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Abstract 
 

The use of changes in the dynamic response of a structure after damage has become 

very popular in the scientific community to formulate methodologies that permit 

assessing the integrity of a structure. In this sense, a finite-element model (FEM) 

that represents the damaged structure can be obtained by minimizing the difference 

between the dynamic response of this model and the response of the current 

structure obtained experimentally. The optimization variables are composed of the 

stiffness reduction factor of each element that belongs to the FEM of the undamaged 

structure. This paper proposes the use of an adaptive Particle Swarm Optimizer to 

solve the optimization problem associated with the detection of the damage in a 

multi-supported beam structure and studies how incomplete data affect the 

performance of the proposed algorithm. Adaptation is implemented to avoid the 

definition of the PSO parameters - cognitive and social parameters - by trial and 

error. Natural frequencies and mode shapes were selected as the dynamic 

characteristics to be used in the objective function. As this research was developed 

by using numerical simulations, information about only a few first modes in specific 

degrees of freedom was considered available in order to take into account the 

incomplete measurement issue. Results have shown that a minimum quantity of 

modal data is necessary to guarantee the success of the damage detection 

methodology and that the ability to locate and quantify damage may not be 

improved by using excessive information. It has also been observed than simple 

damage scenarios can be more reliably detected than multiple ones. 

 

Keywords: damage detection, dynamic parameters and particle swarm optimization. 

 
1  Introduction 
 

Civil, mechanical and aeronautical industries have been interested in developing non 

destructive damage detection methodologies to assess the integrity of their 
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structures. Some of these methodologies are based on changes that occur in the 

dynamic parameters after damage. However, the application of the former concept to 

damage detection could be limited by issues, such as low sensitivity of the dynamic 

parameters in relation to the damage, high complexity level of the technique used to 

determine the damage scenario, possibility of the dynamic parameters being affected 

by factors different to the damage and incomplete measurements [1]. Concerning the 

latter issue, and if modal parameters are used, the incompleteness is related to the 

fact that it is not possible to excite all vibration modes of the structure and measure 

the mode shapes in all degrees of freedom, DOFs, in the finite-element model that 

represents the undamaged structure [2].  

Some indications related to the influence of incomplete measurements on the 

performance of vibration-based damage detection methodologies have been reported 

in the literature.  

Law et al. [3] proposed an energy-based damage detection methodology. The 

application of this formulation required complete mode shapes, which were obtained 

by using a mode shape expansion technique. This type of technique was preferred 

instead of a model reduction as it preserves the connectivity of the structure. The 

authors concluded that the smaller the number of measured DOFs, the larger the set 

of falsely damaged elements.  

Kim and Bartkowicz [4] implemented a two-level damage detection approach 

based on updating and design sensitivity methods. The mismatch between the 

analytical and experimental models was solved by using a hybrid 

reduction/expansion technique. Numerical simulations showed that the quantity of 

DOFs with measured information influenced the correct identification of some 

damage scenarios.  

Araújo dos Santos et al. [5] observed that the quality of the results of a damage 

detection methodology was determined by the technique used to deal with the 

incomplete measurements. Such an effect was more pronounced as the damage 

extent increased.  

Reza and Medhi-pour [6] proposed to locate damage using a subspace rotation 

method and, then, quantify the damage extent by using some concepts from the 

control theory. They concluded that the increment in the number of measurements 

resulted in an increment in the successful damage cases found.  

Raich and Liszkai [7] used a genetic algorithm with implicit redundant 

representation to take into account that the number and position of the damaged 

elements were not known a priori. The objective function was based on changes in 

the frequency response function matrix of the structure. They affirmed that an 

increment in the number of sensors used might not facilitate the damage 

identification in all cases, but that, in general, localization and quantification of 

damage would be performed more accurately.   

Yun et al [8] proposed implementing the damage detection process in two 

stages. The authors worked with the first stage, which consisted in reducing the set 

of elements by identifying probably damaged zones with a subset selection method 

based on the residual vector force. It was observed that when the measurements 

were complete and noise-free then the damaged elements in a beam structure were 
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located no matter the number of mode shapes used. If the measurements contained 

noise, then more reliable results were obtained when more mode shapes were used. 

