
Abstract

This paper proposes a multilevel model optimization strategy for structural assem-

blies. The general objective is to reduce computation costs; here, we focus on the

costs which are associated with the generation of metamodels. Our goal is achieved

through the introduction of two main elements: the multiparametric Strategy based on

the LATIN method, which reduces the computation costs when the parameters vary,

and the use of gradient-based metamodels. Cokriging and radial basis functions (RBF)

metamodels are presented and performance of these approximations is illustrated with

analytical and mechanical examples with one to four design variables.

Keywords: multilevel optimization, metamodel, cokriging, radial basis functions,

multiparametric strategy, LATIN method, assemblies.

1 Introduction

Optimization techniques have been widely in use in industry for many years. They

have been used to design structural elements, geometries, materials ... This kind of

optimizations are feasible when the computation cost required to carry out one sim-

ulation is the low and acceptable. To achieve them, direct optimizations are mostly

used: the optimizer monitors directly the simulator in order to locate the optimum of

an objective function and to provide the associated set of parameters with respect of

the constraints. Although optimizers are ever-increasing efficient and converges faster

and faster to the solution of the optimization process, this kind of global optimization

approach is not affordable in the context of assembly design: due to the nonlinearities

resulting from contact or friction phenomena between parts, each simulation involves

the resolution of a very complex and very costly problem. In order to reduce the com-

putational time one can use a local optimization strategy. In this context the main
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remaining difficulty is to define the local optimization problem and more precisely to

build the best local optimization problem i.e. the problem which allows us to locate

accurately the optimum with the fewer calls of the simulator. In order to reduce the

computational time and to build the local optimization problem we propose to use two

tools: the first is a specific mechanical model based on a dedicated strategy to solve

assembly problems and the second is a gradient-enhanced metamodel.

This paper focuses on the cost associated to the building of metamodels using data

coming from the mechanical model. The first section of this paper presents the mul-

tilevel model optimization strategy, then two tools are introduced: a MultiParametric

Strategy to solve assembly problems and metamodels to provide approximation of

objective functions. Two kinds of gradient-based metamodels will be presented: a

gradient-based Gaussian Process and a gradient-based radial basis function. Finally

these two tools are used together and a study based on quality criteria and computa-

tional costs is achieved.

2 The optimization process

Although the performance of the mechanical solvers and the optimizer increased since

many years, direct optimization strategies are not affordable to deal with certain spe-

cific mechanical problems such as complex non-linear problems. Therefore we pro-

pose to use a two-level strategy. In opposition to the Surrogate Based Optimization

strategy [1] in which the whole optimization process was achieved on the surrogate

model, we propose to use the metamodel to feed a local optimizer with a start point.

More precisely the whole optimization process is: first, the design space is sampled

using a sampling method such as Latin Hypercube Sampling [3], on each sampled

points the value and the derivatives of the objective function is computed using the

full mechanical model; then the metamodel can be build using this information. A

global and very fast optimization is performed on the metamodel using a global opti-

mizer (for instance Particle Swarm Optimizer, Genetic Algorithm...). While an eval-

uation of the actual function using the full mechanical model is very expensive, each

evaluation of the metamodel is very inexpensive. A high number of evaluations of

the approximate model is no longer a problem. Finally the full mechanical model is

connect directly with a local optimizer initialized with the approximate optimum set

of parameters coming from the first optimization. This optimization strategy and the

mechanical solver leads to a significant reduction in the computation cost.

Figure 1 shows the different tools used in the proposed two-level strategy. In this

paper, we focus on the first part of the first level: the building of the metamodel using

responses from the mechanical model. More precisely both quality and computational

cost associated to the building of this approximation will be study. To do this, a

MultiParametric Strategy [4] and gradient-enhanced versions of radial basis function

[5] and kriging [6] metamodels will be applied on analytical and mechanical examples.

In the following sections the MultiParametric Strategy will be introduce; then

2



MetamodelSimulator

Simulator Optimization

1. Global Approximate Optimization using a Metamodel

Optimization

2. Local Accurate Optimization 

Approximate Optimum(s)

& associated set(s) of parameters

Accurate Optimum(s)

& associated set(s) of parameters

Pre & Post Processors

F.E. Method

LaTIn Algorithm

MultiParametric Strategy

Kriging

Radial Basis Function

...

