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Abstract 
 
In this paper limit elastoplastic analysis of frame structures with hardening 
behaviour and axial-shear force–bending moment interaction is examined in the 
framework of mathematical programming. The maximum load carrying capacity of 
the structure is determined by solving an optimization problem with linear 
equilibrium, compatibility and yield constraints together with a complementarity 
constraint that is treated using the penalty function method. Incorporation of the 
shear force effect at yield determines a nonlinear three-dimensional yield surface 
that is linearized with appropriate polyhedra. The proposed method is implemented 
for the analysis of steel frames for rigid-perfectly plastic and isotropic hardening 
behaviour. Numerical results are compared to those of axial force-bending moment 
interaction underlining the significant role of shear force effect especially for shorter 
members. 
 
Keywords: limit analysis, holonomic constraints, complementarity, stress resultant 
interaction, mathematical programming. 
 
 
1 Introduction 
 
The determination of the ultimate limit state of a structure at incipient collapse 
subject to constant and monotonically varying loading i.e. finding the maximum 
load that a structure can sustain is the goal of elastoplastic analysis. In this context, 
limit analysis represents a computationally efficient method since the ultimate load 
is assessed by considering only the final stage of plastic collapse without analyzing 
the entire history of response following a step by step method. In the past decades, 
limit analysis has been successfully imbedded into the framework of mathematical 
programming offering a unifying approach for discrete problems of structural 
plasticity. 
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The ultimate load-carrying capacity of the structure is evaluated by solving an 
optimization problem based on piecewise linear constitutive relations following 
associated flow rules. The formulation of this optimization problem, pioneered by 
Maier et al. [1-5], constitutes a combination of limit and deformation analysis under 
holonomic or nonholonomic assumption. This means that the maximum load factor 
is assessed at the final stage of collapse under equilibrium, yield and deformation i.e. 
compatibility constraints. The nonholonomic assumption accounts for path-
dependence (irreversibility) of plastic deformations due to elastic unloadings-
reloadings approximating the realistic structural behaviour. On the other hand, 
holonomy is based on the assumption of negligible effects of local unloading and 
represents a path-independent (reversible) structural behaviour. The latter 
assumption is considered practically valid in describing the plastic behaviour of 
structures under the presence of proportionally and monotonically increasing 
external actions [4]. 

 

Linear programming has been extensively used for limit analysis of frames by 
assuming piecewise linear yield surfaces and rigid-perfectly plastic behaviour. 
Quadratic programming as an extension of linear programming has been utilized to 
account for rigid-perfectly plastic and hardening structural behaviour [1, 2]. The 
exploration of the complementarity problem by Cottle [6] has directed the treatment 
of elastoplastic analysis in the form of a Parametric Linear Complementarity 
Problem (De Donato and Maier [4]), while Kaneko later proposed an efficient 
reformulation of this problem [7]. Moreover, a variety of alternative mathematical 
programming procedures such as iterative Linear Programming, Quadratic 
Programming, Restricted Basis Linear Programming, Parametric Linear 
Complementarity and Parametric Quadratic Programming procedures have been 
applied and compared by Maier, Grierson and Best [8] for elastoplastic analysis of 
structures.  

 

The recent development of mathematical programming algorithms appropriate for 
Mathematical Programming with Equilibrium Constraints (MPEC) problems [9] has 
extended the potential of the proposed methods for structural analysis for both 
holonomic and nonholonomic assumptions [10-14]. In this context, softening 
structural behaviour has been also thoroughly examined under the effect of 
combined stresses (axial force-bending moment) by Cocchetti and Maier [15], 
Tangaramvong and Tin-Loi [16, 17].  

 

The aim of this work is to examine the shear force effect on the ultimate load 
carrying capacity of frame structures. For this reason, an optimization problem with 
equilibrium, compatibility, yield and complementarity constraints on the basis of 
holonomic assumption is formulated. The adopted yield criterion accounts for the 
axial-shear force-bending moment interaction and the proposed formulation is 
applied for rigid-perfectly plastic and isotropic hardening behaviour. 

 

The organization of the paper is as follows. First, the governing relations of 
holonomic elastoplastic problem based on equilibrium, kinematical and constitutive 
relations are summarized. Then, the formulation of the limit analysis as a MPEC 
problem is presented incorporating the axial-shear force-bending moment 
interaction. Subsequently numerical examples of steel frames are presented that 
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illustrate the applicability of the proposed method and the role of shear force effect 
on the maximum load factor.  

