The admissible region Ω can consist of disjoint, non-convex subregions because

of the multiextremality of the constraints φi(x). Moreover, these constraints can be

partially defined, i.e., a constraint φi+1(x) (or the objective function f(x)) can be

defined only over subregions where φi(x) ≤ 0, 1 ≤ i ≤ p (see, e.g., [10, 11] for more

details and applied examples).

The problem (3), (5), (6) with a differentiable objective function having the Lip-

schitz (with an unknown Lipschitz constant) gradient f ′(x) (which could be itself a

multiextremal black-box function) is sometimes included in the same class of Lips-

chitz global optimization problems (see, e.g., the references given in [11, 34, 43]).

As evidenced, e.g., in [10, 11], it is not easy to manage multiextremal constraints

(4) within the context of Lipschitz global optimization. For example, the traditional

penalty approach (see, e.g., the references in [2, 4, 27]) can lead to extremely high

Lipschitz constants, thus forcing degeneration of the methods. In this connection, a

promising approach called the index scheme (see, e.g., [11, 44–46]) can be applied.

It does not introduce additional variables and/or parameters by opposition as, e.g.,

many traditional penalty approaches do, and reduces the general constrained problem

(3)–(7) to a box-constrained discontinuous one.

Therefore, in order to give an insight into the principal ideas of the authors’ tech-

niques for solving the stated problem, the box-constrained Lipschitz global optimiza-

tion problem (3), (5), (6) will be considered in the following.
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Figure 1: Lower bounding function Fk(x) (dashed line) constructed for a Lipschitz

function f(x) (solid line) over [a, b] after having performed k + 1 function trials (in

this case, k = 7).

Once a valid estimate of the Lipschitz constant is known and some function trials

are performed, the Lipschitz condition (6) allows us to easily find the lower bounds of

a Lipschitz function at different subregions of the search domain D from (5). Let us

consider, for the sake of example, a one-dimensional objective function f(x) defined

over an interval [a, b] (see Figure 1) that satisfies the Lipschitz condition (6) with a

known Lipschitz constant L. If the function values zi have been obtained at points xi,

0 ≤ i ≤ k (see black dots on the objective function graph in Figure 1), the following

inequality is satisfied over [a, b]:

f(x) ≥ Fk(x) = max
0≤i≤k

{zi − L|x − xi|}, (8)

where Fk(x) is a piecewise linear function (called lower bounding or minorant func-

tion, see, e.g., [10, 11, 41]; its graph is drawn by dashed line in Figure 1).

A method (e.g., the Piyavskij–Shubert method being one of the first methods in

Lipschitz global optimization, see [4, 10, 11, 41, 47]), using in its work this simple but

efficient geometric interpretation, iteratively constructs an auxiliary function which

bounds the objective function f(x) from below and evaluates f(x) at a point (x̂t in

Figure 1) corresponding to a minimum of the bounding function. This point is easy

to find (see, e.g., [4, 10, 11, 41]). The methods of this type form the class of the so-

called geometric algorithms that are based on constructing, updating, and improving

auxiliary piecewise functions built by using an estimate of the Lipschitz constant L.

As shown, e.g., in [9,11], there exists a strong relationship between the geometric ap-

proach and another possible technique for solving the stated problem—the so-called

information-statistical approach (see, e.g., [11,48] and also [6,12] for other probabilis-

tic techniques). Together with the geometric ideas of the Piyavskij-Shubert method, it

has consolidated foundations of the Lipschitz global optimization.