Genetic Algorithm

Particle Swarm Optimizer

...

Gradient-based Algorithm

...

Scope of this article

Figure 1: Multilevel Model Optimization

gradient-based metamodels will be detailed and finally these two tools will be used

and study together on few mechanical examples.

3 The MultiParametric Strategy

In the context of multiparametric study or optimization process many non-linear sim-

ilar mechanical simulations are achieve. Actually the mechanical problem is the same

in the sense that only few parameters vary. In our case we propose to compute this

non-linear problems using a LaTIn algorithm and in order to reduce the computa-

tional cost associated to the similar problems we propose to use the MultiParametric

Strategy. These both techniques will be briefly described in the following sections.

3.1 The LaTIn method

The structures being considered in this paper are assemblies of linear elastic structures

under the assumption of small perturbations. The only nonlinearities occur between

parts of the assemblies and are due to contact and/or friction phenomena. In order

to solve these problems, we use a dedicated strategy based on the LaTIn algorithm

introduced by P. Ladevèze [7].

In the case of structural assemblies we consider a mixed domain decomposition

approach based on three main points:

• The structure being studied is divided into substructures and interfaces. The

chosen decomposition considers mixed force and displacement unknowns at the

interfaces;
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• A suitable iterative algorithm is used to solve the mechanical problem;

• The operators of the method remain constant and do not depend on the loading

or on the parameters of the interfaces (friction coefficient, gap).

In order to solve non-linear problems, the LaTIn method is based on a partition of

the problems on the substructures and on the interfaces in two groups of equations

denoted Ad and Γ:

• The group Ad contains the linear and possibly global in space variables equa-

tions. It corresponds to the problems on the substructures and it is made up

of the kinematic and the static admissibilities and the constitutive laws of the

substructures;

• The group Γ contains local and possibly non-linear equations. This group allows

us to treat non-linear problems on interfaces and so, it contains the interfaces

specific approach and laws (such as friction and contact problems, [8]) and static

equilibrium of the interfaces.

As shown in schematic representation in Figure 2, the LaTIn algorithm consists in a

successive resolution of the two groups of equations. The use of two search directions

which are parameters of the method ensure the transmission of the quantities between

the two groups and the convergence of the method.

Ad

Γ

E− E+

ŝn+1/2

s sn+1 sn

Figure 2: Schematic representation of the LATIN process

In our case we consider linear elastic behavior in the subdomains and the knowl-

edge of the boundary magnitudes (forces and displacements) on each interface be-

tween two substructures are sufficient to define the solution: the solution into a sub-

structure can be obtained by solving a classical elastic problem with consideration of

the boundary magnitudes coming from the interfaces.

The specific feature of the LaTIn method is that on each iteration, the solver yields

an approximate solution not only at all points of structure but also over the whole

loading path. Along the following iterations the solution is enriched and a convergence

criterion is used to check the convergence rate of the algorithm.
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3.2 The MultiParametric Strategy

The MultiParametric Strategy (MPS) takes advantage of the previous feature of the

LaTIn algorithm: along the resolutions associated to different set of parameters, a

set of converged solutions is build and enriched and if a new calculation associated

to a new set of parameters is requested, the LaTIn algorithm is initialized with the

”best” previous converged solution. Thanks to this initialization the requested solution

converges in fewer iterations of the algorithm and, therefore, in less time. Figure 3

shows that each variation of the parameters on interface leads to the appearance of

a new associated group of equations Γ and the associated solution is quickly obtain

with the reinitialization. The remained difficulty is the choice of the ”best” previous

Ad

Γ1
Γ2 Γ3

s1

s2

s1s3

Variation of parameters

Figure 3: The MultiParametric Strategy to obtain solutions s2 and s3 respectively from

the solution s2 and s2 or s3

converged solution. Some indications for choosing the best initialization strategy were

given in [9]. In our case we will use only a ”closest point” strategy: the initial solution

of the new problem is chosen to be the converged solution associated with the set of

design parameters which is closest to the one being considered.