 
 
 

2 Governing relations 
 
Limit analysis with mathematical programming methods aims at computing the 
safety factor of a structure based on several assumptions [1,15,17]. First, plane 
frames are considered to consist of straight prismatic elements subjected herein only 
to nodal loading for reasons of simplicity. Moreover, frame displacements are 
assumed small enough so that the equilibrium equations refer to the initial 
undeformed configuration. In addition plastic hinges are considered formed only at 
critical sections, whereas the remaining parts behave elastically. The local nonlinear 
behaviour of critical sections is described by a piecewise linear model and yield 
functions are linearized appropriately. Furthermore, under monotonically increasing 
external loading, local unloading if happens, is assumed reversible. Thus a 
holonomic i.e. path-independent structural behaviour is adopted.  

 
2.1  Equilibrium 
 
From the six independent actions at the ends of a plane beam element, by applying 
the three equilibrium equations three may be considered as independent and the 
remaining as dependent end actions. Herein, the axial force ( 1

is ), bending moment at 
the start node j ( 2

is ) and bending moment at the end node k ( 3
is ), as shown in Figure 

1, in red color, are considered as independent. The structural equilibrium 
relationship for the whole structure is then established as:   

 
 B s F⋅ =  (1) 
 
where B is the (nf×3nel) structural equilibrium matrix, formed by assembling the 
corresponding element equilibrium matrices, s is a (3nel×1) vector for all primary 
stress resultants and F is a (nf×1) matrix of nodal external loading. It is noted that 
nel denotes the number of elements, nf the number of degrees of freedom. The latter 
can be expressed as: 
 

 dF a f f= ⋅ +  (2) 
 
where a is a scalar load factor, f is the basic monotonically varying nodal forces and 
fd is the fixed nodal vector.  
Vertical dead and live loads are usually considered as constant, while lateral loads 
that account for earthquake or wind loading are proportionally increased until an 
ultimate state or incipient collapse. 
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Figure 1: Frame element i with positive stress resultants 
 
2.2  Compatibility 
 
Compatibility conditions relate the member deformation iq  to the nodal 
displacements iu . Since small displacements are considered in this work, the 
compatibility condition for the whole structure is given by the following linear 
congruent relation: 

 
 Tq B u= ⋅  (3) 
 
where q is the (3nel×1) strain vector and u is the (nf×1) nodal displacement vector. 
 
2.3  Strain decomposition 
 
The constitutive law that governs the behaviour of a generic element is based on 
strain decomposition into the elastic and plastic component, as depicted in Figure 2. 
For the entire structure this is expressed as: 

 
 q e p= +  (4) 
 
where q is the total strain, e is the elastic and p the plastic strain. 
The elastic branch is fully described by the relation: 
 
 s S e= ⋅  (5) 
 
where S is the (3nel×3nel) stiffness matrix of the structure. 
Following the notions of associative plasticity, plastic deformations p are defined in 
view of the holonomic assumption as follows: 
 
 p N z= ⋅  (6) 
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where N is the diagonal (3nel×ynel) matrix of all unit normals to the yield 
hyperplanes, z is the (2ynel×1) of plastic multipliers and y the number of yield 
hyperplanes at each element end. 
 
 

 
 

Figure 2: Strain decomposition into elastic and plastic components 
 
 
 
2.4  Yield condition 
 
As far as the yield conditions are concerned, plastic hinges are considered to develop 
at the element’s ends under the axial-shear-bending interaction. Various yield 
criteria exist in the literature [18] for different materials and/or cross sectional 
shapes; herein the generalized Gendy-Saleeb yield criterion given by the following 
relation is adopted [19]: 

 2 2 21Φ 1n ν m
λ

= + + ⋅ −  (7) 
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individual axial, shear and moment plastic capacities for the critical cross sections of 
the elements. It is noted that the above yield relation is valid for both rectangular and 
wide flange-I cross-sections. The introduced shape dependent parameter λ is 
evaluated for rectangular cross-sections and I-sections respectively using the 
following relations: 
 
 21 , 1 1.1λ n λ n= − = −  (8) 
 

