
Abstract

A common approach to the modeling of very thin adhesive films is their replace-

ment with an equivalent contact law, prescribing the jumps in the displacement and

traction vector fields at the limit interface as the film thickness goes to zero. From

the geometrical point of view, the adhesive film is eliminated, although it is accounted

for mechanically. Recently, several cases to obtain the equivalent contact laws were

analysed: soft films [17, 18]; adhesive films governed by a non convex energy [12];

linearly elastic adhesive films having stiffness comparable with the adherents [19, 13];

imperfect adhesion between flat adhesive films and the adherents [14]; joints with

mismatch strain between the adhesive and the adherents [16]. In this paper, the results

obtained in [13, 14] are extended to the case of a thin curvilinear elastic anisotropic

adhesive undergoing plane deformations. The asymptotic method proposed in [14]

and based on the energy minimization is used. After obtaining the contact law in a

general system of curvilinear coordinates, the gluing between two circular adherents

is analysed, a case of significant importance for composite materials which often con-

tain fibres or particles.

Keywords: thin film, elasticity, asymptotic analysis, curvilinear coordinates.

1 Introduction

Interphase regions are thin layers of a third material between the composite con-

stituents, fibers or particles and matrix, which are due to mechanical imperfections,

fiber treatments, and various modifications of the matrix in the vicinity of the fibers.

The presence of interphases influences the load transfers from the matrix to fibers and

it can have a strong effect on the overall mechanical response of the composite. The

existence of interphase regions of finite but small dimensions poses also several nu-
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merical problems: in particular, the number of degrees of freedom adopted in studies

using a finite element approach can be very large, which affects the convergence and

the accuracy of the solution.

A classical approach is to replace the three-phase problem of two constituents and

an interphase perfectly adherent to them with a two-phase problem, in which the thin

interphase is substituted by a mechanically equivalent interface of vanishing thick-

ness ε [6, 7, 8, 20, 10, 11, 20, 21, 22, 24, 23, 25]. In particular, several studies were

concerned with the derivation of the imperfect interface, modeling the effect of a thin

interphase of known elastic properties [1, 2, 3, 9, 12, 21, 25]. The method of the

derivation can be based on different mathematical techniques: gamma-convergence,

variational analysis, asymptotic expansions and numerical studies [15]. Using these

methods, it has been established that at the first order (ε → 0) flat stiff elastic inter-

phases are equivalent to perfect interfaces, at which the stress and the displacement

vectors are continuous. At a higher order (the second term in the expansion), an im-

perfect interface model is obtained, with a contact condition involving the first order

displacement and traction vectors and their derivatives [1, 13, 14, 19]. The higher

order term, giving rise to the imperfect interface model, can be interpreted as a cor-

rection of the leading solution corresponding to the perfect interface model.

In this paper, we extend the previous results to the case of a curved thin adhesive

made of linear elastic anistropic material and undergoing plane deformations. Section

2 deals with the equilibrium problem of the interphase/adherents system. The asymp-

totic analysis is introduced in Section 3, where the existence of expansions in series of

the displacements and stress vector fields in terms of the small parameter describing

the thickness is assumed. Another assumption is that we can obtain the fields which

are stationary points of the energy of the system by finding the stationary points of

the energies obtained at each level in the expansion. This method provides two types

of relations: either an interface relation or an equilibrium relation. In particular, at

the order −1 we obtain the continuity of the displacement vector field at order zero;

at the order 1 we obtain the continuity of the traction vector field at order zero and

relation (54), which determines the jump at the interface on the displacement vector

field at order one; at the order 2 we find relation (64), which prescribes the jump of

traction at order one in terms of the displacement and traction vector fields at order

zero. Relations (54, 64) are associated with an imperfect interface law, non-local in

the sense that it involves tangential derivatives of the fields at order zero.

In Section 4 we specialize the imperfect interface law, given by relations (54, 64)

and obtained in a general system of curvilinear coordinates, to the case of a circular

inclusion bounded by a thin isotropic adhesive layer.

