
Abstract

In this paper, we present a coupled finite element-boundary element method (FE-

BE) for control of noise radiation and sound transmission of vibrating structure by

active piezoelectric techniques. The system consists of an elastic structure (with sur-

face mounted piezoelectric patches) coupled to external/internal acoustic domains.

The passive shunt damping strategy is employed for vibration attenuation in the low

frequency range.

Keywords: finite element method, boundary element method, vibroacoustics, piezo-

electric patches, shunt damping technique, noise and vibration attenuation.

1 Introduction

During the last two decades there has been an accelerating level of interest in the

control of noise radiation and sound transmission from vibrating structures by active

piezoelectric techniques in the low frequency range. In this context, resonant shunt

damping techniques have been recently used for interior structural-acoustic problems

[1, 2]. The present work concerns the extension of this technique to internal/external

vibroacoustic problems using a finite element-boundary element method (FEM-BEM)

for the numerical resolution of the fully coupled electro-mechanical-acoustic system.

First, a finite element formulation of an elastic structure with surface-mounted

piezoelectric patches and subjected to pressure load due to the presence of an ex-

ternal fluid is derived from a variational principle involving structural displacement,

electrical voltage of piezoelectric elements and acoustic pressure at the fluid-structure

interface. This formulation, with only one couple of electric variables per patch, is

well adapted to practical applications since realistic electrical boundary conditions,

such that equipotentiality on the electrodes and prescribed global electric charges, nat-
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urally appear. The global charge/voltage variables are intrinsically adapted to include

any external electrical circuit into the electromechanical problem and to simulate the

effect of resistive or resonant shunt techniques.

In the second part of this work, the direct boundary element method is used for

modeling the scattering/radiation of sound by the structure coupled to an acoustic do-

main. The BEM is derived from Helmholtz integral equation involving the surface

pressure and normal acoustic velocity at the boundary of the acoustic domain. The

coupled FE-BE model is obtained by using a compatible mesh at the fluid-structure

interface. The present coupling procedure is quite general and suitable for modeling

any three-dimensional geometry for bounded or unbounded structural-acoustic radia-

tion problems.

Finally, the efficiency of the proposed coupling methodology is demonstrated on

one numerical example. Thus, the vibration reduction of an elastic plate backed by a

closed acoustic cavity is analyzed. For this example, a complete FE method developed

by the authors in [2] is compared to the present FEM-BEM approach.

2 Finite element formulation of elastic structure with

piezoelectric shunt systems

ΩF
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Fd

ΓD
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Σ Γu
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Figure 1: Vibrating structure with piezoelectric shunt systems coupled to an acoustic

domain.

2.1 Harmonic equations

An elastic structure occupying the domain ΩE is equipped with P piezoelectric patches

and coupled to an inviscid linear acoustic fluid occupying the domain ΩF (figure 1).

Each piezoelectric patch has the shape of a plate with its upper and lower surfaces
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covered with a very thin layer electrodes. The pth patch, p ∈ {1, · · · , P}, occupies a

domain Ω(p) such that (ΩE,Ω
(1), · · · ,Ω(P )) is a partition of the all structure domain

ΩS . In order to reduce the vibration amplitudes of the coupled problem, a resonant

shunt circuit made up of a resistanceR(p) and an inductance L(p) in series is connected

to each patch [3, 1, 4].

We denote by Σ the fluid-structure interface and by nS and nF the unit normal

external to ΩS and ΩF , respectively. Moreover, the structure is clamped on a part Γu

and subjected (i) to a given surface force density Fd on the complementary part Γσ

of its external boundary and (ii) to a pressure field p due to the presence of the fluid

on its boundary Σ. The electric boundary condition for the pth patch is defined by a

prescribed surface density of electric charge Qd on Γ
(p)
D .

The linearized deformation tensor is ε = 1
2

(
∇u + ∇Tu

)
and the stress tensor is

denoted by σ. Moreover, D denotes the electric displacement and E the electric field

such that E = −∇ψ where ψ is the electric potential. ρS is the mass density of the

structure. The linear piezoelectric constitutive equations write:

σ = c ε − eT E (1)

D = e ε + ǫE (2)

where c denotes the elastic moduli at constant electric field, e denotes the piezoelectric

constants, and ǫ denotes the dielectric permittivities at constant strain.

The local equations of elastic structure with piezoelectric patches and submitted to

an acoustic pressure are [5]

div σ + ω2ρSu = 0 in ΩS (3a)

σ nS = Fd on Γσ (3b)

u = 0 on Γu (3c)

σ nS = pn on Σ (3d)

div D = 0 in Ω(p) (4a)

D · nS = Qd on Γ
(p)
D (4b)

where ω is the angular frequency.