Meruane and Heylen [9] projected a real-coded genetic algorithm to detect 

damage and tested it in a spatial truss structure. They carried out an analysis of the 

influence of the quantity of sensors in the structure on the performance of the 

proposed methodology and found that the higher the number of damage locations, 

the higher the quantity of measured DOFs required for a successful detection. 

Fan and Qiao [10] carried out a review of damage detection methodologies 

based on vibration and studied some topics that influenced the damage identification 

in a beam-type structure, including sensor spacing. They observed that if the sensor 

spacing was large a damage detection methodology based on the curvature of mode 

shapes performed better when the curvature was measured and not computed. 

Several numerical researches on vibration-based damage detection have 

simulated the issue of incomplete measurements by assuming that a pre-determined 

quantity of modal data is available for the analyzed structure. For example, 

measurements are taken in all [11, 12] or some [13, 14] vertical DOFs in the case of 

beam structures. Conversely, some of these methodologies require complete mode 

shapes and, therefore, implement computational techniques, such as reduction 

techniques, mode expansion techniques or a combination of both to match the size 

of the numerical and experimental models [15, 16]. The use of these techniques 

introduces numerical errors in the model [17]; consequently, it is desirable to 

propose damage detection methodologies that use only the measured information. 

The above paragraphs permitted establishing the context in which this research 

was developed. Thereby, the main objective of this research was to propose a 

damage detection methodology based on modal information and study how the 

incompleteness of the data could influence its performance. The problem was 

formulated as an optimization one and solved by a particle swarm optimizer (PSO). 

Adaptation was proposed as the performance of the original PSO [18] to solve an 

optimization problem could be affected by the values chosen for the cognitive and 

social parameters. The version of PSO used in this research is the one proposed by 

Shi and Eberhart in 1998 [19], which includes a weight factor that will be 

deterministically computed. The objective function was formulated in terms of 

natural frequencies and modes shapes. The proposed function avoids the utilization 

of any technique to match the DOFs of the numerical and experimental models as it 

uses the measured information only. A beam structure discretized into 34 elements 

under different damage scenarios was analyzed. A set of different quantities of 

modal information was proposed to study the effect of incomplete measurements, 

permitting establishing the optimal quantity of modal information.  

The paper is divided into six sections, starting with the above introduction. 

Section 2 presents the basic theory on the particle swarm optimizer and the proposed 

technique to set the PSO parameters. The modeling of the damage and how it 

influences the dynamic parameters of a structure are presented in Section 3. The 

proposed methodology and the assumptions are summarized in Section 4. Section 5 

presents the analyzed structure and the damage scenarios to be studied together with 

the set of modal data that will be tested. Finally, the main conclusions of this 

research are established. 
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2  Adaptive Particle Swarm Optimizer 
 

As previously mentioned, the damage detection problem is formulated as an 

optimization problem, therefore it is necessary to define the optimization technique 

to solve it. In this research, the Particle Swarm Optimizer (PSO) was selected; it is a 

population-based stochastic algorithm used to find an optimal or almost-optimal 

solution to maximization or minimization problems. PSO was proposed by Kennedy 

and Eberhart in 1995 [18] under the assumption of a simple interaction model 

among individuals, in which the solution to a common problem is to be found by the 

collaboration of the whole community.  

PSO considers a swarm of particles flying through the search space 

characterized by a position, a velocity and a cost. The current position of each 

particle on the search space corresponds to a possible solution to the analyzed 

problem and the velocity is a property that permits orienting the particle’s flight. The 

cost indicates the quality level of the solution found by the particle and is computed 

from the objective function previously defined for the problem. The velocity and 

position of each particle are updated iteratively by using the knowledge of the 

swarm about the search space. In this sense, each particle is able to remember the 

best position visited (pbest) and transmits this information to the swarm in order to 

determine the best current position (gbest). Acceleration parameters are used to take 

into account the weight of the information acquired in previous iterations, permitting 

assessing the particle’s trust in its own knowledge and in the knowledge of the 

swarm. As the iterations increase, the swarm converges to a region in the search 

space where the optimal solution is expected to be located. The algorithm is stopped 

if either the swarm converges to a solution or a pre-specified number of iterations is 

reached. Due to the stochastic characteristics of the PSO, it is necessary to execute 

the algorithm a specific number of times to find the final solution to the problem. 

