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Abstract 
 
This paper proposes a damage localisation method based on the analysis of 
perturbations in the second, third and fourth order derivatives of experimental modal 
displacement field. The high spatial resolution modal rotation fields are measured 
using speckle shearography with stroboscopic illumination and time phase 
modulation. The mode shape derivatives up to the fourth order are obtained by 
numerical differentiation. A new numerical differentiation strategy is proposed with 
the objective of minimising the propagation of experimental noise. This study is 
performed on a laminated composite plate where internal damage at two locations 
was created by two low energy impacts. A comparative analysis of the results 
between this method and the one proposed in previous studies is presented. The low 
experimental noise obtained in the measurements and the new differentiation 
method has led to a significant improvement in the damage localisation. 
 
Keywords: damage identification, speckle shearography, modal response, high 
order spatial derivatives  
 
 
1  Introduction 
 
In recent decades there has been an increased use of composite materials in 
lightweight structural applications such as those found in the automotive and 
aeronautics industries. Laminated composite structures present types of defects and 
damages mechanisms different from those of metals. The low damage tolerance of 
these structures and the lack of effective and global non-destructive inspection 
techniques have motivated, mainly in the last two decades, the search for new 
methodologies. The complexity of the problem and the difficulty in finding a robust 
solution has led to the proposal of different approaches [1-13]. However, the most 
promising technique referred in literature by different authors is based on the 
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analysis of perturbation or discontinuities in modal curvatures or strain fields [1, 3, 
7, 9, 14]. More recently, the use of higher order modal derivatives has been 
proposed [15-17]. In practice, these high order spatial derivatives can only be 
obtained by numerical differentiation of experimental displacements and rotations 
fields. Moreover, the accurate measurement of full-field data is required in order to 
minimize the amplification and propagation of experimental noise, through the 
numerical differentiation process [18, 19].  

This paper presents a damaged localisation method based on the analysis of 
second and third order spatial derivative of experimentally measured modal rotation 
fields, which correspond to the third and fourth spatial derivative of modal 
displacements fields, respectively. The full-field modal rotations of a multi-damaged 
laminated composite plate are measured using speckle shearography with laser 
amplitude modulation. The direct measurement of the deformation gradient field, 
which is a good approximation to the rotation field for small displacements, has the 
advantage of reducing the order of the numerical differentiations by one. Moreover, 
these experimental measurements present a lower signal-to-noise ratio when 
compared to speckle shearography with pulsed laser, as was used in previous studies 
[19]. The high order spatial derivatives of the modal response are computed by the 
application of central finite differences and low-pass filters to the experimental 
phase maps. The damages are directly identified through the analysis of 
perturbations in the second, third and fourth order spatial derivatives of the out-of-
plane modal displacement fields, without need of previous knowledge of the 
undamaged structure behaviour. 

 
2 Methodology 
 
2.1 Speckle Shearography 
 
Experimental modal analysis is used to identify the modal parameters such as 
natural frequencies, mode shapes, modal damping coefficients, mass distribution and 
structural stiffness. Indeed, the structural damage localisation requires the accurate 
measurement of the structure modal displacement or rotation field and the 
computation of their high order spatial derivatives by numerical differentiation. In 
the conventional experimental modal analysis, the application of accelerometers, the 
gluing materials and the supply of connecting cables will results in the addition of 
mass to the system. Depending on the masses ratio and its location relatively to the 
modal amplitude, this can significantly change the dynamic behaviour of the 
structure. On the other hand, speckle interferometry techniques, such as electronic 
speckle pattern interferometry (ESPI) and speckle shearography, allow full-field, 
non-contact and high sensitivity measurements of the modal displacement and 
modal rotation fields on the surface of the structure, respectively [20]. In relation to 
the structural damage identification, the main limitations of the ESPI technique arise 
from the high density of fringes obtained from measurements of displacements 
fields, including the rigid-body displacements, which makes difficult the 
interpretation of the fringe patterns [21-23]. On the other hand, the speckle 
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shearography allows to measure displacement gradients, for which reason it is 
practically insensitive to the rigid-body motion. In addition, it requires a simpler 
optical interferometer setup and a laser with low coherence length, from which more 
compact systems can be built, which are also more robust to external perturbations. 
This interferometer uses the principle of the speckle interference between two 
wavefronts reflected by the surface of the object, which are laterally shifted, i.e. 
sheared. This shift can be created through a glass-shaped wedge placed in the front 
half of the lens, a rotation of two glass plates, a Wollaston prism or a Michelson 
optical interferometer setup with a slight rotation of one of the mirrors [20]. The last 
option is preferred, since is the only that allows the easy adjustment of the amount of 
shearing.  