2 Statement of the problem

Consider a two-dimensional plane strain configuration in which a thin elastic ad-

hesive interphase Bε ∈ R
2 of constant thickness ε separates two elastic adherents
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Figure 1: (a) Initial configuration with a thin interphase Bε of small thickness ε placed

between two adherents; (b) limit configuration, where the interphase Bε is replaced

by the interface S; (c) rescaled configuration with an interphase B̄ of unit thickness

placed between the adherents.

Ωε
+, Ωε

− ∈ R
2, see figure 1. The two interfaces between the three region Ωε

+, Ωε
−

and Bε will be denoted Sε
+ and Sε

−. These interfaces are assumed to be perfect with

the usual assumption that the displacement vector, uε, and the stress vector, σεn, are

continuous on Sε
±. It is the purpose here to substitute the thin interphase Bε by a

curve S separating the adherents Ωε
+, Ωε

−, and to determine the interface conditions

on the displacement and tractions across S equivalent to the three phase configuration

with perfect interface conditions.

The three regions are anisotropic, homogeneous and linear elastic and let a± denote

the elasticity tensors of the regions Ωε
±, and b the elasticity tensor of the interphase

Bε. Denoted e the strain tensor

e(uε) =
1

2
(∇uε + (∇uε)T ), (1)

linear elasticity gives the Cauchy stress tensor σε as follows:

σε = b(e) in Bε, (2)

σε = a±(e) in Ωε
±. (3)

Let us introduce a rectangular system of Cartesian coordinates Ox1x2x3 so that the

plane x3 = 0 coincides with the plane of the interphase. The elasticity tensors are
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assumed to satisfy the following assumptions:























a±,b ∈ L∞(Ωε
+ ∪ Ωε

−) ,
a±ijkl = a±klij = a±jilk = a±ijlk

bijkl = bklij = bjilk = bijlk

∃η±, η > 0 : a±(e) · (e) ≥ η± | e |2,
b(e) · (e) ≥ η | e |2, ∀ e : e = eT .

(4)

A body force density f ∈ (L2(Ωε
+ ∪ Ωε

−))3 is assumed to be applied to Ωε
+ ∪ Ωε

−

and a surface force density g ∈ (L2(Γg))
3 to Γg ⊂ ∂Ωε

+ ∪ ∂Ωε
−. On Γu = (∂Ωε

+ ∪
∂Ωε

−) \ Γg, homogeneous boundary conditions are prescribed

uε = 0 on Γu. (5)

The equilibrium configurations of the three-phase composite body are the minimizers

of the total energy

Eε(u) =

∫

Ωε
±

(
1

2
a±(e(u)) · e(u) − f · u) dx −

∫

Γg

g · u dsx

+

∫

Bε

1

2
b(e(u)) · e(u) dx . (6)

in the space of kinematically admissible displacements

V ε = {u ∈ H(Ωε; R3) : u = 0 on Γu}, (7)

where H(Ωε; R3) is the space of the vector-valued functions on the set Ωε := Ωε
+ ∪

Ωε
− ∪ Bε ∪ Sε

+ ∪ Sε
−, which are continuous and differentiable as many times as

necessary. In view of the above regularity assumptions on a±,b, f, g, the existence of

a unique minimizer uε in V ε is ensured [5, Theorem 6.3-2].

We assume that a parametric representation of S has been introduced in R
2, x =

φ(s1), s1 ∈ (a, b). We also assume that the curves Sε
+ and Sε

− are parallel to one

another and we introduce the following representation for Bε :

Bε = {x ∈ R
2 : x = φ(s1) + s2n(s1), (s1, s2) ∈ (a, b) × (−ε/2, ε/2)}, (8)

where n is the unit normal vector to S pointing from Ωε
− to Ωε

+. It is convenient to

work with the system of planar orthogonal curvilinear coordinates s1, s2. Let hε
1, h