That solution can be specified by either combining a specific number of the best 

solutions or, simply, choosing that one with the highest cost among all the runs. On 

the other hand, the expressions for the updating of velocities, vi, and positions, xi, 

given in reference [17] were used in this study 

 

 (1) 

 

 (2) 

 
where i is the i-th particle in the swarm, t is the current iteration, c1 and c2 are the 

acceleration parameters (cognitive and social parameters, respectively), r1 and r2 are 

random values between 0 and 1, and w is the inertia weight. 

Different techniques have been used to set some of the PSO parameters, such as 

fuzzy systems [20], self-adaptation [21], deterministic adaptation based on pbest and 

gbest [22] and Nelder-Mead Simplex [23]. This paper presents a simple and efficient 

technique to adapt the PSO parameters, which considers that each particle in the 

swarm has its own acceleration parameters. The cognitive parameter for the i-th 

particle at the iteration t+1, , is computed as follows 
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 (3) 

 

where c1best is the value of c1 for  the best particle in the swarm in the previous 

iteration t-1 and r3 is a random value between 0 and 1. The initial values for c1i are 

defined as random numbers generated from a uniform distribution in the [1.8-2.2] 

range based on the value used in reference [24]. Regarding the social parameter, we 

followed the recommendation given in reference [25], which states that if the sum of 

the acceleration parameters is superior to four then it is necessary to use the 

constriction factor to control the amplitude of the velocity. Consequently, to avoid 

the use of a constriction factor we defined  as 

 

 (4) 

 

To compute the weight factor, it is desirable to increase the global search ability 

of the PSO at the beginning of the iterative process and to perform a more local 

search at its end. Therefore, the weight factor can be obtained as proposed in [24]: 

 

 

(5) 

 

where tmax is the maximum number of iterations permitted. The values for w2 and w1 

are 0.9 and 0.4, respectively [24].  

Finally, to avoid the so called explosion phenomena [25] the velocity is limited 

by the following expression: 

 

 

(6) 

 

where h and l are the boundary values for the variable X. 

 
 

 

3  Influence of the Damage on the Dynamic Parameters 
 

As previously mentioned, the dynamic parameters of a structure change with the 

presence of the damage due to the alterations in the structural properties. In the 

following paragraphs we describe how the damage is modeled and how it influences 

the dynamic parameters, supposing that a finite-element model that represents the 

behavior of the undamaged structure is available. The structure is considered 

undamped, thus it is necessary to compute the stiffness, , and mass matrices, 

, of the structure, as follows 

 

 

(7) 
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(8) 

 

where  and  are the stiffness and consistent mass matrices for the i-th element, 

respectively, and NElem is the number of elements in the structure. The dynamic 

parameters of an undamped structure can be computed by the following equation 

 

 
(9) 

 

where ω is the natural frequency and  is the mode shape.  

To model the damage, the mass matrix was considered constant after damage 

and that damage could be represented as a reduction in the stiffness matrix of the 

damaged elements given by 

 

 

(10) 

 

where KDam is the damaged stiffness matrix and βi is the stiffness reduction factor 

for the i-th element. The element does not present damage if the β factor assumes a 

value equal to 0, and it is completely damaged if this factor is equal to 1. 

  Finally, the dynamic parameters of the damaged structure can be determined by  

 

 
(11) 

 

where d refers to the damaged condition. It can be observed that the dynamic 

parameters will be different of those obtained by using Equation 8. 

 

 
4  Damage Detection Methodology 
 

In this study, the localization and quantification of the damage will be performed by 

using concepts from the dynamic behaviour of the structure. Vibration-based 

damage detection methodologies are based on the fact that the dynamic properties of 

a structure are connected to the structural properties. Any change in the matrices of 

the system – stiffness, mass and damping matrices – produces a change in the 

natural frequencies and mode shapes of the system. One of the ways to use this 

concept in damage detection is by formulating an optimization problem in which the 

difference between the dynamic parameters of a numerical model that represents the 

damaged structure and those obtained in a real dynamic test in the structure is 

minimized.  

Concerning the above formulation, it is necessary to define the optimization 

variables, the solver and the objective function to use. Herein, the optimization 

variables correspond to each stiffness reduction factor in the structure in a total equal 
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to the number of elements in the structure. The selection of the algorithm that solves 

the optimization problem is one of the key aspects to ensure a correct detection of 

the damage. Thus, an adaptive particle swarm optimizer was selected, as shown in 

Section 2. The initial position of the particles in the swarm is heuristically 

determined in order to orient the search for non severe damage scenarios with a few 

damaged elements. For each variable in each particle, a random number is assigned 

in the [0, 1] range. If this number is smaller than 0.5, the variable assumes a random 

value between 0 and 0.5; otherwise, a value equal to zero is given to the variable. 