Most applications of speckle shearography are dedicated to measuring the static 
rotation field, because of its simple experimental arrangement. Instead, the 
measurement of modal response requires the use of more complex illumination and 
synchronisation systems and, therefore, is more difficult to adjust. As a result, the 
first reports on measurements of vibration responses using speckle shearography 
were only published in the last decade [22, 24, 25]. Until then, an approximation to 
the modal rotation field was measured using the time-average method [20]. This has 
the advantages of using the same optical interferometer setup used in the static 
measurements and allows the observation of the vibration contour fringes at video 
rate. The method is based on subtraction of speckle interference patterns produced 
by stationary harmonic motion of objects during several cycles of vibration. In this 
case, the recording time is very long compared to the period of vibration. The black 
intensity fringes are observed as contours of equal amplitude of vibration, being the 
fringe intensity modulated by a Bessel function J0, where the contrast decreases with 
the increase of the fringes order associated with the amplitude of vibration. Only 
recently, the introduction of the spatial phase modulation and the temporal phase 
modulations methods to speckle shearography made possible a quantitative 
evaluation of the phase distribution or phase map and the accurate measurement of 
the modal rotation field [24, 25].  
 
 

 
Figure 1: Schematic diagram of the speckle shearography system with the double 

pulse laser illumination used for the measurement of modal rotation fields 
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A spatial phase modulation and a double pulse laser illumination recording 
system are combined with speckle shearography to measure the modal rotation 
fields [19]. A spatial carrier is introduced in the interference pattern through a small 
rotation between the two wavefronts, in order to subsequently extract the phase map. 
The introduction of this spatial carrier is made possible by using the Mach-Zehnder 
interferometry optical setup, as shown in Figure 1.   

In this configuration, the speckle pattern created and reflected by the rough and 
diffuse surface is divided by the first beam splitter (BS1) in two optical paths, 
reflects in mirror 1 and mirror 2, and is recombined in the second beam splitter 
(BS2). The amount of shearing can be controlled through the translation of mirror 1 
and the spatial carrier by the rotation ߠ of mirror 2. The recording of the spatial 
carrier requires the use of small optical apertures, which limits the frequency of the 
measurement to 1/6 of the number of pixels of the CCD array [26]. Also, with this 
interferometer we cannot obtain uniform distributions of the spatial carrier, which 
leads to increased noise levels in the measurement. The determination of the 
interference phase involves the isolation of the spectral information around the 
spatial carrier and can be more easily performed through the application of forward 
and inverse fast Fourier transforms [27]. The intensity of the interference in wave 
number domain ܫሺݑ,  :ሻ can be described by [20]ݒ
 

,ݑሺܫ ሻݒ ൌ ,ݑሺܣ ሻݒ  ,ݑሺܥ ሻݒ  ,ݑሺכܥ  ሻݒ (1) 
 
where ܣሺݑ, ,ݑሺܥ ,ሻ represents the background intensityݒ ,ݑሺכܥ ሻ andݒ  ሻ theݒ
intensity of the phase interference modelled by the carrier phase, being ݑ and ݒ the 
order of the wave number in the horizontal and vertical directions, respectively. 
After demodulation of the spatial carrier, the phase of the interference can now be 
calculated by: 
 