Some details and performance of the MPS can be found on [4, 20].

4 Metamodels

In order to achieve an inexpensive global optimization using specific algorithm like

Particle Swarm Optimizer [10] or Genetic Algorithm [11] one must be able to reduce

the computational cost to compute each evaluation of the objective function. This kind

of optimizers needs a lot of evaluations for converging and in our case, the computa-

tional cost of each mechanical computation increases not only with the complexity of

the mechanical problem (i.e. the nonlinearities included in the model), but also with

the number of degrees of freedom in the mechanical system. One way is to use for ex-

ample Reduce Order Modeling (see for instance [12]) to reduce the computation cost.

Here we propose the use of metamodels and more precisely metamodels which are
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able to take into account the derivatives of the actual function. The feature allows us

to take advantage of the MultiParametric Strategy to reduce the computation time for

computing the derivatives of the objective function using a finite difference method.

4.1 Notations

We will use the following notations:

• x(i), i ∈ J0,nsK denotes a point in the design space D . (x(i), i ∈ J1,nsK is one of

the ns sample points, and x(0) is an arbitrary point in the design space, which

may or may not be a sample point.)

• Y (x(i)) and Ỹ (x(i)) denote respectively the response of the analytical function

(or the response of the mechanical model) and the approximate response given

by the metamodel at point x(i), i ∈ J0,nsK.

• R(x(i),x( j)) is a correlation function expressing the correlation relation between

points x(i) and x( j), (i, j) ∈ J0,nsK
2.

• K(r) denotes a radial basis function.

4.2 Gradient-based metamodels

Several kinds of metamodels has gradient-enhanced build [13]. We propose in this

paper to use only gradient-based kriging and gradient-based radial basis functions.

This two classes of metamodels will be briefly presented and applied on analytical

and mechanical examples.

4.2.1 Cokriging

Cokriging is very similar to kriging metamodel also called Gaussian-process meta-

model in context of computer experiments. Introduce in the 50’s to achieve geological

study, kriging has been developped in the 60’s by G. Matheron [14]. Sacks [15] intro-

duces the use of the kriging to deal with optimization problem. Cokriging allows us to

build richer metamodel by taking into account primary and auxiliary variables evalu-

ated on several sample points obtained with some technique such as Latin Hypercube

Sampling [3].

The main idea of the kriging is to look for the actual function Y (which the deter-

ministic response provided by the mechanical model in our case) as a realization of

a Gaussian stochastic process: Y is considered as the sum of a deterministic function

µ (which represents the trend of the data) and a stationary Gaussian process Z with

known stationary covariance (which represents the fluctuations around the trend). The

cokriging keeps this decomposition for the primary variable but introduces the same

decomposition for the nd auxiliary variables W i (see Equation 1).
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∀i ∈ J0,ndK, ∀x(0) ∈ D , Y (x(0)) = µ(x(0))+Z(x(0))

W i(x(0)) = µW i(x(0))+Qi(x(0))
(1)

In our case, the primary and the auxiliary variables are respectively the objective

function and its derivatives (as deterministic functions) such as

∀i ∈ J0,ndK, ∀x(0) ∈ D , W i(x(0)) =
∂Y

∂xi

(
x(0)

)
(2)

So nd denotes the number of design variables. The following equations presents

the stochastic characteristics of the different quantities:

∀i ∈ J0,ndK, ∀x(0) ∈ D , E

[
Y (x(0))

]
= µ(x(0)), E

[
Z(x(0))

]
= 0, (3)

Var
[
Y (x(0))

]
= Var

[
Z(x(0))

]
6= 0, (4)

E

[
W i(x(0))

]
= µW i, E

[
Qi(x(0))

]
= 0, (5)

Var
[
W i(x(0))

]
= Var

[
Qi(x(0))

]
6= 0. (6)

and

∀
(

x(i),x( j)
)
∈ D

2,∀(k, l) ∈ J0,ndK
2,

cov
[
Z

(
x(i)

)
,Z

(
x( j)

)]
= σ2R

(
x(i),x( j)

)
= σ2ci j (7)

cov

[
∂Z

∂xk

(
x(i)