ε
2

denote the metric coefficient of the curvilinear coordinated system, and for the present

parallel system we have

hε
1 =

√
x,1 · x,1 =

√

φ,1 + s2n,1 , (9)

hε
2 =

√
x,2 · x,2 = 1. (10)

In the curvilinear system, the displacement gradient takes the form:

∇u =
(

U1 | U2 | 0
)

(11)
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where the notation (a | b | c) indicates the matrix whose columns are the vectors

a, b, c, and the vectors Ui, i = 1, 2, are defined as follows:

U1 :=
u,1

hε
1

+
hε

1,2

hε
1

v, (12)

U2 := u,2, (13)

v := u ∧ e3. (14)

In (12, 13) a comma is used to denote partial differentiation, and e3 is the unit vector

normal to the plane of the interphase. In curvilinear coordinates, we have

Eε(u) =

∫

Dε
±

(
1

2
a±(e(u)) · e(u) − f · u) hε

1ds −
∫

Ig

g · u hε
sdα

+

∫

Dε

1

2
(B(U) · U) hε

1ds , (15)

where Dε := (a, b) × (−ε/2, ε/2), Dε
± are the new domains of integration corre-

sponding to Ωε
±, after the change of variables from the Cartesian coordinates to the

curvilinear ones, and hε
1 is the Jacobian of the transformation; α ∈ Ig := (α1, α2) is

the parameter of the parametric representation chosen for Γg, and hε
s is the Jacobian of

the surface transformation; U := (U1, U2) is a 2 × 1 block matrix; B is a 2 × 2 block

matrix whose blocks, Bαβ, α, β = 1, 2, are the matrices with components defined by

the relations

Bαβ
ij := biαjβ. (16)

In view of the symmetry properties of the elasticity tensor b, the matrices Bαβ have

the property that Bβα = (Bαβ)T , α, β = 1, 2. Therefore, B is symmetric.

3 Asymptotic analysis

In the following, we sketch the asymptotic method based on the energy minimization

which was introduced in [14]. The first step of the method is a change of variables, in

order to reformulate the equilibrium problem in an interphase domain independent of

ε :

(t1, t2) = p̄(s1, s2) := (s1, s2ε
−1), (s1, s2) ∈ (a, b) × (−ε/2, ε/2), (17)

z = p̃(x) := x ± (
ε

2
∓ 1

2
)n, x ∈ Ωε

±. (18)

After the change of variables, the interphase occupies the domain

B̄ = {x ∈ R
2 : x = φ(t1) + t2n(t1), (t1, t2) ∈ (a, b) × (−1/2, 1/2)}, (19)

and the adherents occupy the domains Ω̃± = Ωε
± ± 1/2(1 − ε)n . Let S± denote

the interfaces between the interphase and the two bodies after rescaling, and let Ω =
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Ω̃+ ∪ Ω̃− ∪ B̄ ∪ S+ ∪ S− denote the configuration of the composite body after the

change of variables. Lastly, let Γ̃u and Γ̃g denote the shifts of Γu and Γg, respectively.

Let ũε
±

= uε ◦ p̃−1 be the displacement from the adherents Ω± adjacent to the

rescaled interphase and let ūε = uε ◦ p̄−1 be the displacement from the rescaled in-

terphase. In view of the condition of perfect interfaces between the adherents and the

rescaled interphase, we have that ũε
±
(z) = ūε(z), z ∈ S±. Let f̃ := f ◦ p̃−1 and

g̃ := g ◦ p̃−1 denote the rescaled external forces, and h̃ε := hε ◦ p̃−1, h̃ε
s := hε

s ◦ p̃−1,
h̄ε := hε ◦ p̄−1, the rescaled metric coefficients.