For each piezoelectric patch, a set of hypotheses, which can be applied to a wide

spectrum of practical applications, are formulated:

• The piezoelectric patches are thin, with a constant thickness, denoted h(p) for

the pth patch;

• The thickness of the electrodes is much smaller than h(p) and is thus neglected;

• The piezoelectric patches are polarized in their transverse direction (i.e. the

direction normal to the electrodes).
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Under those assumptions, the electric field vector E(p) can be considered nor-

mal to the electrodes and uniform in the piezoelectric patch [6], so that for all p ∈
{1, · · · , P}:

E(p) = −
V (p)

h(p)
n(p) in Ω(p) (5)

where V (p) is the potential difference between the upper and the lower electrode sur-

faces of the pth patch which is constant over Ω(p) and where n(p) is the normal unit

vector to the surface of the electrodes.

2.2 Variational formulation

By considering successively each of the P + 1 subdomains (ΩE,Ω
(1), · · · ,Ω(P )), the

variational formulation of the structure/piezoelectric-patches coupled system can be

written in terms of the structural mechanical displacement u, the electric potential

difference V (p) constant in each piezoelectric patch, and the fluid pressure p at the

fluid-structure interface:

∫

ΩS

[cε(u)] : ε(δu) dv +
P∑

p=1

V (p)

h(p)

∫

Ω(p)

eTn(p) : ε(δu) dv − ω2ρS

∫

ΩS

u · δu dv

−

∫

Σ

pn · δu ds =

∫

Γσ

Fd · δu ds ∀δui ∈ C∗
u (6)

where the admissible space C∗
u is defined by C∗

u = {u ∈ Cu |u = 0 on Γu}. Cu being

the admissible space of regular functions u in ΩS .

P∑

p=1

δV (p)C(p)V (p)−
P∑

p=1

δV (p)

h(p)

∫

Ω(p)

[e : ε(u)] ·n(p) dv =
P∑

p=1

δV (p)Q(p) ∀δV (p) ∈ R

(7)

where C(p) = ǫ33S
(p)/h(p) defines the capacitance of the pth piezoelectric patch (S(p)

being the area of the patch and ǫ33 the piezoelectric material permittivity in the direc-

tion normal to the electrodes) and Q(p) is the global charge in one of the electrodes

(see [6]).

2.3 Finite element formulation

After discretization of the previous variational formulation by finite element method

and using the following additional relation between electrical potential differences and

electric charges due to the shunt circuits:

−ω2LQ − iωRQ + V = 0 (8)
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we find the following matrix equation:

[
Ku + CuV K−1

V CT
uV CuV K−1

V −Cup

K−1
V CT

uV K−1
V 0

]


U

Q

PΣ



−iω
[

0 0 0

0 R 0

] 


U

Q

PΣ



 +

− ω2

[
Mu 0 0

0 L 0

]


U

Q

PΣ



 =

[
F

0

]
(9)

where Q = (Q(1)Q(2) · · · Q(P ))T and V = (V (1) V (2) · · · V (P ))T are the column

vectors of electric charges and potential differences; R = diag
(
R(1)R(2) · · · R(P )

)

and L = diag
(
L(1) L(2) · · · L(P )

)
are the diagonal marices of the resistances and

inductances of the patches; U and PΣ are the vectors of nodal values of u and p;

Mu and Ku are the mass and stiffness matrices of the structure (elastic structure

and piezoelectric patches); CuV is the electric mechanical coupled stiffness matrix;

KV = diag
(
C(1)C(2) · · · C(P )

)
is a diagonal matrix filled with the P capacitances of

the piezoelectric patches; Cup is the fluid-structure coupled matrix; F is the applied

mechanical force vector.

3 Boundary element formulation for external/internal

acoustic fluid

3.1 Harmonic equations

In this section, the direct boundary element method for exterior/interior acoustic do-

main is presented. The governing equations of the acoustic fluid are [7, 8]

∆p+ k2p = 0 in ΩF (10a)

∂p

∂n
= 0 on ΓD (10b)

∂p

∂n
= ρFω

2u · n on Σ (10c)

∂p

∂r
+ ikp = θ(

1

r
) for r → ∞ (10d)

Eq. (10a) represents the Helmholtz equation where k = ω/c is the wave number,

i.e. the ration of the circular frequency ω and the sound velocity c; Eq. (10b) is the

rigid boundary condition on ΓD; Eq. (10c) is the kinematic interface fluid-structure

condition on Σ; Eq. (10d) represents the Summerfield condition at infinity.

3.2 Boundary element formulation

The boundary element formulation for acoustic problems can be used for the interior

and exterior problems. The Helmholtz equation is valid for the pressure p at the arbi-
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trary collocation point x within the acoustic domain ΩF . A weak form of this equation

is obtained by weighting with the fundamental solution:

G(x,y) =
eik|x−y|

4π|x − y|
(11)

where |x − y| denotes the distance between the arbitrary point x and the load source

point y.