In order to develop Lipschitz global optimization methods, the Lipschitz constant

L from (6) should be estimated. It can be done in several ways. For example, the
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Lipschitz constant can be given a priori (see, e.g., [4, 47, 49]). More practical ap-

proaches are based on an adaptive estimation of L in the course of the search: such

algorithms can use either an adaptive global estimate of the Lipschitz constant (see,

e.g., [8, 11, 48, 50]) valid for the whole search domain D, or adaptive local esti-

mates Li valid only for some subregions Di ⊂ D (see, e.g., [9, 11, 51–53]). Esti-

mating local Lipschitz constants during the work of a global optimization algorithm

allows one to significantly accelerate the global search. Balancing between local and

global information must be performed in an appropriate way (see, e.g., [9, 11, 51])

since an unjustified usage of local information can lead to the loss of the global

solution (see, e.g., [40]). Finally, multiple estimates of L can be also used (see,

e.g., [9, 24, 29, 32, 54]). We would like to emphasize here that either the Lipschitz

constant is given and an algorithm is developed correspondingly, or it is not known

but there exist a sufficiently large number of parameters of the considered algorithm

ensuring its convergence (convergence properties of the Lipschitz global optimization

methods are thoroughly examined, e.g., in [9, 11, 48, 55]).

Considering both the theoretical generality and the application diffusion of the Lip-

schitz global optimization problem (3), (5), (6), it is used by the authors to mathemat-

ically model various real-life decision-making problems (see [9, 11, 13, 56–58]).

3 Some new deterministic approaches in Lipschitz

global optimization

In this Section, some innovative deterministic approaches developed by the authors

for constructing efficient global optimization techniques are briefly presented. The

consolidated success of these ideas, confirmed by important international publications

and presentations around the world, allows the authors’ group, on the one hand, to de-

velop new optimization approaches over a solid scientific basis, thus eliminating the

theoretical faults risks, and, on the other hand, to tackle difficult black-box practical

optimization problems (e.g., from control theory, environmental sciences and geolog-

ical mechanics, electrical engineering and telecommunications, gravitational physics,

etc.) with more efficiency with respect to traditionally used techniques.

3.1 Algorithmic framework: ‘Divide-the-Best’ scheme

Many global optimization algorithms (of both deterministic and stochastic types) have

a similar structure. Therefore, several attempts aiming to construct a general frame-

work for describing computational schemes and providing their convergence condi-

tions in a unified manner have been made (see, e.g., [2, 4, 8, 59]). One of the more

flexible and robust among such unifying schemes is the ‘Divide-the-Best’ approach

(see [9, 55]), which generalizes both the schemes of adaptive partition [8] and char-

acteristic [9, 11, 59] algorithms, widely used for describing and studying numerical

global optimization methods.
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Figure 2: Flow chart of ‘Divide-the-Best’ scheme.

In this scheme (the flow chart of its generic iteration is reported in Figure 2), given

a vector p of the method parameters, an adaptive partition of the admissible region D

from (5) into a collection {Dk
i } of the finite number of robust subsets Dk

i is considered

at each iteration k. The ‘merit’ (called characteristic) Ri of each subset (see Step 2

in Figure 2) for performing a subsequent, more detailed, investigation (see Steps 3

and 4 in Figure 2) is estimated on the basis of the obtained information Xk, Zk about

the objective function. Several strategies (mainly, in the context of the geometric

approach) for selection of a subset for further partitioning (see Step 3 in Figure 2) and

for performing this partitioning (by means of an operator P , see Step 4 in Figure 2) are

proposed by the authors from a general viewpoint and successfully used for solving

practical applications (see, e.g., the references in [9, 10]).

Convergence properties of the ‘Divide-the-Best’ family for different types of char-

acteristic values and partition operators are studied in [9, 55]. Great attention is given

to situations when conditions of global (local) convergence are satisfied not in the

whole search domain D, but only in its subregion (or a set of subregions). This can

correspond, for example, to Lipschitz global optimization algorithms that work under-

estimating the Lipschitz constant or which are oriented on using local information in

subregions of D (see, e.g., [9, 11, 55]).
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Figure 3: Lower bounding a Lipschitz function f(x) over a hyperinterval Di in a

diagonal algorithm.

3.2 Efficient partition strategy

Regarding the partitioning strategies (partitioning operator P on Step 4 in Figure 2),

the main attention of the authors is focused on the diagonal partition strategies (see

the references in [8–10, 32]).