With these assumptions and denoted with a tilde domains and fields associated

with the adherents and with a bar domains and fields associated with the interphase,

the rescaled energy takes the form

Eε(ũε
±
, ūε) :=

∫

D̄±

(
1

2
a±(e(ũε

±
)) · e(ũε

±
) − f̃ · ũε

±
) h̃ε

1dt −
∫

Ĩg

(g̃ · ũε
±
) h̃ε

sdα̃

+

∫

D̄

1

2
(B(Ū ε) · Ū ε) ε h̄ε

1dt, (20)

where D̄ := (a, b) × (−1/2, +1/2), and Ū ε := (Ū ε
1 , Ū

ε
2 ) with

Ū ε
1 :=

ūε
,1

h̄ε
1

+
h̄ε

1,2

εh̄ε
1

v̄ε, (21)

Ū ε
2 :=

ūε
,2

ε
. (22)

The rescaled equilibrium problem P̃ ε can be formulated as follows: find the pair

(ũε
±
, ūε) minimizing the energy (20) in the set of displacements

V = {(ũ±, ū) ∈ H(Ω±; R3) × H(B̄; R3) : ũ± = ū on S±, ũ± = 0 on Γ̃u}. (23)

The next step of the asymptotic method followed in the present paper is the expansion

of the displacement vectors ũε
±
, ūε and of the (rescaled) metric coefficients in power

of ε :

ũε
±

= ũ0
±

+ εũ1
±

+ ε2ũ2
±

+ o(ε2) , (24)

ūε = ū0 + εū1 + ε2ū2 + o(ε2) , (25)

h̄ε
1 = h̄0

1 + εh̄1
1 + ε2h̄2

1 + o(ε2), (26)

h̃ε
1 = h̃0

1 + εh̃1
1 + ε2h̃2

1 + o(ε2), (27)

h̃ε
s = h̃0

s + εh̃1
s + ε2h̃2

s + o(ε2). (28)

We also have

h̄0
1 = |φ,1 | = h̃0

1, (29)

h̄1
1 = t2

(φ,1 · n,1

|φ,1 |
)

, (30)

h̄1
1 = t22

( |φ,1 |2|n,1 |2 −(φ,1 · n,1)
2

2 |φ,1 |3
)

. (31)
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Substituting the above expansions into the rescaled energy, we obtain

Eε(ũ±, ū) =
1

ε
E−1(ū0) + E0(ũ0

±
, ū0, ū1) + εE1(ũ0

±
, ũ1

±
, ū0, ū1, ū2) +

+ε2E2(ũ0
±
, ũ1

±
, ũ2

±
, ū0, ū1, ū2, ū3) + o(ε2), (32)

where

E−1(ū0) :=

∫

D̄

1

2

(

(BŪ−1) · Ū−1
)

h̄0
1dt, (33)

E0(ũ0
±
, ū0, ū1) :=

∫

D̄±

(
1

2
a±(e(ũ0

±
)) · e(ũ0

±
) − f̃ · ũ0

±
) h̃0

1dt −
∫

Ĩg

(g̃ · ũ0
±
) h̃0

sdα̃

+

∫

D̄

(

((BŪ−1) · Ū0)h̄0
1 +

1

2
((BŪ−1) · Ū−1)h̄1

1

)

dt,

(34)

E1(ũ0
±
, ũ1

±
, ū0, ū1, ū2) :=

∫

D̄±

(a±(e(ũ0
±
)) · e(ũ1

±
) − f̃ · ũ1

±
) h̃0

1dt −
∫

Ĩg

(g̃ · ũ1
±
) h̃0

sdα̃

+

∫

D̄

(

((BŪ−1) · Ū1 +
1

2
(BŪ0) · Ū0)h̄0

1

)

dt

+

∫

D̄

(

((BŪ−1) · Ū0)h̄1
1 +

1

2
((BŪ−1) · Ū−1)h̄2

1

)

dt,

(35)

E2(ũ0
±
, ũ1

±
, ũ2

±
, ū0, ū1, ū2, ū3) :=

∫

D̄±

(a±(e(ũ0
±
)) · e(ũ2

±
) − f̃ · ũ2

±
) h̃0

1dt −
∫

Ĩg

(g̃ · ũ2
±
) h̃0

sdα̃

+

∫

D̄±

(
1

2
a±(e(ũ1

±
)) · e(ũ1

±
)) h̃0

1dt

+

∫

D̄

(

((BŪ−1) · Ū2 + (BŪ0) · Ū1)h̄0
1

)

dt

+

∫

D̄

(

((BŪ−1) · Ū1 +
1

2
(BŪ0) · Ū0)h̄1

1

)

dt

+

∫

D̄

(

(BŪ−1) · Ū0)h̄2
1 +

1

2
((BŪ−1) · Ū−1)h̄3

1

)

dt.