In this work, the aforementioned yield criterion is represented by a 3d nonlinear 
surface that is approximated by using 32 plane triangles (16 for m>0 and 16 for 
m<0) as shown in Figure 3. This converts the yield condition into a set of linear 
ones which are advantageous for the mathematical programming formulation of the 
problem.  
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Figure 3: a) Nonlinear Gendy-Saleeb yield criterion and b) Linearized yield 

criterion  
 
More specifically, the approximation of the 32 plane triangles corresponds to 32 
equations for the corresponding planes in x, y, z space, which are of the following 
form: 
 
 0Ax By Cz D+ + + =  (8) 
 
where A,B,C are the components of the normal vector of the plane and –D the 
distance of the plane from the origin. 
Using , ,i i in v m  instead of x, y, z and performing an appropriate manipulation, the 
following forms of these equations are systematically determined for start nodes j 
(Equation 10) and end nodes k (Equation 11) with respect to 1 2 3, ,i i is s s : 
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 (9) 
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(10) 

 
where At, Bt, Ct and Dt the coefficients of each plane equation, 

, ,t t t
t t ti

t t t

A B DAc Bc Dc
C L C C

= = =
⋅

, 2 3 2 3
21 31 2 3

1 1

, , ,
i i i i

y y y yi i i i
v vi i i i

y y y y

s s s s
np np np np

s s v v
= = = = , 

i=1,…,nel (number of elements) and  t=1,…,16 (m>0). It is noted that for t=17,..,32 
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(m<0) the plane equations for each element end are given by: 
 
 ( )21 1 2 2 2 3 21i i i i i i i

t t v t v t yAc np s Bc np s Bc np s Dc s− ⋅ ⋅ − ⋅ + ⋅ − ⋅ ⋅ = ⋅  (11) 

 
 ( )31 1 3 2 3 3 31i i i i i i i

t t v t v t yAc np s Bc np s Bc np s Dc s− ⋅ ⋅ − ⋅ ⋅ − ⋅ + ⋅ = ⋅  (12) 

 
The first part of both equations (10) and (11) represent the total stress state of a 
yielded element end under the effect of axial-shear force-bending moment 
interaction. Thus, the coefficients that multiply the variables iii sss 321 ,,  form the 
(3×2ynel) matrix Ni for each element, while the second part of the equations forms 
the (2ynel×1) vector ri  of the yield limits as follows:  
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The linearized yield surface is assumed to follow an isotropic hardening rule 
[16,17,20], i.e. the yield surface expands about the origin retaining its similarity. 
This means that an already yielded point of a given stress state ( iT i iN s r⋅ = , Figure 
4a) moves along the direction of the scaled plastic strain at·zt , where at is the scaling 
factor and zt is the plastic multiplier, as shown in Figure 4b. It is noted that pc is the 

assumed critical plastic strain, 2 2
i i
u yi

c

s s
h

p
−

= , 2 0 2
i i i
u ys q s= ⋅ , where 0

iq  is the 

corresponding overstrength factor of the element. Thus the (2y×2y) hardening 
matrix Hi for each element is determined as: 
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⎢ ⎥⎦
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Figure 4: a) Stress condition of a yielded node and b) corresponding isotropic 
hardening behaviour 

 
Finally, the diagonal matrices N (3nel×2ynel) and H (2ynel×2ynel) and the vector r 
(2ynel×1) for the whole structure are assembled and the yield conditions for the 
whole structure are formed as a (2ynel×1) non negative vector w as follows: 
 
 0Tw N s H z r= − ⋅ + ⋅ + ≥  (15) 
 

In Figure 5, the geometrical interpretation of yielding is depicted. OR1 and OR2 
are the distances from the origin O (0, 0, 0) to each plane triangle and denote the 
yield limits that correspond to each yield hyperplane. Stress points P1 and P2 are 
projected on OR1 and OR2 as P1´ and P2´ respectively. The yield conditions are then 
expressed as: OP1´≤OR1 and OP2´≤OR2. In case of rigid-perfectly plastic behaviour 
the aforementioned relations can be expressed as NiT·si≤ri, while in the case of 
isotropic hardening NiT·si ≤ri', where ri'= ri +Hi·zi. 