)
,Z

(
x( j)

)]
= −σ2 ∂R

∂xk

(
x(i),x( j)

)
= σ2cki j (8)

cov

[
Z

(
x(i)

)
,

∂Z

∂xk

(
x( j)

)]
= σ2 ∂R

∂xk

(
x(i),x( j)

)
= σ2ck ji (9)

cov

[
∂Z

∂xk

(
x(i)

)
,

∂Z

∂xl

(
x( j)

)]
= −σ2 ∂ 2R

∂xk∂xl

(
x(i),x( j)

)
= σ2ckil j (10)

E, Var and cov are the classical statistical expected value, variance and covariance.

Moreover the proposed cokriging is called ordinary cokriging: the deterministic

function µ is considered as a unknown constant (by contrast with simple and universal

cokriging where µ is respectively a known constant and polynomial function). So the

deterministic term of the decomposition for the auxiliary variable is null (it stems

from the derivative of µ). Equations 7-10 show the covariance relations [16] such

as the covariance structure is a function of a generalized distance among the sample

responses.

To describe the covariance structure several parametric correlation functions R can

be used (linear, gaussian ...). In our case Matérn [17] functions are used.

Due to the fact that we know only the value of the function on several sample

points, we can not determinate exactly the function Y . Therefore we are looking for
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an estimator Ỹ of the actual function by considering the following linear predictors of

the non-sample point x(0):

Ỹ
(

x(0)
)

=
ns

∑
i=1

λ0i

(
x(0)

)
Y

(
x(i)

)
+

nd

∑
j=1

ns

∑
i=1

λi j

(
x(0)

) ∂Y

∂x j

(
x(i)

)
(11)

So the construction of the cokriging metamodel consists in the determination of the

coefficients λi j (with (i, j) ∈ J0,nsK×J1,nsK) such as the estimator is unbiased (Equa-

tion 12) and it minimizes the mean square error (Equation 13).

E

[
Ỹ

(
x(0)

)]
= E

[
Y

(
x(0)

)]
(12)

MSE
[
Ỹ (x(0))

]
= E

[(
Ỹ

(
x(0)

)
−Y

(
x(0)

))2
]

(13)

Finally the estimator of the ordinary cokriging is obtained on a unsample point x(0)

of the design space.

Ỹ
(

x(0)
)

= β̂ c︸︷︷︸
µ(x(0))

+rT
c0C−1

c (Ysc −Xcβ̂ c)︸ ︷︷ ︸
Z(x(0))

(14)

where β̂ c is estimated using the generalized least squares method, rc0 is the correlation

vector between the unsample point x(0) and the sampled point x(i) (∀i ∈ D), Cc is the

correlation matrix, Ysc contains both the responses and the gradients of the objective

function at the sample points and Xc contains ns ones et ns×nd zeros. More details of

the building process can be found in [18, 19, 20].

As we show previously the model includes several parameters such as the character-

istic correlation lengths and the variance σ of the random process Z. These parameters

can be determined by maximizing the likelihood function [21].

4.3 Radial Basis Function Network

In order to build an approximation of a function, an other strategy is to use Radial basis

Function [5]. The main idea of this approach is to introduce a set of ns basis functions

Ki that we consider associated and centered on each sample point. Firstly introduce

to responses only, this approach has been extended to include responses and gradients

[13] and thereby the metamodel provides a better approximation than whithout the

integration of the derivatives.

The approximation is determinate as the form presented by the Equation 15 for the

non-derivative approach and by the Equation 16 for the derivative-based approach.