 Φሺx, yሻ ൌ arctan I୫ሾCሺ୶,୷ሻሿ

RୣሾCሺ୶,୷ሻሿ
   ሺ2ሻ 

 
where ݔ and ݕ are coordinates in the spatial domain. The double pulse laser and the 
vibration amplitude are controlled from an external synchronisation signal in order 
to capture the modal rotation amplitude in two different instants, defined has 
reference and deformation states. The phase map of the modal rotation fields 
∆Ԅሺݔ, ,ݔሻ is extracted by subtracting the deformed interference phase ΦDሺݕ  ሻ  fromݕ
the reference interference phase ΦRሺݔ,   :ሻ, according to the following equationݕ
 

 ∆Ԅሺx, yሻ ൌ ቊΦDሺx, yሻ െ ΦRሺx, yሻ                if    ΦDሺx, yሻ  ΦRሺx, yሻ 
ΦDሺx, yሻ െ ΦRሺx, yሻ  2π      if    ΦDሺx, yሻ ൏ ΦRሺx, yሻ

 (3) 

 
For measurements with a sensitivity vector perpendicular to the measurement 
surface, a relation between the gradient of the out-of-plane displacement field 
,ݔሺݓ  :ሻ and the measurement phase map can be established [20]ݕ
 

 ΔԄሺx, yሻ ൎ ଶ∆୶


ப୵ሺ୶,୷ሻ
ப୶

  (4) 
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being, ∆ݔ the shearing value in the ݔ direction, ߣ the laser wavelength and 
,ݔሺݓ߲  is the first spatial derivative of the out-of-plane displacement field in ݔ߲/ሻݕ
the ݔ direction, which can be taken has good approximation of the rotation field for 
small deformation amplitude.  

As an alternative methodology, time phase modulation and stroboscopic laser 
illumination are combined with speckle shearography to measure the modal rotation 
fields. The introduction of the stroboscopic laser illumination, synchronized with 
vibration excitation of the object, allows to freeze in time the speckle pattern [23]. 
Thus, temporal phase modulation can be applied to a quantitative determination of 
the phase map. In this case, a speckle shearography system is built based on the 
optical Michelson interferometer setup, the same used for static measurements. The 
stroboscopic illumination or intensity modulation can be generated from a 
continuous-wave laser either by using an electro-optic modulator or an acousto-optic 
modulator. In the first case, the short stroboscopic illumination pulses are created by 
switching the polarisation of a Pockel cell crystal by 2/ߨ, being its duration 
controlled by a high voltage electrical signal. This produces a more efficient 
illumination than the use of an acousto-optic modulator, but requires a more 
expensive system. Therefore, the acousto-optic modulator is normally used to 
generate the illumination pulses. In this case, the continuous-wave laser beam passes 
through a crystal were travelling sound waves are generated by a piezoelectric 
actuator. This produces periodic variations in the refractive index of the crystal. The 
light beam is then deflected laterally by selecting the grating first order diffraction, 
through the adjustment of the light beam incidence angle ߠ, as shown in Figure 2(a). 
A spatial filter is mounted in front of the acousto-optic modulator for the purpose of 
isolating the stroboscopic pulses. The pulses width should be narrow to frozen the 
interference speckle pattern and wide enough to illuminate the object surface. The 
stroboscopic illumination is produced by the modulation of the piezoelectric 
excitation signal with the generated pulse signal, which is synchronized with the 
harmonic vibration excitation, as depicted in Figure 2(b). 