The parameters selected to form the objective function have to be sensitive to the 

damage in the structure, therefore in this study the objective function was based on 

natural frequencies and mode shape and will be shown later. It is worth mentioning 

that the above philosophy of formulating the damage detection problem has been 

studied by many researchers in the last decades - one of the first researches 

published by Mares and Surace in 1996 [11].  

An algorithm that describes the guidelines to solve the damage detection 

problem is presented in Figure 1. The first step in the proposed methodology 

consists in defining a finite element model for the structure that permits representing 

the undamaged condition. The model for the damaged condition is obtained by 

updating the model in Step 1, in this case the stiffness matrix. In the second step, the 

damaged dynamic parameters have to be experimentally determined. As this 

research was numerically developed, those parameters were obtained from Equation 

10 by computing the damaged stiffness matrix for the damage scenario searched for. 

In an attempt to simulate the conditions found in a real test, these parameters were 

numerically perturbed by 1% for natural frequencies and 3% for mode shapes [26] to 

consider the presence of noise in the measurements. Also, only few incomplete 

mode shapes were available in a determined number of DOFs in the structure. Steps 

3 and 4 were already discussed in the above paragraph. The PSO is executed and the 

best particle in the swarm is chosen as the solution to the problem. The damage 

scenario found is shown in Step 5 and contains the elements that presented a damage 

extent higher than a specific threshold. Elements presenting lower values are 

considered undamaged.  

 
 

 
 

 
 

Figure 1. Damage detection methodology. 

Begin 

1. Define the finite element model, FEM, of the structure 

without damage. 

2. Obtain the damaged dynamic parameters: natural frequencies 

and mode shapes.  

3. Define the objective function.  

4. Apply the Adaptive Particle Swarm Optimizer.  

5. Show the results. 

End 
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A total of 10 runs of the PSO is carried out and the solution with the highest 

cost will be selected as the damage scenario searched for. At this point, it is 

important to recall that heuristic techniques do not guarantee that they will find the 

correct answer. Thus, a form to assess the reliability of the proposed methodology is 

to count the number of runs in which the algorithm finds a damage scenario close to 

the real one.  
 

As previously mentioned, the objective function was based on natural frequencies 

and mode shapes and is given by [27]  

 

 

(12) 

 

 with 

 

 

(13) 

 

where nm refers to the number of vibration modes considered, ndf is the number of 

degrees of freedom with available information, superscript pso refers to a value 

found by the particle swarm optimizer and superscript ex indicates the experimental 

results. is the j-th natural frequency and  is the value of the j-th mode shape 

for the i-th degree of freedom.  and  are constants with values 200 and 1, 

respectively, and  is the weight factor. The objective function used does not 

require complete modal information, avoiding the use of either model reduction 

techniques or mode expansion techniques. 

 

 
5  Numerical Examples 
 

A beam structure (Figure 2) with multiple supports was used to demonstrate the 

ability of the proposed methodology to locate and quantify damage and to determine 

the influence of the incomplete modal data. The beam was 8 meters long and 

discretized into 34 elements containing cross-section area A= 0.001 m
2
; moment of 

inertia I= 0.00005 m
4
; density ρ=7800 kg/m

3
 and elasticity module, E= 200 x 10

9
 

N/m
2
.  A Bernoulli-type beam finite element was employed to model the structure, 

which has 2 nodes and two DOFs per node - one rotational and one vertical DOF. 

Figure 2 shows how the nodes were enumerated. Concerning the setting of the PSO 

characteristics, the population comprised 200 particles and a maximum number of 

200 iterations was permitted. As previously mentioned, the other acceleration 

parameters were allowed to adapt through the iterative process and the weight factor 

was computed in a deterministic way.   
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Figure 2. Beam-type structure. 