∀x(0) ∈ D , Ỹ (x(0)) =
ns

∑
i=1

wiKi(x
(0)) =

ns

∑
i=1

wiKi0 (15)
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∀x(0) ∈ D , Ỹ (x(0)) =
ns

∑
i=1

wiKi(x
(0))+

nd

∑
j=1

ns

∑
i=1

wi j
∂Ki

∂x j

(x(0))

=
nd

∑
j=0

ns

∑
i=1

wi jKi0, j

(16)

where

∀i ∈ J1,nsK, ∀ j ∈ J0,ndK, wi j =

{
wi0 = wi if j = 0

wi j otherwise
(17)

and

∀x(0) ∈ D , ∀(i, j,k) ∈ J1,nsK×J0,nsK×J0,ndK,

Ki j,k =





Ki j,0 = Ki j = K(x(i),x( j)) if k = 0

Ki j,k =
∂Ki j

∂xk

=
∂K

∂xk

(x(i),x( j)) otherwise
(18)

The function K is a radial basis function (for instance a linear, cubic, Gaussian

radial basis function ...). We also introduce the notation Ki j,kl to denoted the secondary

derivatives of the radial basis functions.

The building process consists here in the determination of the coefficients wi j. To

do this the approximation must respect the interpolation conditions proposed in Equa-

tions 19 for the two metamodels and 19-20 for the gradient-based approach.

∀(i, j) ∈ J1,nsK×J1,ndK, ∀x(i) ∈ D , ,

Ỹ (x(i)) = Ỹi = Yi = Y (x(i)) (19)

∂Ỹ

∂x j

(x(i)) = Ỹi, j = Yi, j =
∂Y

∂x j

(x(i)) (20)

These conditions lead to the matrix formulations presented on Equation 21 and 22.

Kw = Y (21)

Kgwg = Yg (22)

where

K =




K11 K21 · · · Kns1

K12 K22 · · · Kns2
...

. . .
...

K1ns
K2ns

· · · Knsns


w =




w1

w2
...

wns


Y =




Y (x(1))

Y (x(2))
...

Y (x(ns))


 (23)
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and

Kg =

[
K Kd

KT
d Kdd

]
where K =




K11 K12 · · · K1ns

K21 K22 · · · K2ns

...
. . .

...

Kns1 Kns2 · · · Knsns




Kd =




K11,1 K11,2 · · · K11,nd
K12,1 K12,2 · · · K1ns,nd

K21,1 K21,2 · · · K21,nd
K22,1 K22,2 · · · K2ns,nd

...
. . .

...
...

. . .
...

Kns1,1 Kns1,2 · · · Kns1,nd
Kns2,1 Kns2,2 · · · Knsns,nd




Kdd =




K11,11 K11,12 · · · K11,1nd
K12,11 K12,12 · · · K1ns,1nd

K11,21 K11,22 · · · K11,2nd
K12,21 K12,22 · · · K1ns,2nd

...
. . .

...
...

. . .
...

K11,nd1 K11,nd2 · · · K11,ndnd
K12,nd1 K12,nd2 · · · K1ns,ndnd

K21,nd1 K21,nd2 · · · K21,ndnd
K22,nd1 K22,nd2 · · · K2ns,ndnd

...
...

...
...

...
...

Kns1,nd1 Kns1,nd2 · · · Kns1,ndnd
Kns2,nd1 Kns2,nd2 · · · Knsns,ndnd




Yg =
[
Y1 Y1,1 Y1,2 · · · Y1,nd

Y2 Y2,1 · · · Yns,nd

]T

(24)

The gradient-based approach leads to take into account a (nd +1)ns×(nd +1)ns square

matrix Kg instead of the ns×ns square matrix K for the classical approach. This

feature results in a high dimensional problem when we consider many sample points

and many design variables.

The building of the RBF approach is easier to implement and less expensive in term

of CPU time than kriging. In our case we consider a Matérn radial basis function and

the shape parameters of this functions are determined using a leave-one-out strategy

[22, 23]: the main idea of this strategy is to build the prediction of the response at the

sample point x(i) using ns −1 sample points (the original database without the sample

point x(i)). The approximate response is denotes Ỹ−i(x
(i)). Then a classical prediction

error is used: ei = (Ỹ−i(x
(i))−Y (x(i)))2. Each sample point is successively remove

of the database and the associated error is computed. This approach leads to a Mean

Square Error (Equation 25) that we minimize to determine the best shape parameters

of the radial basis function.