 

 
Figure 5: Geometrical interpretation of yielding 
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2.5 Complementarity condition 
 
An additional constraint that regulates elastoplastic behaviour of the structure is the 
complementarity condition: 
 
 0, 0, 0 0 1,2,...,T

i iw z w z or w z i n⋅ = ≥ ≥ = =  (16) 
 
The aforementioned condition prohibits simultaneous activation of plastic 
deformation and unloading. More specifically, the complementarity condition 
indicates that when the yield function wt is activated (wt=0), the corresponding 
plastic multiplier zt should be greater than zero. Similarly, when the yield hyperplane 
t is inactive (wt>0), the corresponding plastic multiplier zt=0, indicating that no 
plastic flow occurs. 
 
 
 
 
3 Mathematical programming and limit analysis 
 
Equations (1)-(6), (16) and (17) formulate a holonomic elastoplastic problem that 
describes the whole structural path-independent behaviour. The evolution of plastic 
behaviour throughout the whole structure under the action of several loads follows 
the limitations imposed by static, kinematic, constitutive law and the additional 
complementarity condition. More specifically, a statically admissible state is 
ensured by equilibrium and yield conditions (Equations 1 and 16), the kinematically 
admissible state is enforced by compatibility relation (Equation 3), whereas the role 
of constitutive law and complementarity requirements are introduced by Equations 
(4)-(6) and Equation (17) respectively. Therefore, the elastoplastic holonomic 
problem can be expressed as:  

 

 

0, 0, 0

d

T

T

T

B s a f f

q B u
q e p
s S e
p N z
w N s H z r
w z w z

⋅ = ⋅ + ⎫
⎪

= ⋅ ⎪
⎪= +
⎪⎪= ⋅ ⎬
⎪= ⋅ ⎪
⎪= − ⋅ + ⋅ +
⎪

⋅ = ≥ ≥ ⎪⎭

 (17) 

 
The above system of equations can be simplified by retaining as unknown the 

variables s, u, z so that a Mixed Complementarity Problem (MCP) is formulated. 
This is equivalently converted into the following optimization problem, the solution 
of which provides simultaneously the load multiplier a, the corresponding stresses s 
and displacements u together with the plastic multipliers z [16,17]: 
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 1

maximize
subject to

0
0, 0

0

−

⎫
⎪⋅ − ⋅ = ⎪⎪⋅ − ⋅ + ⋅ = ⎬
⎪= − ⋅ + ⋅ + ≥ ≥ ⎪

⋅ = ⎪⎭

d
T

T

T

a
B s a f f

S s B u N z
w N s H z r z

w z

 (18) 

 
Mathematically this is a nonconvex optimization problem that is known as a 
Mathematical Programming with Equilibrium Constraints (MPEC) problem 
including the complementarity constraint that acts as a multi-switch and is of 
discrete rather than continuous nature. This disjunctive constraint is difficult to 
handle numerically leading to numerical instabilities due to lack of convexity and 
smoothness. Despite all these inherent difficulties, the MPEC problem (19) can be 
solved by converting it into a standard, though still nonconvex, nonlinear 
programming problem (NLP) by suitably treating the complementarity condition. 
Several techniques have been proposed such as penalty function formulation, 
relaxation method, active set identification approach, sequential quadratic 
programming (SQP), and interior point methods among others [21]. Herein, the 
penalty function approach is adopted. According to this the complementarity 
constraint is handled in the objective function by a parametric reformulation, in 
which an increased value of the parameter exerts a pressure on the complementarity 
condition leading it to vanish. This formulation is as follows: 
 

 1

maximize
subject to

0
0, 0

T

d
T

T

a w z
B s a f f

S s B u N z
w N s H z r z

ρ

−

⎫− ⋅ ⋅
⎪⋅ − ⋅ = ⎪
⎬

⋅ − ⋅ + ⋅ = ⎪
⎪= − ⋅ + ⋅ + ≥ ≥ ⎭

 (19) 

 
It is worth noting that the above formulation is sensitive to the initial values of ρ and 
its subsequent increase. Typical starting values of ρ are between 0.1 and 1 with an 
update rule of ρ=10ρ after each NLP solution until an appropriate convergence 
tolerance is reached (wTz ≤ 10- 6) [16,17]. 