 

 

Table 1 shows the different cases of incomplete modal information that were 

analyzed. These cases consist in the percentage of vertical DOFs measured and the 

position of the sensors in the beam. The sensors were uniformly distributed across 

the beam because the study of the effect of the sensor positions on the performance 

of the proposed methodology was not a goal of this study. Information about 

rotational DOFs is not used due to the difficulty of obtaining it in a real dynamic 

test. The incompleteness of the measurements also refers to the possibility of 

measuring only few modes of the structure. Thus, the performance of the proposed 

methodology when the number of measures modes ranges between 2 and 12 is 

studied.  

The performance of the proposed methodology was assessed by the detection of 

the simple and multiple damage scenarios shown in Tables 2 and 3, respectively, 

and under the consideration that the modal information was incomplete. The simple 

damage scenarios were chosen in such a way that the methodology could detect 

damaged elements from all zones of the beam - near the supports and the center. 

Multiple damage scenarios were chosen to take into account spread and uniform 

damage. The algorithm was applied to each damage scenario in a total of ten runs 

and the number of runs in which the algorithm found the real damaged elements was 

determined (Tables 4-11). The optimal quantity of modal information was defined as 

the one that permits finding the real damage scenario in at least three runs. It is 

important to mention that the results shown in Tables 4 to 11 were obtained by 

computing the average of the results from five different groups of runs for each 

damage scenario. As shown, only a few scenarios were tested to determine the 

optimal quantity of modal information as the computational effort involved was very 

high. However, a total of other 50 random cases was simulated to prove that the 

above quantity was adequate. 
 

 

Case 
% of Vertical 

measured DOFs 

Nodes 

(numeration starts from the fixed support of the beam) 

I1 100 Corresponding to all of the free vertical DOF  

I2 75 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 20, 21, 22, 23, 25, 26, 27, 28, 30, 

31, 32, 33 

I3 50 3, 5, 7, 9, 10, 12, 14, 16, 20, 22, 24, 26, 27, 29, 31, 33 

I4 25 4, 8, 11, 15, 21, 25, 28, 32 

Table 1. Position of the nodes where there is information in the corresponding 

vertical DOF. 
 
 

Scenario S1 Scenario S2 Scenario S3 Scenario S4 

Element β Element β Element β Element β 

2 0.250 6 0.350 15 0.170 15 0.420 

Table 2. Simple damage scenarios. 
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Scenario M1 Scenario M2 Scenario M3 Scenario M4 

Element β Element β Element β Element β 

4 

20 

0.200 

0.200 

12 

13 

14 

0.150 

0.150 

0.150 

3 

14 

20 

0.200 

0.250 

0.400 

4 

8 

27 

28 

0.270 

0.230 

0.180 

0.180 

Table 3. Multiple damage scenarios. 
 
% of Vertical 

DOFs 

Number of measured modes 

2 4 6 8 10 12 

25 2 5 6 6 9 8 

50 1 5 7 7 9 7 

75 0 4 7 9 8 7 

100 4 7 8 9 10 8 

Table 4. Results for simple damage scenario S1. 
 

 

Tables 4 - 7 show the results of the proposed methodology to detect simple 

damage scenarios. In general, it is observed that the methodology´s performance was 

slightly improved when the quantity of sensors was increased and that the higher the 

number of used mode shapes, the higher the number of successful runs of the 

algorithm. Therefore, the desired performance can be reached when either the first 

four mode shapes are measured in the 25% of the vertical DOFs or the two first 

mode shapes are measured in the total of the vertical DOFs. However, if it is 

possible to measure the six first mode shapes, then a performance superior to 60% in 

the number of successful runs can be obtained and, practically, superior to 90% 

when the ten first mode shapes are used. The use of 12 mode shapes can produce a 

decrement in the methodology performance in comparison to that one obtained with 

fewer measurements. This result shows that there exists a maximum quantity of 

measurements to be used before the performance level can be prejudiced by the 

excess of information. On the other hand, Tables 6 and 7 illustrate the ability of the 

methodology to detect damage in element 15 when the damage extent of the single 

damaged element is varied. When the damage extent is higher, the reliability of the 

proposed methodology increases no matter the quantity of modal information used.  
 

 
% of Vertical 

DOFs 

Number of measured modes 

2 4 6 8 10 12 

25 2 7 7 8 10 6 

50 3 6 9 8 9 7 

75 3 7 7 9 9 7 

100 6 7 9 9 8 7 

Table 5. Results for simple damage scenario S2. 
 