In this approach, the initial hyperinterval D from (5) is partitioned into a set of

smaller hyperintervals, the objective function is evaluated only at two vertices corre-

sponding to the main diagonal of hyperintervals of the current partition of D (see, e.g.,

points ai and bi of a hyperinterval Di in Figure 3), and the results of these evaluations

are used to select a hyperinterval for the further subdivision. The diagonal approach

has a number of attractive theoretical properties and has proved to be efficient in solv-

ing applied problems.

First, it allows one to easily perform an extension of efficient one-dimensional

global optimization algorithms to the multidimensional case (see, e.g., [9, 10, 32]).

In fact, in order to calculate the characteristic Ri of a multidimensional subregion Di,

some one-dimensional characteristics can be used as prototypes. After an appropriate

transformation they can be applied to the one-dimensional segment being the main

diagonal [ai, bi] of the hyperinterval Di (see Lipschitz-based lower bounding functions

C1 and C2 in Figure 3).

Second, the diagonal approach is close from the computational point of view to one

of the simplest strategies—centre-sampling technique (see, e.g., [25, 29, 42, 49, 54]—

but at the same time, the objective function is evaluated at two points of each subre-

gion, providing in this way more information about the function over the subregion

than centre-sampling methods.

Different exploration techniques based on various diagonal adaptive partition strate-

gies are analyzed, e.g., in [9, 10, 60]. It is demonstrated that partition strategies tradi-

tionally used in the framework of the diagonal approach do not fulfil the requirements
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of computational efficiency because of the execution of many redundant trials. Such a

redundancy slows down significantly the global search in the case of costly functions.

A new efficient diagonal partition strategy is therefore proposed in [9, 60], that al-

lows one to avoid such a computational redundancy of traditional diagonal schemes.

In contrast to these schemes, the new strategy produces regular meshes of the function

evaluation points in such a way that one vertex where f(x) is evaluated can belong

to several hyperintervals (up to 2N , N is the problem dimension from (5)). Thus, the

time-consuming procedure of the function evaluations is replaced by a significantly

faster operation of reading (up to 2N times) the function values obtained at the pre-

vious iterations and saved in a special database (see, e.g., [61, 62]). Hence, the new

partition strategy considerably speeds up the search and also leads to saving computer

memory. It is particularly important that the advantages of the new strategy become

more pronounced when the problem dimension N increases (see, e.g., [9, 32, 50]).

A new scheme for creating fast Lipschitz global optimization algorithms is, thus,

introduced by the authors. It relies on the new diagonal partition strategy allowing

an efficient extension of popular one-dimensional Lipschitz global optimization algo-

rithms to the multidimensional case. In a sense, this scheme combines the ideas of the

diagonal approach and Peano space-filling curves (see, e.g., [11, 48, 63]. Innovative

multidimensional diagonal algorithms for solving Lipschitz global optimization prob-

lems, based on different ways for obtaining the Lipschitz information and developed

in the framework of the efficient diagonal scheme, are proposed by the authors and

their convergence properties are analyzed, e.g., in [9, 32, 50].

3.3 Balancing local and global information

Is well known (see, e.g., [2, 4, 9, 11, 40]) that the usage of the only global information

on the objective function and constraints during optimization can lead to a slow con-

vergence of algorithms to global minimizers. Therefore, particular attention is paid

by the authors to the usage of a local information in global optimization methods,

as well. One of the traditional ways in this context (see, e.g., [2, 4, 7]) recommends

stopping the global procedure and switching to a local optimization method in order

to improve the solution and to accelerate the search during its final phase. Unfortu-

nately, applying this technique can lead to some problems related to the combination

of global and local phases, the main problem being that of determining when to stop

the global procedure and start the local one. A premature arrest can provoke the loss

of the global solution whereas a late one can slow down the search.

Theoretical and experimental results obtained by the authors (see, e.g., [9, 11, 51–

53]) confirm that more fruitful approaches can be considered. The first one is the

so-called local tuning approach [51] allowing global optimization algorithms to tune

their behaviour to the shape of the functions at different parts of the search domain by

estimating the local Lipschitz constants.