MSELOO =
1

ns

ns

∑
i=1

(Ỹ−i(x
(i))−Y (x(i)))2 (25)

When we build gradient-based RBF, MSELOO is evaluated by considering ns − 1

responses and gradients.
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4.4 Validation

In the context of metamodeling one very important point is to be able to evaluate the

quality of the approximation provided by the metamodel. The first idea is to use the

actual response for evaluating the performance of the metamodel by computing the

objective function on many points on a grid and by computing the distance between

the approximate and the actual function. In the following example we propose to use

this metric because the computational time remains acceptable. Here a grid with nc

points (nc >> ns) is considered and different metrics are calculated (see Equations 26-

31):

R2 = 1−
SSerr

SStot

where SSerr =
nc

∑
i=1

[
Y (x(i))− Ỹ (x(i))

]2

(26)

and SStot =
nc

∑
i=0

[
Y (x(i)−Y

]2

RAAE =
1

ncσ2

Ỹ

nc

∑
i=1

|Y (x(i))− Ỹ (x(i))| (27)

RMAE =
1

σ2

Ỹ

max
i∈J0,ncK

|Y (x(i))− Ỹ (x(i))| (28)

Q1 = sup
i∈{1,2,...,nc}

ei = ‖e‖∞ (29)

Q2 =
nc

∑
i=1

ei = ‖e‖1 (30)

Q3 =
Q2

nc

(the average of Q2) (31)

where ∀i ∈ {1,2, ...,nc}, ei =

(
Y

(
x(i)

)
− Ỹ

(
x(i)

))2

sup
j∈{1,2,...,nc}

Y
(
x( j)

)2

and e =
[
e1 e2 · · · enc

]

with ‖ · ‖1 and ‖ · ‖∞ being the L1 norm and infinity norm respectively.

In the classical context of expensive functions, this first approach is not viable.

Therefore a classic way is to use k-fold Cross-Validation procedure as presented in

the previous section (see Section 4.3) in the case of 1-fold or Leave-One-Out ap-

proach. In the following examples this Leave-One-Out strategy is achieved and the

Mean Square Error (Equation 25), the minimum, maximum and average SCVR (Stan-

dardized Cross-Validated Residual, Equation 32 and see [22, 24]) criteria will be eval-

uated:

∀i ∈ J1,nsK, SCV Ri =
Y (x(i))− Ỹ−i(x

(i))

σ2
−i(x

(i))
(32)

This new criteria will be only evaluated for kriging-based metamodels.
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5 Examples

In this Section metamodels will be built on few analytical test-case. Firstly a 1D

function is considered and kriging and RBF metamodels will be built to illustrate their

behaviors. Then one two-dimensional irregular function will be introduced and for

both RBF and kriging metamodels a matérn basis function and a matérn correlation

function will be respectively used. Finally the metamodels will be coupled with the

MultiParametric Strategy on three- and four-dimensional mechanical examples.

5.1 Analytical test-cases

First, we consider the analytical function y(x) = exp(−x/10)cos(x) + x/10 and we

used 6 sampled responses to build kriging-based and RBF-based metamodels. The 6

sample points are chosen in the design space using Latin Hypercube Sampling (LHS)

[3]. Figure 4 shows the capability of the gradient-enhanced metamodels to provided a
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(a) Responses of the metamodels
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∂
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∂
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∂
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Real derivative

Sampled derivatives

Kriging
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Grad. RBF

(b) Derivatives of the metamodels

Figure 4: The classic and gradient-based kriging and RBF metamodels and their

derivatives

very good approximation of this one-dimensional test-case.

Now, an irregular function will be used: the six-hump camelback function1. The

response surface of the actual function is presented on Figure 5. 16 points are sam-

pled in the design space using Latin Hypercube Sampling. Responses and gradients

are analytically evaluated on these sample points. In order to compare the quality

the metamodels they have been building using the same information obtained on the

same sample points. Figures 6 and 7 show the response surfaces associated to the

metamodels.