Applying Green’s second theorem, the Helmholtz equation can be transformed into

a boundary integral equation, which can be expressed as follows

c(x)p(x) =

∫

∂ΩF

p(y)
∂G(x,y)

∂ny

dS −

∫

∂ΩF

∂p(y)

∂ny

G(x,y)dS (12)

where

c(x) =






1 x in fluid domain
1
2

x on smooth boundary of fluid domain
Ω(x)
4π

x on nonsmooth boundary of fluid domain

0 x outside fluid domain

(13)

and

Ω(x) = 4π +

∫

∂ΩF

∂(|x − y|−1)

∂ny

dS

is the solid angle seen from x. Note that the value c(x) = 1
2

is valid if the surface

∂ΩF is assumed to be closed and sufficiently smooth, i.e. there is a unique tangent to

∂ΩF at every x ∈ ∂ΩF . For the general case, where nounique tangent plane exists at

x ∈ ∂ΩF , we use c(x) = Ω(x)
4π

(for example, when x is lying on a corner or an edge).

The fluid boundary is divided into N quadrilateral elements (∂ΩF =
∑N

j=1 Sj) and

Eq. (12) is discretized. After using the relation between the acoustic pressure and

the fluid normal velocity ∂p

∂n
= −iρFωv (where v = vF · n), the discrete Helmholtz

equation can be written for any point x defined by the node i as

cipi =
N∑

j=1

∫

Sj

pj(y)
∂G(xi,y)

∂ny

dS + iρFω
N∑

j=1

∫

Sj

vj(y)G(xi,y)dS (14)

For each quadrilateral element j, the pressure pj(y) and the normal velocity vj(y) can

be expressed as a function of their nodal values

pj(y) =
4∑

k=1

Nkp
k
j = Npj , vj(y) =

4∑

k=1

Nkv
k
j = Nvj (15)

and Eq. (14) becomes

cipi =
N∑

j=1

4∑

k=1

∫

Sj

Nk

∂G(xi,yj)

∂ny

dSpk
j + iρFω

N∑

j=1

4∑

k=1

∫

Sj

NkG(xi,yj)dSv
k
j (16)
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or in the following form

cipi =
N∑

j=1

4∑

k=1

Ĥk
ijp

k
j + iρFω

N∑

j=1

4∑

k=1

Gk
ijv

k
j (17)

where

Ĥk
ij =

∫

Sj

Nk

∂G(xi,yj)

∂ny

dS , Gk
ij =

∫

Sj

NkG(xi,yj)dS (18)

We place now the point xi at each of nodal points on the boundary yj successively,

which is know as ”collocation point”. We obtain

ciδijpj =
N∑

j=1

4∑

k=1

Ĥk
ijp

k
j + iρFω

N∑

j=1

4∑

k=1

Gk
ijv

k
j (19)

When the collocation scheme is repeated for all nodal points Nn of the boundary

element mesh, a set of Nn expressions in the nodal field variables is obtained which

can be assembled into the following matrix equation

HP = iρFωGv (20)

where P and v are the vectors with sound pressure and velocity in the normal direction

to the boundary surface at the nodal position of the boundary element mesh.

4 FE-BE formulation for the fluid-structure with shunt

systems coupled problem

The fluid boundary domain ∂ΩF is divided into two parts including ΓD (where the

rigid boundary condition is applied) and the interface Σ (for the fluid-structure inter-

face) such as ∂ΩF = ΓD ∪ Σ and ΓD ∩ Σ = ∅. The boundary conditions given in

Eqs. (10b) and (10c) can be expressed in discretized form

vD = 0 on ΓD (21a)

vΣ = iωTU on Σ (21b)

where T is the global coupling matrix that transforms the nodal normal displacement

of the structure to the normal velocity of the acoustic fluid at the interface. Substituting

Eqs. (21) into the BE matrix expression (Eq. (20)) yields

[
H11 H12

H21 H22

] [
PΣ

PD

]
=

[
G11 G12

G21 G22

] [
iρFω

2TU

0

]
(22)
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By combining Eq. (9) with Eq. (22), we find the following coupled FE-BE matrix

equation





Ku + CuV K−1
V CT

uV − ω2Mu CuV K−1
V −Cup 0

K−1
V CT

uV K−1
V − iωR − ω2L 0 0

iρFω
2G11T 0 H11 H12

iρFω
2G21T 0 H21 H22









U

Q

PΣ

PD



 =





F

0

0

0





(23)

5 Numerical examples

In order to validate the methodology, we present in this section the analysis of an in-

terior damped structural-acoustic system using an inductive shunt damping technique,

according to the FEM-BEM approach described in this paper. First, the FEM/FEM

modal analysis of the electromechanical-acoustic problem is presented. Then, the

FEM-BEM frequency response of the coupled system in short circuit and inductive

shunt cases are compared in terms of attenuation of vibration.
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y z

0.0762m 0.0508 m

Figure 2: Electromechanical-acoustic coupled system: geometrical data.
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We consider a 3D hexaedric acoustic cavity of size A= 0.3048 m, B=0.1524 m and

C=0.1524 m along the directions x, y, and z, respectively. The cavity is completely

filled with air (density ρ= 1.2 kg/m3 and speed of sound c=340 m/s). The cavity walls

are rigid except the top one, which is a flexible aluminum plate of thickness 1 mm.