In fact, the Lipschitz constant L has a significant influence on the convergence

speed of the Lipschitz global optimization algorithms and the problem of its specify-
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ing is of the great importance. Accepting, for instance, too high a value of L for a

concrete objective function means assuming that the function has complicated struc-

ture with sharp peaks and narrow attraction regions of minimizers within the whole

admissible region. Thus, if the value of L does not correspond to the real behaviour of

the objective function, it can lead to a slow convergence of the algorithm to the global

minimizer. Global optimization algorithms using in their work a global estimate of L

(or some value of L given a priori) do not take into account local information about

behaviour of the objective function over every small subregion of D. Therefore, es-

timating local Lipschitz constants allows one to significantly accelerate the global

search (see, e.g., [9, 11, 52, 53]).

The second technique regards a continual local improvement of the current best

solution incorporated in a global search procedure (see, e.g., [9, 32, 64]). Particularly,

it forces the global optimization method to make a local improvement of the best

approximation of the global minimum immediately after a new approximation better

than the current one is found. These techniques become even more efficient when

information about the objective function derivatives is available (see, e.g., [34, 43]).

3.4 Computational aspects

The advent of parallel computers has created conditions for the elaboration of methods

which can accelerate the finding of a solution to many applied problems (see, e.g., the

references in [2, 11])). In the case of black-box global optimization, the usage of

distributed computation is extremely attractive because the solution to these problems

is a very time consuming process: the time taken to evaluate the functions at a point

is long and the number of evaluations needed is high even when the most efficient

numerical techniques are used.

As a rule, when parallel methods are proposed, either the problem to be solved or

some sequential method can have an inherent parallelism and can be used as the source

of elaboration. Since the first type of parallelism depends greatly on the specific nature

of the problem being solved and must be defined separately for every single case,

attention of the authors’ group is concentrated on the second way of parallelization

(see, e.g., the references in [11]).

The constructed parallel algorithms perform several functions evaluations simulta-

neously at every iteration: one evaluation at each of the processors of a multiprocessor

system the algorithm is implemented on. Such a procedure allows us to accelerate the

search of global minima of costly black-box functions. Incomplete account of infor-

mation about evaluation results, due both to the inter-processors communications and

to an eventually heterogeneous loading of processors, can bring up the situation when

the parallel algorithm produces the evaluation points in a more dense way in compar-

ison with its sequential prototype, i.e., it can generates redundant evaluations. The

new concept of non-redundant parallelism is, therefore, particularly considered by the

authors’ group during construction and implementation of global search algorithms

on high-performance multiprocessor systems (see, e.g., [11, 59, 65]).
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A sequential method taken as the basis for parallelization must have elevated esti-

mates of the convergence speed for the class of problems under examination, because

there is no sense in using a parallel method if a more rapid sequential one already ex-

ists. That is why new sequential algorithms are parallelized only after their extensive

study and thorough testing on benchmarks and real-life problems.

For this purpose, a set of test functions is usually taken, problems from this set

are solved by the algorithms to be compared, and a conclusion about the efficiency of

these algorithms is made on the basis of the obtained numerical results. This approach,

being an important instrument for acquiring knowledge about the existing and new

global optimization algorithms, presents at the same time some limitations since the

conclusions made can be valid only for the selected functions, and their propagation

to a more wide set of functions requires particular caution. Testing an algorithm on a

relatively large set of test functions can, in a sense, diminish these limitations, but it

needs, among other things, the coding of the functions, and it is a tedious and time-

consuming job. Therefore, the global optimizers are very interested in simple and

powerful software tools realizing test problems. As observed, e.g., in [9,11,12], a well

designed testing framework is of the primary importance in identifying the merits of

each algorithm and implementation.