 
% of Vertical 

DOFs 

Number of measured modes 

2 4 6 8 10 12 

25 0 3 6 5 9 6 

50 2 4 7 8 8 6 

75 2 2 5 8 8 6 

100 4 6 8 8 9 7 

Table 6. Results for simple damage scenario S3. 
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% of Vertical 

DOFs 

Number of measured modes 

2 4 6 8 10 12 

25 3 7 8 9 9 8 

50 2 6 7 9 10 8 

75 3 6 8 9 10 7 

100 7 8 9 9 10 7 

Table 7. Results for simple damage scenario S4. 
 

 

The results concerning the application of the proposed methodology to detect 

multiple damage scenarios are reported in Tables 8 -11. For damage scenarios M1 

and M3, the methodology meets the desired performance by measuring the six first 

mode shapes in 25% of the vertical DOFs. If eight or more mode shapes are used, 

the performance is kept constant at around 80% for scenario M1 and 40% for 

scenario M3. For a reliable detection of Scenario M2, it is necessary to measure 

eight mode shapes in any of the measurement configurations shown in Table 1. 

From the results for damage scenario M2, it can be pointed out that the use of 

measurements in all vertical DOFs helps to locate uniform damage scenarios more 

reliably; however, obtaining measurements in all vertical DOFs can be impossible 

for technical and economical reasons. Moreover, if less than 8 mode shapes are 

measured the algorithm does not converge to the correct solution. The assessment of 

this scenario type seems to be the most challenging for the proposed methodology. 

Finally, scenario M4 can be detected with the expected reliability level by using any 

of two combinations of measurements: 1) the first eight mode shapes in the 50% of 

the vertical DOFs or 2) the first ten mode shapes in the 25% of the vertical DOFs. 

The use of more than the ten first mode shapes did not improve the performance of 

the methodology considerably for any of the analyzed multiple damage scenarios. 

As previously mentioned, a total of 50 scenarios were tested in order to prove 

that the quantity of modal information used is enough. In this case the least possible 

number of measured points was selected; therefore we decided to use measurements 

in 25% of the vertical DOFs and 10 mode shapes. Table 12 summarizes the results 

for the above damage scenarios, which were divided in function of the number of 

damaged elements. The minimum quantity of successful runs aforementioned was 

guaranteed and there was a low number of misidentified elements defined as those 

undamaged elements that presented damage extents higher than 0.03. Also, the 

maximum difference between the real and computed damage extension was found to 

be very low. Moreover, it is worth mentioning that a better performance of the 

proposed methodology was obtained when only one element was damaged. These 

results allow concluding that the quantity of modal data selected was adequate to 

detect damage in the beam.  

 
 
% of Vertical 

DOFs 

Number of measured modes 

2 4 6 8 10 12 

25 1 1 3 6 8 8 

50 1 1 4 7 8 8 

75 1 1 5 6 9 9 

100 2 3 8 9 9 9 

Table 8. Results for multiple damage scenario M1. 
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% of Vertical 

DOFs 

Number of measured modes 

2 4 6 8 10 12 

25 0 0 0 3 3 4 

50 0 0 0 3 4 4 

75 0 0 0 3 2 3 

100 0 1 3 4 4 5 

Table 9. Results for multiple damage scenario M2. 

 
% of Vertical 

DOFs 

Number of measured modes 

2 4 6 8 10 12 

25 0 2 3 4 5 3 

50 0 1 3 5 4 5 

75 0 1 1 4 5 5 

100 0 2 5 7 7 6 

Table 10. Results for multiple damage scenario M3. 

 
% of Vertical 

DOFs 

Number of measured modes 

2 4 6 8 10 12 

25 0 0 0 1 3 3 

50 0 0 1 3 3 3 

75 0 0 1 1 3 4 

100 1 1 2 4 3 6 

Table 11. Results for multiple damage scenario M4. 

 
Characteristics 

Damage scenario Type 

Simple Multiple 

Minimum number of successful runs 7 3 

Maximum number of misidentified elements 3 4 

Maximum difference in the damage extent 0.055 0.065 

Table 12. Results for the 50 damage scenarios. 
 