These two test-cases show that taking into account the derivatives allows us to

build more accurate metamodels then the classical approachs. This feature is due to

1∀(x1,x2) ∈ [−2,2]×[−1,1], f (x1,x2) = (4−2.1x2
1 + x4

1)x
2
1 + x1x2 +4(x2

2 −1)x2
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Classic Gradient-based

RBF Kriging RBF Kriging

MSE 4.48 ·10−2 5.24 ·10−2 1.07 ·10−2 1.75 ·10−2

R2 0.865 0.866 0.973 0.957

R2
ad j 0.859 0.865 0.973 0.957

RAAE 0.361 0.395 0.119 0.150

RMAE 0.874 0.890 0.518 0.670

Q1 6.95 ·10−2 7.00 ·10−2 3.51 ·10−2 5.62 ·10−2

Q2 3.73 4.36 0.894 1.45

Q3 1.87 ·10−2 2.18 ·10−2 4.47 ·10−3 7.26 ·10−4

MSELOO 0.168 0.115 0.108 0.150

Avg. SCVR – 5.40 ·10−15 – 2.07

Min. SCVR – -2.99 – -3.26

Max. SCVR – 6.87 – 16.45

Table 1: Characteristics of the four previous metamodels associated to the analytical

one-dimensional test-case
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Figure 5: The response surface of the actual function

the fact that these both metamodels interpolate not only the responses but also the

gradients. On the one-dimensional test-case, this assessment is very impressive and

with only six responses and gradients we are able to build almost the actual function.

On the two-dimensional test-case the cokriging metamodel provides a very accurate

approximation. This approximation is slightly better than the gradient-based RBF (as

shown on Table 2).

5.2 Mechanical test-case

Let us consider the example of a quasi-static academic problem which was presented

in [4, 20]. Figure 8 show the new geometry of the problem, which consists of four

subdomains (h = 50mm, Young’s modulus E = 2 · 105MPa and Poisson’s coefficient
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(a) Kriging metamodel
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(b) RBF metamodel

Figure 6: The non-gradient-based metamodels with 16 evaluations
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(a) Cokriging metamodel

−2

−1

0

1

2

−1

−0.5

0

0.5

1

−1

0

1

2

3

4

x
1

x
2

(b) Gradient-based RBF metamodel

Figure 7: The gradient-based metamodels obtained with 16 evaluations and 16 gradi-

ents

ν = 0.3). We consider:

• contact with friction on interfaces Ω1 − Ω2, Ω2 − Ω3 and Ω2 − Ω4 with the

respective friction coefficients µ1, µ2 and µ3.

• unilateral contact on interfaces Ω1 − Ω4 and between Ω2 and the rigid wall

associated to two gaps j1 and j2.

Each part is represented by a single substructure discretized using bilinear quadran-

gles. The loading consists of two stages: first, a progressive vertical pressure P1 up

to a maximum of 50MPa applied at the top of substructure Ω3 (the preloading stage),

then a progressive horizontal load from 0 to 30MPa applied to substructure Ω2. From

this problem we have built two parametric studies: firstly the friction coefficient µ2

(0.1) and the gap j2 (24µm) are fixed and the parameters which vary are the two
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Classic Gradient-based

RBF Kriging RBF Kriging

MSE 0.330 0.450 0.150 2.33 ·10−2

R2 0.796 0.726 0.925 0.992

R2
ad j 0.795 0.726 0.925 0.992

RAAE 0.365 0.447 0.184 7.27 ·10−2

RMAE 2.71 4.01 2.32 1.00

Q1 0.247 0.479 0.208 4.30 ·10−2

Q2 9.12 12.3 4.10 0.639

Q3 1.01 ·10−3 1.37 ·10−2 4.55 ·10−3 7.10 ·10−4

MSELOO 0.306 0.450 0.198 0.151

Avg. SCVR – 1.83 ·10−15 – -1.10

Min. SCVR – -3.53 – -4.69

Max. SCVR – 4.82 – 3.33

Table 2: Characteristics of the four metamodels associated with the analytical two-

dimensional test-case

friction coefficients µ1 ([0,0.95]) and µ3 ([0,0.95]) and the gap j1 ([−28µm,48µm]).
For the second study only the gap j2 (24µm) is fixed and we consider four parame-

ters which are the three friction coefficients µ1, µ2 and µ3 ([0,0.95]) and the gap j1
([−28µm,48µm]). For the two studies the observed quantity of interest (the objective

function) will be the reaction force of the subdomain Ω2 on the rigid wall.
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Ω2