To tackle the problem of testing global optimization algorithms systematically, the

GKLS-generator described in [66] is proposed by the authors’ group. The generator

produces several classes of multidimensional and multiextremal test functions with

known local and global minima. Each test class provided by the generator includes

100 functions. By changing the user-defined parameters, classes with different prop-

erties can be created. For example, fixed dimension of the functions and number of

local minima, a more difficult class can be created either by shrinking the attraction re-

gion of the global minimizer, or by moving the global minimizer closer to the domain

boundary.

The generator is available on the ACM Collected Algorithms (CALGO) database

(the CALGO is part of a family of publications produced by the Association for Com-

puting Machinery) and it is also downloadable for free from http:\\wwwinfo.
deis.unical.it\∼yaro\GKLS.html. It has already been downloaded by com-

panies and research organizations from more than 40 countries of the world.

4 Conclusion

To conclude, we would like to report some numerical results obtained by using a new

Lipschitz global optimization method proposed by the authors in [32]. In developing

this method for solving the problem (3), (5), (6), techniques from the previous Sec-

tion have been applied. Particularly, it is a multidimensional ‘Divide-the-Best’ global

optimization method that uses in its work multiple estimates of the Lipschitz constant

and based on efficient diagonal partitions.

Numerical results performed on the GKLS-generator to compare this new algo-
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rithm with two algorithms belonging to the same class of methods for solving the

problem (3), (5), (6) — the DIRECT algorithm from [29] and its locally-biased mod-

ification DIRECTl from [54] — are presented here, as described in [32]. As known,

both of these methods are widely used in solving practical engineering problems (see,

e.g., the references in [2, 24, 32]).

Eight GKLS classes of continuously differentiable test functions of dimensions

N = 2, 3, 4, and 5 have been used. For each dimension, both a ‘hard’ and a ‘simple’

classes have been considered. The difficulty of a class was increased either by de-

creasing the radius of the attraction region of the global minimizer, or by decreasing

the distance from the global minimizer x∗ to the domain boundaries.

The global minimizer x∗ ∈ D was considered to be found when the algorithm gen-

erated a trial point x′ inside a hypercube with a vertex x∗ and the volume smaller than

the volume of the initial hypercube D = [a, b] multiplied by an accuracy coefficient ∆,

0 < ∆ ≤ 1, i.e.,

|x′(j) − x∗(j)| ≤ N
√

∆(b(j) − a(j)) (9)

for all i, 1 ≤ j ≤ N , where N is from (5). The algorithm stopped either when the

maximal number of trials equal to 1 000 000 was reached, or when condition (9) was

satisfied.

In view of the high computational complexity of each trial of the objective function,

the methods were compared in terms of the number of evaluations of f(x) required

to satisfy condition (9). The number of hyperintervals generated until condition (9)

is satisfied, was taken as the second criterion for comparison of the methods. This

number reflects indirectly degree of qualitative examination of D during the search

for a global minimum (see, e.g., [9, 32, 50]).

Results of numerical experiments with eight GKLS tests classes are reported in

Tables 1–2. These tables show, respectively, the maximal number of trials and the cor-

responding number of generated hyperintervals required for satisfying condition (9)

for a half of the functions of a particular class (columns “50%”) and for all 100 func-

tion of the class (columns “100%”). The notation “> 1 000 000 (k)” means that after

1 000 000 trials the method under consideration was not able to solve k problems.

Note that on a half of test functions from each class (which were simple for each

method with respect to the other functions of the class) the new algorithm manifested

a good performance with respect to DIRECT and DIRECTl in terms of the number of

generated trial points (see Table 1). When all functions were taken in consideration,

the number of trials produced by the new algorithm was significantly fewer in com-

parison with two other methods (see columns “100%” of Table 1), providing at the

same time a good examination of the admissible region (see Table 2).

As it can be seen from Tables 1 – 2, the new method [32] demonstrates a quite satis-

factory performance with respect to popular DIRECT [29] and DIRECTl [54] methods

when multidimensional functions with a really complex structure are minimized.