The density of the plate is 2690 kg/m3, the Youngs modulus is 70 GPa and Poisson

ratio 0.3. On the top surface of the plate, a PIC 151 patch is bonded, whose in plane

dimensions are 0.0762×0.0508 m2 along x and y and 0.5 mm thick (see figure 2). The

mechanical characteristics of the piezoelectric material PIC 151 are given in [2].

Concerning the FEM/FEM discretization, we have used, for the structural part, 72

plate elements. The portion of the plate covered by the piezoelectric patch and the

patch itself has been modeled according to laminated theory [2]. Moreover, only one

electrical degree of freedom is used to represent the electrical charge Q in the patch.

The acoustic cavity is discretized using 12×6×6 hexahedric elements. The structural

and acoustic meshes are compatible at the interface, and the fluid-structure coupling

is realized through the Cup matrix.

For the FEM-BEM formulation, besides the FE discretization of the plate, only the

boundary Σ of the fluid domain is discretized with boundary elements. Notice that the

BE nodes on this part must coincide with FE nodes.

Table 1 presents the first ten eigenfrequencies in three cases: (i) the 3D rigid acous-

tic cavity, (ii) the plate with the patch in short and open circuited cases and (iii) the

plate/acoustic-cavity coupled system in the short circuited case. All results are com-

puted with the finite element formulation presented in [2] . The fourth and ninth fre-

quencies are associated with the first two acoustic modes in the rigid cavity lower than

1128.2 Hz, while the other frequencies correspond to the first eight vibration modes

of the structure. This can be confirmed by comparing the mode shapes in case (iii)

with those obtained in case (i) or case (ii), which are not shown here for the sake of

brevity. Moreover, as expected, the natural frequencies of the coupled modes (struc-

ture dominated) are lower than those for the structure in vacuum (except for the first

mode) due to the added-mass effect of the fluid.

Fluid Structure SC Structure OC Fluid-Structure

559.3 210.6 210.7 215.1

1128.1 329.5 330.9 327.1

1128.3 540.6 544.4 538.9

1128.5 722.2 722.2 561.7

1259.1 828.4 830.6 719.4

1259.5 834.3 834.7 826.5

1595.5 1023.8 1024.7 832.1

1595.6 1204.7 1204.7 1021.0

1595.7 1296.1 1296.7 1128.1

1690.8 1567.0 1567.0 1129.9

Table 1: Computed frequencies (Hz) of the structural-acoustic coupled system.
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The plate is now excited by an unit distributed time harmonic pressure load. The

coupled FEM-BEM results are compared with those obtained from a coupled FEM-

FEM analysis. As can be seen in figure 3, the sound pressure level is calculated on

the plate center. The results for the two methods are very similar at sound level peaks

(resonance frequencies) which enable us to check the validity of the proposed FEM-

BEM coupled formulation.
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Figure 3: Sound pressure level on plate center: comparison between FEM-FEM and

FEM-BEM approaches.

In order to achieve maximum vibration dissipation of the third coupled mode, the

patch is tuned now to an RL shunt circuit. The optimal values of the shunt electrical

circuit are taken R=348 Ω and L=0.61 H. The system vibratory response is obtained

with the proposed BEM-FEM approach. Figure 4 presents the sound pressure level

on plate center with and without shunt system. This figure shows that the resonant

magnitude for the third mode has been significantly reduced due to the shunt effect. In

fact, the strain energy present in the piezoelectric material is converted into electrical

energy and hence dissipated into heat using the RL shunt device.

6 Conclusions

In this paper, a coupled finite element-boundary element method (FEM-BEM) for con-

trol of noise radiation and sound transmission of vibrating structure by active piezo-

electric techniques is presented. The passive shunt damping strategy is employed for

vibration attenuation in the low frequency range. Work in progress concerns the vali-

dation of the proposed approach for structure with piezoelectric patches coupled with

an external fluid domain in order to validate the efficiency of the shunt technique for
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Figure 4: Sound pressure level on plate center with and without shunt system.

reducing the acoustic radiation power. Associated to this methodology, a reduced

order model for the BEM-FEM coupled formulation is under development.
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