Ω3

Ω4

µ1
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µ3

j1

P2(MPa)

30

t

P1(MPa)

50

t

Figure 8: The geometry of the problem

In order to illustrate the performance of the MPS and the gradient-based metamod-

els we propose to sampled the design space using LHS from 5 to 50 sample points
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and compute the responses and the gradients of the objective function on each sample

points (we built two sets: one with only the responses and one with the responses and

the gradients). The metamodels with and without derivatives will be built and using

reference responses obtained on two regular grids (1000 and 1296 sample points for

respectively the three-variables and four-variables examples) qualities of the approx-

imations will be compared. We proposed also to study the computational cost asso-

ciated to the mechanical computations to obtained gradient- and non-gradient-based

metamodels.

5.3 Quality of the approximations

Figures 9 and 10 show the quality of the approximations obtained with the four kinds

of metamodels. We can observe the non-gradient-based metamodels provide very

close quality although the gradient-based metamodels are significantly better. For this

mechnical problem we can conclude that

• for large number of sample points all the metamodels are accurate and have very

close quality.

• for small number of sample points gradient-based metamodels are significantly

better. For example to obtain the quality criteria about 3 ·10−3 (Q3) we need to

use responses and gradients on 10 sample points for the gradient-based meta-

models whereas, for non-gradient-based metamodel, data on about 35 sample

points are needed (for the three-dimensional test-case).
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Figure 9: Measures of the quality of the metamodels build (three-dimensional test-

case) versus the number of sample points

These figures are very bumpy. This assesment is due to the fact that the sample points

are obtained using a Latin Hypercube Sampling that is provided one set of sample

points but not necessarily the best to build the best approximation. The second fact
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Figure 10: Measures of the quality of the metamodels build (four-dimensional test-

case) versus the number of sample points

is observed for the gradient-based RBF: the RBF parameters is determined using the

minimization of a leave-one-out mean-square error that is very multimodal. Thus

the previous figures show that cokriging is more stable than the gradient-based RBF

metamodel.

5.4 Computational cost

Figures 11 and 12 show the computational cost associated to the building of non-

gradient-based and gradient-based metamodels. The gain presented here describes the

gain associated with the use of the MultiParametric Strategy and is calculated using

the following formula (Eq. 33).

Gain =
Number of Calculations×CPU Time of the first calculation

CPU Time with the MPS
(33)

In Figure 11 and 12, the gain of responses and gradients are calculated using Eq. 33

but the number of calculations that we take into account is ns for the responses gains

and ns×nd for the gradients gains.

Here we can observe that the MPS allows use to compute the gradients of the

non-linear mechanical problems very inexpensively. Although we use a first-order

finite difference method to compute the gradients and the fact that nd responses of the

objective function are needed to obtain the gradient on one sample point, the required

time to evaluate the gradients is the same than the time require to evaluate the entire

responses. This feature is very useful to build gradient-based metamodel: if we reuse

the previous example (cf. Item 2 in Section 5.3) the CPU time to build the non-

gradient-based metamodels is mostly half as much again as the CPU time to build

gradient-based metamodels.
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Figure 11: CPU time and gain of the MPS associated to the building of the metamodels

for the three-dimensional test-case
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Figure 12: CPU time and gain of the MPS associated to the building of the metamodels

for the four-dimensional test-case

6 Conclusion

This paper focuses on the building of gradient-based metamodels and the cost asso-

ciated to this building process in terms of mechanical CPU time. Gradient-based and

non-gradient-based metamodels are compared using analytical and mechanical exam-

ples. In order to deal with non-linear mechanical problems, a dedicated strategy called

multiparametric strategy based on the LaTIn method is used and allows us to reduce

significantly the computational time. This feature makes the use of derivatives infor-

mation acceptable in terms of CPU time. Finally the proposed strategy enables one to

build richer approximation for a fixed computational time.

In the context of the multilevel optimization presented in this paper, the use of

gradient-based metamodel coupled with the multiparametric strategy will enable one
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to reduce the computation cost associated to the approximate optimization of the first

level but also to decrease significantly the computational time the accurate optimiza-

tion of the second level.
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