This method not only has manifested a high performance on a large set of tests, but

has been also successfully applied for solving real world global optimization prob-
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Table 1: Number of trial points for 800 GKLS test functions.
N ∆ Class 50% 100%

DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 simple 111 152 166 1159 2318 403

2 10−4 hard 1062 1328 613 3201 3414 1809

3 10−6 simple 386 591 615 12507 13309 2506

3 10−6 hard 1749 1967 1743 >1000000 (4) 29233 6006

4 10−6 simple 4805 7194 4098 >1000000 (4) 118744 14520

4 10−6 hard 16114 33147 15064 >1000000 (7) 287857 42649

5 10−7 simple 1660 9246 3854 >1000000 (1) 178217 33533

5 10−7 hard 55092 126304 24616 >1000000 (16) >1000000 (4) 93745

Table 2: Number of hyperintervals for 800 GKLS test functions.
N ∆ Class 50% 100%

DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 simple 111 152 269 1159 2318 685

2 10−4 hard 1062 1328 1075 3201 3414 3307

3 10−6 simple 386 591 1545 12507 13309 6815

3 10−6 hard 1749 1967 5005 >1000000 29233 17555

4 10−6 simple 4805 7194 15145 >1000000 118744 73037

4 10−6 hard 16114 33147 68111 >1000000 287857 211973

5 10−7 simple 1660 9246 21377 >1000000 178217 206323

5 10−7 hard 55092 126304 177927 >1000000 >1000000 735945

lems. For example, its application to a control theory problem has been considered

in [56]. This problem regards global tuning of fuzzy power system stabilizers present

in a multi-machine power system in order to damp the power system oscillations.

Power system stabilizers with conventional industry structure are extensively used in

modern power systems as an efficient means of damping power. Traditionally their pa-

rameters are determined by local tuning procedure based on a single-machine infinite-

bus system in which the effects of inter-machine and inter-area dynamics are usually

ignored. Heuristic methods (like genetic algorithms) are usually used for their opti-

mizing that often leads to very rough solutions (see, e.g., the references in [56]). To

improve overall system dynamic performance, novel global optimization techniques

have been therefore applied by the authors’ group in [56].

In Figure 4, the graph that illustrates the best solution (the axis of ordinates) ob-

tained by a particular genetic algorithm (often used by engineers from the control

field) and by the method [32] after a number of simulations (the axis of abscissas) is

reported. It can be seen that the global optimization method proposed by the authors

spent more function trials (namely, 284 trials) than the genetic algorithm at the ini-

tial iterations. This phase corresponds to the initial exploration of the search domain

and it is necessary for all global optimization techniques. On the initial phase of the

work (less than 300 trials) the genetic algorithm has found local solutions to the prob-

lem better than those found by the new method, but far from the final global solution

14



0 100 200 300 400 500 600 700 800 900 1000
0.53

0.535

0.54

0.545

0.55

0.555

0.56

0.565

number of trials

fu
n

c
ti
o

n
 v

a
lu

e

Figure 4: Solutions to the problem of global tuning fuzzy power system stabilizers

(see [56]) obtained by applying the method [32] based on the authors’ techniques

(solid line) and by a traditionally used genetic approach (dashed line).

(f ∗ ≈ 0.533). However, it is more important and should be underlined that the new

method has determined a solution to the problem very close to the global optimal one

(as demonstrated in [56]) in almost half of the simulations with respect to the genetic

algorithm (284 trials for the new method and 500 for the genetic algorithm). More-

over, it has found an attraction region of a new minimizer with a much better solution

to the problem (see the graph jump in Figure 4 around 450 trials) than that found by

the genetic approach. Thus, when a reasonable limit of function trials is given, the

considered method [32] can determine a good estimate of the global solution to the

studied control theory problem faster than the traditionally used genetic techniques.

Therefore, new global optimization techniques briefly presented in this paper can

provide the scientists and engineers with comprehensive and powerful tools for suc-

cessful solving challenging decision-making problems from different real-life appli-

cation areas, which are characterized by black-box multiextremal and hard to evaluate

functions.
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