 
 

 

 
 

Figure 2: (a) Principle acousto-optic modulator with spatial filter, and (b) vibration 
excitation and stroboscopic illumination synchronous signals 
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Since the speckle pattern is seen as a static phenomenon by the CCD camera, we 
can used a speckle shearography system based on the Michelson optical 
interferometer and temporal phase modulation, for the quantitative determination of 
the interference phase, as shown in Figure 3. Indeed, the speckle pattern generated 
on the surface of the object is split in two by the beam splitter, and the slight rotation 
in one of mirrors is used to laterally shift the two intensity paths and create the 
interference phenomenon. The phase temporal modulation, also known as phase 
shifting or phase stepping, is created by translation of one of the mirrors using a 
piezoelectric actuator. The four intensity distribution with a constant phase step of 
ߨ 2⁄  is the most common used method. In this method, the phase of the speckle 
pattern for the reference and deformation states is a function of the four intensity 
distributions, I,  I/ଶ, I and Iଷ/ଶ: 
 
 Φሺx, yሻ ൌ arctan ቂIయಘ/మሺ౮,౯ሻିIಘ/మሺ౮,౯ሻ

Iబሺ౮,౯ሻିIಘሺ౮,౯ሻ
ቃ  (5) 

 
The relative phase map corresponding to the modal rotation field can be calculated, 
as describe in Equation (3), by subtracting the two interference phases, being the 
relation between the phase and the rotation field given by Equation (4).  
 

 
 

Figure 3: Schematic diagram of the speckle shearography system with stroboscopic 
illumination used for the measurement of modal rotation fields 
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application of numerical differentiation techniques for determination of the higher 
derivatives is reduced in one order. In practice, the application of numerical 
differentiation to experimental data will lead to the amplification and propagation of 
experimental noise, particularly in higher frequencies. A method based on the 
combination of differentiation and low-pass filters techniques enables to mitigate 
some of these effects [19]. However, in this process are also eliminated the higher-
order signal components, which are essential for the representation of high-order 
derivatives, including the ones associated to the local damage. The decoupling of the 
signal components from the high frequency noise can be more easily accomplished 
by increasing the spatial resolution of the measurement and by improving the signal-
to-noise ratio of the experimental data. Also, the number of numerical operations 
applied to experimental data should be reduced to the minimum, in order to avoid 
the noise multiplication. For this reason and as an alternative approach to the method 
proposed in previous works [19, 28], the numerical differentiation is perform in the 
phase maps. Central finite differences and low-pass filters are successively applied 
for the calculation, up to the fourth order, of the spatial derivatives of the modal 
phase maps. Finally, the continuous distribution of the modal rotation fields is 
obtained by removing the phase discontinuities, through the application of 
unwrapping algorithms [29].  

The spatial derivatives of the phase maps are obtained by lateral shifting the map 
and subtracting the phases. The phase map spatial derivative of order ݊ of the mode 
shape ݅, can be approximated by: 
 

 ΔԄ୧୬ሺx, yሻ ൌ arctan ቈ
ୱ୧୬ቀம

షభሺ୶ା∆୶/ଶ,୷ሻିம
షభሺ୶ି∆୶/ଶ,୷ሻቁ

ୡ୭ୱቀம
షభሺ୶ା∆୶/ଶ,୷ሻିம

షభሺ୶ି∆୶/ଶ,୷ሻቁ
  (6)  ݔ∆/

where ∆ݔ is the lateral shift size in the ݔ direction. 
The high frequency noise is removed by applying the average filtering technique 

to the phase map. However, to apply this technique is necessary first to transform 
the map in a continuous field, by shifting the map to the complex 
domain ∆Ԅ෪ 

ሺݔ, ሻݕ ൌ ݁∆థ
ሺ௫,௬ሻ, being ݆ ൌ √െ1. The filtering is performed using 

the image convolution: 
 
  ∆Ԅ෪ న

୬തതതതതതሺx, yሻ ൌ ∆Ԅ෪ ୧
୬ሺx, yሻ۪hሺm, nሻ  (7) 

 
being ۪ the convolution operator, ݄ሺ݉, ݊ሻ the filter array, were ݉ and ݊ represent 
the horizontal and vertical dimensions of the filtering window. After the application 
of the filtering technique, the filtered phase map ∆Ԅపതതതതതതሺݔ,  ሻ is obtained using theݕ
following equation: 
 
 ∆Ԅన୬തതതതതതሺx, yሻ ൌ arctan ൬∆Ԅ෪ న

୬തതതതതതሺx, yሻ൰  (8) 