 

 

As shown in the above results, the methodology does not converge to the 

correct answer in all runs, thus it is necessary to guarantee that the best solution 

corresponds to any of those successful runs. This fact was not verified for one of the 

cases analyzed in this research. This case corresponds to a damage scenario that 

includes two adjacent elements that are near the supports. The five best solutions for 

this scenario, among the 10 runs, are reported in Table 13. Only the elements with a 

β value higher than 0.050 were presented. It can be observed that all damaged 

elements different to element 2 were identified and that the difference in the cost of 

these solutions was smaller than 6. Moreover, in runs 1 and 3 an approximate 

damage scenario was found and element 3, instead of element 2, was identified as 

damaged. Table 14 shows the results for the same scenario when measurements 

were free of noise. In this case, the methodology was successful in three runs and 

achieved the maximum value for the cost (Costmax=2000). Thus, the presence of 

noise in the measurements makes the space search become more complex, and 

solutions with a different set of damaged elements present high value for the cost, 

prejudicing the convergence of the proposed PSO to the real damage scenario. 
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Damaged 

Element 

Damage Extent β 

Real 1 2 3 4 5 

1 

2 

3 

7 

10 

24 

25 

30 

0.200 

0.220 

- - - 

- - - 

- - - 

- - - 

0.190 

0.260 

0.544 

- - - 

0.081 

- - - 

- - - 

0.064 

0.182 

0.270 

0.193 

0.238 

- - - 

- - - 

0.059 

- - - 

0.227 

0.287 

0.521 

- - - 

0.098 

0.082 

- - - 

0.062 

0.206 

0.275 

0.543 

- - - 

- - - 

0.138 

- - - 

0.097 

0.191 

0.263 

0.179 

0.238 

- - - 

- - - 

- - - 

- - - 

0.197 

0.259 

Cost  1965.7 1963.3 1962.08 1962.0 1960.6 

Table 13. Example of a wrong damage identification. 
 

 

 

Damaged 

Element 

Damage Extent β 

Real 1 2 3 4 5 

1 

2 

21 

25 

28 

29 

30 

0.200 

0.220 

- - - 

0.190 

- - - 

- - - 

0.260 

0.200 

0.220 

- - - 

0.190 

- - - 

- - - 

0.260 

0.200 

0.220 

- - - 

0.190 

- - - 

- - - 

0.260 

0.200 

0.220 

- - - 

0.190 

- - - 

- - - 

0.260 

0.157 

0.224 

0.094 

- - - 

0.054 

- - - 

0.269 

0.362 

0.167 

0.083 

- - - 

- - - 

0.076 

0.242 

Cost  2000  2000 2000 1973.9 1972.4 

Table 14. Example of a correct identification for free-of-noise measurements. 
 

 

 

 

 

 
 

Tables 15 and 16 show a complete description of the damage scenarios found by 

the methodology when applied to detect the damage scenario presented in Tables 2 

and 3. The number of sensors covered 25% of the vertical DOFs in the structure and 

the number of mode shapes was permitted to vary. These results correspond to the 

best execution in the first set of runs, recalling that five sets of 10 runs were carried 

out. The value in parentheses corresponds to the error in the computation of the 

damage extent for the real damaged elements. Also, only the elements that presented 

a β value higher than 0.050 are presented. If only 6 modes are used, the real 

damaged elements may not be found for damage scenarios S1 or M4, or may 

produce errors in the quantification of the damage extent higher than 60%. A similar 

performance was observed when either 10 or 12 modes were measured, producing 

an error lower than 20%. This result shows that a great improvement in the damage 

detection is not achieved by increasing the quantity of mode shapes used. Also, the 

algorithm has no tendency to either underestimate or overestimate the damage extent 

and the values found depend on the dynamics of the execution. Moreover, the results 

showed that only a few elements were misidentified with low values of damage and 

that, in general, the methodology was more reliable to detect simple damage 

scenarios than multiple ones. 
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ID 

Scenario 
Element 

Damage Extent β 

Real 8 modes 10 modes 12 modes 

S1 

1 

2 

12 

23 

- - - 

0.250 

- - - 

- - - 

0.600 

- - - (100) 

 0.125 

0.091 

0.077 

0.239(4) 

- - - 

- - - 

- - - 

0.258 (3) 

- - - 

- - - 

S2 6 0.350 0.353 (1) 0.352 (1) 0.345 (1) 

S3 

1 

3 

11 

15 

18 

21 

24 

- - - 

- - - 

- - - 

0.170 

- - - 

- - - 

- - - 

0.114 

- - - 

0.048 

0.155 (9) 

- - - 

- - - 

0.066 

- - - 

0.051 

- - - 

0.172 (1) 

0.071 

0.057 

- - - 

- - - 

- - - 

- - - 

0.163 (4) 

- - - 

- - - 

- - - 

S4 

9 

12 

15 

17 

18 

29 

- - - 

- - - 

0.420 

- - - 

- - - 

- - - 

0.143 

- - - 

0.392 (6) 

0.088 

- - - 

- - - 

- - - 

0.070 

0.424 (1) 

- - - 

- - - 

0.095 

- - - 

- - - 

0.399 (5) 

- - - 

0.050 

- - - 

Table 15. Application of the proposed methodology to detect simple damage. 