(36)

In these relations, the functions Ū l, l = 0, 1, 2, . . . , are the terms of the expansion

Ū ε = Ū0 + εŪ1 + ε2Ū2 + o(ε2) , (37)
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and they are given by the relations:

Ū−1 =

(

0
ū0

,2

)

, (38)

Ū0 =

(

ū0

,1

h̄0

1

+
h̄1

1,2

h̄0

1

v̄0

ū1
,2

)

, (39)

Ū1 =

(

(
ū1

,1

h̄0

1

+
h̄1

1,2

h̄0

1

v̄1) − ū0
,1

h̄1

1

(h̄0

1
)2

+
(h̄2

1,2
h̄0

1
−h̄1

1,2
h̄1

1
)

(h̄0

1
)2

v̄0

ū2
,2

)

, (40)

Ū2 =

(

(
ū2

,1

h̄0

1

+
h̄1

1,2

h̄0

1

v̄2) + ū0
,1

((h̄1

1
)2−h̄2

1
h̄0

1
)

(h̄0

1
)3

+
(h̄2

1,2
h̄0

1
−h̄1

1,2
h̄1

1
)

(h̄0

1
)2

v̄1

ū3
,2

)

+

(

(
h̄1

1,2

(h̄0

1
)3

((h̄1
1)

2 − h̄2
1h̄

0
1) −

h̄2

1,2

(h̄0

1
)2

h̄1
1 +

h̄3

1,2

h̄0

1

)v̄0

0

)

. (41)

We note that the terms Ū l, l = 1, 2, . . . , do not enter the energy E−1 because the zero

order term of h̄ε
1,2(h̄ε

1)
−1 vanishes.

The last step of the asymptotic method is based on the following main assumption:

fields which are stationary points of the energy Eε can be obtained by finding the

stationary points of the energies E l, l = −1, 0, 1, 2, . . . . The analysis of the stationary

points of the energies at the various levels allows to identify the conditions between

ū0, ū1, ū2, . . . and the corresponding stress vectors arising from ũ0
±
, ũ1

±
, ũ2

±
, . . . at the

interfaces S+, S−.

3.1 Stationary points of E−1

In view of (38), the energy E−1 reduces to

E−1(ū0) =

∫

D̄

1

2

(

(B22ū0
,2) · ū0

,2

)

h̄0
1dt, (42)

to be minimized in the class of displacements ū0 ∈ H(B̄; R3). Since b is a positive

definite tensor, the matrix B
22 is also positive definite. Therefore, the energy E−1 is

non negative and the minimizers have the property that

ū0
,2 = 0, a.e. in B̄, (43)

i. e. the minimizing displacements are independent of t2 in the interphase. Based on

this result and on the initial assumption of perfect contact between the interphase and

the adherents, we obtain the vanishing of the jump of ũ0 across B̄ :

[ũ0] = 0. (44)
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3.2 Stationary points of E0

From (43) it follows that Ū−1 = 0, and thus the energy E0 is independent of ū0, ū1.
With a little abuse of notation, we drop the dependence of the these vector fields from

the argument of E0, which becomes

E0(ũ0
±
) :=

∫

D̄±

(
1

2
a±(e(ũ0

±
)) · e(ũ0

±
) − f̃ · ũ0

±
) h̃0

1dt −
∫

Ĩg

(g̃ · ũ0
±
) h̃0

sdα̃. (45)

We seek the energy minimizer in the class of displacements

V = {(ũ±) ∈ H(Ω±; R3) : ũ+(t1, +
1

2
) = ũ−(t1,−

1

2
), t1 ∈ (a, b), ũ± = 0 on Γ̃u}.