 
Finally, the modal derivatives fields are reconstructed by applying the Goldstein 
unwrapping algorithm [29]. 
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Figure 7: Phase maps of the first nine modal rotation fields obtained by speckle 
shearography with pulsed illumination and spatial phase modulation 

 
In Figure 6 are shown the filtered phase maps of the plate first nine modal 

rotation fields relative to the horizontal direction, using a shearing value of ∆ݔ ൌ
10 mm. In these maps are observed, with the exception of the fourth mode phase, a 
high density of fringes, as a result of the high spatial resolution of the measurement 
and the low signal-to-noise ratio. The analysis of the fringes distribution in Figure 6 
reveals small perturbations close to regions where the second impact was made, i.e.  
near the lower right edge. This shows a significant improvement in the quality of the 
measurements relatively to the pulsed laser illumination with spatial phase 
modulation used in previous studies [19], which are shown in Figure 7.  
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(Equation (6)). The phase maps spatial derivatives of the first five mode shapes and 
the localisation of the two impacts are shown in Figure 8. As can be seen, all the 
mode shapes present a local perturbation in the fringe pattern near the region of the 
second impact, which were earlier identified in the phase maps of the Figure 6.  
 

 
Figure 8: First, second and third order derivatives of the phase maps of the first five 

mode shapes 
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However, the damage can be more easily identified after unwrapping the phase 
maps. Indeed, the full-field of first, second and third order spatial derivatives of the 
plate first nine modal rotation fields are depicted in the Figures 9, 10 and 11, 
respectively. For the nine mode shapes analysed, the local discontinuity in these 
maps clearly shows the localisation of the damage created by the second impact. 
These perturbations are amplified and spread to the neighbouring region, due to the 
numerical differentiation process, and present the highest magnitudes for the fourth 
spatial derivative of the mode shapes. This result confirms the better performance of 
this new methodology in relation to the one presented in previous studies [19], were 
the damage could only be identified from the difference between the magnitudes of 
the damaged and undamaged modal curvature fields of the eighth mode shape. Also, 
this methodology has the advantage of not requiring the modal response of the 
undamaged structure model.  
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9: Second order spatial derivative of the first nine modal displacement fields 
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Figure 10: Third order spatial derivative of the first nine modal displacement fields 

 
 
 

 
Figure 11: Fourth order spatial derivative of the first nine modal displacement fields 
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5 Conclusions 
 
This paper describes two speckle shearography systems used for the measurement of 
modal rotation fields, which are used for the localisation of damage in a laminated 
composite plate. The first system is based on the Mach-Zehnder optical 
interferometer and combines double pulse illumination with spatial phase 
modulation. As to the second, based on the Michelson optical interferometer, 
stroboscopic illumination and time modulation are used. The phase maps of the first 
nine modal rotation fields of a laminated composite plate were successfully 
measured using the second system. A comparative analysis between the measured 
phase maps and the ones obtained in previous studies, using the first system, are 
presented. The results show the superior quality of the experimental measurements 
obtained with the second speckle shearography system.  

Internal damage was created in a plate by low velocity impacts at two different 
locations. The damage localisation method is based on the analysis of the 
perturbations in the spatial derivatives, up to the fourth order, of the modal 
displacement field. No information is needed from the undamaged structure. A new 
differentiation methodology is proposed in order to minimise the experimental noise 
propagation through the numerical differentiation process. Contrary to previous 
works, the differentiation is applied to the phase maps, therefore avoiding the 
propagation of noise caused by theirs post-processing. 

The combination of modal rotation fields, measured with speckle shearography 
with stroboscopic illumination, and the new differentiation methodology allows to 
obtain the second, third and fourth order derivatives of the first nine mode shapes. 
Based on the analysis of the modal spatial derivatives of these mode shapes, it was 
possible to identify the position of the damage created by the second impact. Finally, 
the results presented prove that the proposed methodology is more effective for 
damage localisation relatively to the one proposed in previous studies. 
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