Measurements in 25% of the vertical DOFs. 
 

 

 
 

ID 

Scenario 
Element 

Damage Extent β 

Real 8 modes 10 modes 12 modes 

M1 

4 

5 

8 

17 

20 

28 

0.200 

- - - 

- - - 

- - - 

0.200 

- - - 

0.091 (55) 

0.099 

0.112 

0.065 

0.195 (3) 

- - - 

0.172 (14) 

- - - 

- - - 

- - - 

0.194 (3) 

- - - 

0.225 (13) 

- - - 

- - - 

- - - 

0.211 (5) 

0.050 

M2 

7 

12 

13 

14 

15 

- - - 

0.150 

0.150 

0.150 

- - - 

0.060 

0.056 (63) 

0.242 (61) 

0 (100) 

0.086 

- - - 

0.174 (16) 

0.143 (5) 

0.155 (3) 

- - - 

- - - 

0.136 (9) 

0.144 (4) 

0.146 (3) 

- - - 

M3 

3 

4 

14 

20 

22 

23 

0.200 

- - - 

0.250 

0.400 

- - - 

- - - 

0.185 

- - - 

0.154 

0.199 

0.358 

0.102 

0.165 (18) 

0.069 

0.243 (3) 

0.405 (1) 

- - - 

- - - 

0.217 (8) 

- - - 

0.250 (0) 

0.376 (6) 

- - - 

0.044 

M4 

4 

8 

12 

18 

27 

28 

31 

0.270 

0.230 

- - - 

- - - 

0.180 

0.180 

- - - 

0.203 (25) 

0.193 (16) 

0.086 

0.127 

- - - (100) 

0.227 (21) 

0.060 

0.274 (1) 

0.230 (0) 

- - - 

- - - 

0.184 (2) 

0.183 (2) 

- - - 

0.292 (8) 

0.213 (7) 

- - - 

- - - 

0.184 (2) 

0.161 (11) 

- - - 

Table 16.  Application of the proposed methodology to detect multiple damages. 

Measurements in 25% of the vertical DOFs. 
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Some observations about the performance of the proposed methodology to 

detect damage using incomplete modal information have been established: 

 

 Different damage scenarios can be detected with different reliability levels for 

a same quantity of modal information available. In general, simple damage 

scenarios are detected more reliably than the multiple ones.  

 There is an optimal quantity of modal information that permits detecting most 

of the possible damage scenarios. If a lower quantity is used, then the 

methodology can fail to detect the real damage scenario, but if a higher 

quantity is used, then there will be waste of resource and time in carrying out 

a more complete dynamic test for unnecessary information. 

 The computational cost involved in the determination of the optimal quantity 

of modal information is high because many combinations of modal 

information have to be tested. It is important to observe that this set of values 

is limited by technical conditions, such available number of sensors and 

quantity of excitable modes. 

 As noise can prejudice the performance of the proposed methodology, it is 

very important to obtain the clearest measurements. 

 

 

6  Conclusions 
 

An adaptive particle swarm optimization has been proposed to detect damage in 

beam structures under the assumption that the measurements are noisy and 

incomplete. Each damage detection methodology proposed requires a study to 

determine the minimum quantity of modal data that guarantees reliable damage 

detection in a specific structure. Also, the utilization of abundant information does 

not guarantee an improvement in the computation of the damage extension. The 

methodology obtained all damage scenarios with a low error in the computation of 

the damage extent and a few misidentified elements. It failed for only one damage 

scenario, but it found an approximate damage scenario. However, some 

improvements in the methodology have to be performed in order to diminish the 

number of measured points in the beam that are necessary to guarantee the correct 

damage detection. The influence of the position of the sensors on the structure will 

be studied in future works. 
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