(46)

Using standard arguments, we obtain the equilibrium equations

div(a±(e(ũ0
±
)) + f̃) = 0 in Ω̃±, (47)

a±(e(ũ0
±
))n = g̃ on Γ̃g, (48)

a±(e(ũ0
±
))n = 0 on ∂Ω̃± \ Γ̃g, (49)

Denoted σ̃0n the traction vector, we also find that its jump across the rescaled curved

interphase B̄ vanishes:

[σ̃0n] = 0. (50)

From the mechanical viewpoint, condition (44) and (50) give a perfect interface con-

dition for the interphase modeling.

3.3 Stationary points of E1

The vanishing of Ū−1 makes E1 independent of ū2. Again with a little abuse of nota-

tion, we drop the dependence of this vector field in the argument of E1, which simpli-

fies as

E1(ũ0
±
, ũ1

±
, ū0, ū1) :=

∫

D̄±

(a±(e(ũ0
±
)) · e(ũ1

±
) − f̃ · ũ1

±
) h̃0

1dt −
∫

Ĩg

(g̃ · ũ1
±
) h̃0

sdα̃

+

∫

D̄

(
1

2
(BŪ0) · Ū0)h̄0

1dt. (51)

In view of equilibrium equations (47 ÷ 49), the Euler-Lagrange equations of E1 take

the form

σ̃0n = B
22(ū1

,2) + B
21(

ū0
,1

h̄0
1

+
h̄1

1,2

h̄0
1

v̄0) . (52)

This relation together with the continuity condition (44) gives the following condition

on the jump in the displacement vector field ū1 across the interphase

[ū1] = (B22)−1(σ̃0n − B
21(

ū0
,1

h̄0
1

+
h̄1

1,2

h̄0
1

v̄0)). (53)
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Note that in view of the continuity of the displacement fields at the interfaces S±, the

latter condition can be rewritten in the equivalent form

[ũ1] = (B22)−1(σ̃0n − B
21(

ū0
,1

h̄0
1

+
h̄1

1,2

h̄0
1

v̄0)). (54)

3.4 Stationary points of E2

Using the divergence theorem, equation (43), the equilibrium equations (47 ÷ 49),

and the jump conditions (54), we eliminate ũ0
±
, ũ2

±
and ū3 from the expression for the

energy E2 and we simplify this expression as follows:

E2(ũ0
±
, ũ1

±
, ū0, ū1) :=

∫

D̄±

(
1

2
a±(e(ũ1

±
)) · e(ũ1

±
)) h̃0

1dt

+

∫

D̄

(

(B11Ū0
1 + B

12(B22)−1(σ̃0n − B
21Ū0

1 )) · Ū1
1

)

h̄0
1dt,

(55)

where Ū0
1 and Ū1

1 are the first components of the vectors Ū0 and Ū1, respectively (see

(39, 40)). In view of equation (52) and noting that the continuity of the displacement

vector field implies that ũ1
±

= ū1 at S±, the vector field ū1 can be written in the

following form:

ū1(t1, t2) = [ū1](t1) t2 +
1

2
S(ũ1)(t1) (56)

where S(ũ1)(t1) := ũ1(t1, 1/2)+ ũ1(t1,−1/2). Substituting (14, 54, 56) into (55) and

integrating with respect to t2 (note that h̄0
1 is independent of t2 and h̄1

1 depends linearly

upon t2) further simplifies the energy as follows:

E2(ũ0
±
, ũ1

±
, ū0, ū1) :=

∫

D̄±

(
1

2
a±(e(ũ1

±
)) · e(ũ1

±
)) h̃0

1dt

+

∫

D̄

(

F0 · (
1

2
(S(ũ1)),1 +

h̄1
1,2

2
(S(ũ1) ∧ e3)

)

h̄0
1dt,

(57)

with

F0 := (B11 − B
12(B22)−1

B
21)Ū0

1 + B
12(B22)−1σ̃0n. (58)

The Euler-Lagrange equations for the minimization problem of the functional (57) are

given by the relations

div(a±(e(ũ1
±
))) = 0 in Ω̃± (59)

a±(e(ũ1
±
))n = 0 on Γ̃g (60)

a±(e(ũ1
±
))n = 0 on ∂Ω̃± \ Γ̃g (61)

−a+(e(ũ1
+))n − 1

2h̄1
0

F0,1 −
h̄1

1,2

2h̄1
0

(F0 ∧ e3) = 0 on (a, b) × {+1

2
}, (62)

a−(e(ũ1
−
))n − 1

2h̄1
0

F0,1 −
h̄1

1,2

2h̄1
0

(F0 ∧ e3) = 0 on (a, b) × {−1

2
}, (63)
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plus conditions at the points t1 = a, b, enlightening the presence of concentrated forces

at these points (see [1, equation (10)] ). We now add equations (62, 63) together to

obtain the following relation for the jump in the traction at order one

[σ̃1n] = − 1

h̄1
0

F0,1 −
h̄1

1,2

h̄1
0

(F0 ∧ e3) . (64)

Relations (54) and (64) are (nonlocal) laws for imperfect contact in the minimization

problem associated with the rescaled energy (20).

4 An example: circular isotropic interphase

In this section we consider the case of a circular inclusion bounded by a thin adhesive

layer of small thickness ε. In the rescaled domain, the adhesive occupies the region

B̄ = {x ∈ R
2 : x = (R + εt2)n(t1), (t1, t2) ∈ [0, 2π) × (−1/2, 1/2)}, (65)

where n(t1) denotes the unit normal to the boundary of the adhesive, see figure 2. In

the figure, R+ := R + 1/2 and R− := R− 1/2 denote the outer and inner radii of the

adhesive layer. The metric coefficients are

h1 = R + εt2, (66)

h2 = 1. (67)

Assuming that the adhesive is composed of isotropic material with Lamé constants

λ, µ and considering a system of polar coordinates (r, θ), we obtain that relations (54)

and (64) specialize as follows:

[ũ1
θ] =

1

µ
σ0

rθ −
1

R
(ũ0

θ − ũ0
r,θ), (68)

[ũ1
r] =

1

(2µ + λ)
σ0

rr −
1

R

λ

(2µ + λ)
(ũ0

θ,θ + ũ0
r), (69)

R[σ̃1
rθ] = −4µ(λ + µ)

(2µ + λ)

1

R
(ũ0

θ,θθ + ũ0
r,θ) −

λ

(2µ + λ)
σ0

rr,θ − σ0
rθ, (70)

R[σ̃1
rr] =

4µ(λ + µ)

(2µ + λ)

1

R
(ũ0

θ,θ + ũ0
r) +

λ

(2µ + λ)
σ0

rr − σ0
rθ,θ. (71)

5 Conclusion

In this paper, we obtained the interface law mechanically equivalent to the effect of

a curved thin elastic anisotropic adhesive interphase undergoing plane deformations.

The derivation of the interface law was based on an energy approach proposed in

[14] and based on two main assumptions: the possible existence of expansions in

11



Figure 2: Rescaled configuration of a circular interphase B̄ of unit thickness placed

between two adherents.

series in terms of the interphase thickness of the displacement and stress fields, and

the assumption that the fields which are stationary points of the energy of the system

can be obtained by finding the stationary points of the energies obtained at each level

in the expansion. The main result is that at the order zero the interphase behaves as

an ideal interface across which the displacements and tractions are continuous (see

(44) and (50)). At the next order the interphase is modeled by an imperfect interface,

whose contact law prescribes the jumps of the displacements and of the traction vector

fields at order one in terms of the corresponding fields obtained at the order zero (see

(54) and (64)). As an example, the case of a linear elastic isotropic thin interphase

bounding a circular inclusion was considered and the equivalent imperfect interface

law was obtained.
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