For the case of the rigid-perfectly plastic behaviour the formulation of the above 
problem is reduced to the Linear Programming - LP problem: 

 

 
maximize
subject to d

T

a
B s a f f

N s r

⎫
⎪⋅ − ⋅ = ⎬
⎪⋅ ≤ ⎭

 (20) 

 
The decision variables of this optimization problem are the load factor a and the 

element stresses s. The aforementioned formulation (21) constitutes the static 
approach of limit analysis and offers a lower bound of the load factor a for plastic 
collapse of the structure. On the grounds of LP, if the solution of the static LP 
problem coincides with the solution of the kinematic LP problem it provides the true 
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collapse loading factor a. This uniqueness of the collapse load factor stems from the 
strong duality theorem of LP [8, 22]. Moreover, it is noted that most LP solvers, 
including the one of Matlab optimization toolbox, provide also the Lagrange 
multipliers of the optimal solution that combine directly the variables of static 
problem (primal) with the ones of kinematic (dual). Thus, by solving only the 
optimization problem (21), apart from variables a and s, the variables u 
(displacements) and z (plastic multiplier rates) can be obtained. 
 
 
4 Examples 
 
The limit analysis problem described in relations (20) and (21) is implemented in 
Matlab code for the analysis of steel frame structures. The data are processed by 
fmincon solver (appropriate for the minimization of constrained nonlinear 
multivariable function), with the interior-point algorithm selected as optimization 
method. The aim is to investigate the role of combined axial-shear force-bending 
moment interaction and its influence on structural behaviour. For this purpose, the 
steel frames of Figure 6, having the material and mechanical properties presented in 
Table 1, have been examined for axial force-bending moment interaction (NM 
interaction) and for axial-shear force-bending moment interaction (NQM 
interaction) for the cases of rigid-perfectly plastic and elastoplastic isotropic 
hardening behaviour. It is noted that results for axial force-bending moment 
interaction are determined by solving optimization problem (20) with a hexagonal 
yield criterion appropriate for I-steel cross-sections [16]. Results for all analysis 
cases are presented in Table 2, while maximum load differences for each variant are 
shown in Table 3. 

As expected the load carrying capacity of the structure is reduced for NQM 
interaction as compared to NM interaction due to the effect of shear force. 
Moreover, it is noted that under the same conditions i.e. NM or NQM interaction, 
isotropic hardening consideration provides greater values for maximum load α as 
compared to rigid-perfectly plastic behaviour for both frames, as anticipated.  

 

             
 

Figure 6: Steel frames that have been analyzed 
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Table 1: Properties of frames under examination 

 
 
 

 
 

Table 2: Maximum Load a for all analysis cases 
 
 

 
Table 3: Difference of maximum load a for NM and NQM interaction. 

 
 
 

 In Figure 7, NM and NQM interaction diagrams for frame 1 are presented. Black 
and blue spots correspond to start and end element nodes respectively. It is evident 
that for both types of interaction the role of bending moment is dominant, while 
beam cross-sections yield mainly under the combined action of axial force and 
bending moment due to the presence of the external lateral load. However, for the 
case of NQM interaction the role of shear force effect is more evident at shorter 
columns (Figure 7b). 

FRAME 1 FRAME 2
Columns 

(HE400A)
Beams 

(IPE200)
Yield limit of axial force s1y 3736.5 kN 669.3 kN

Ultimate limit of axial force s1u 5604.8 kN 803.2 kN
Yield limit of shear force vy 778.1 kN 189.9 kN

Ultimate limit of shear force vu 1167.2 kN 284.9 kN
Yield limit of bending moment s2y, s3y 602.1 kNm 51.8 kNm

Ultimate limit of bending moment s2u, s3u 903.1 kNm 62.2 kNm
Hardening h 10034.5 kNm 432 kNm

Number of elements nel 12 14
Number of nodes nnodes 11 13

Number of degrees of freedom nf 24 30
Modulus of elasticity E 2∙10⁸ kN/m²

Material Properties & 
Geometrical Characteristics

NM  Interaction 
(rigid-p.plastic)

NM Interaction  
(hardening)

NQM Interaction 
(rigid-p.plastic)

NQM Interaction 
(hardening)

Frame 1 155.35 165.49 131.55 142.97

Frame 2 67.57 79.83 59.73 71.60

rigid-p.plastic hardening

Frame 1 -18.09% -15.75%

Frame 2 -13.12% -11.49%

(a NQM -a NM)/a NQM  %
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Figure 7: (a) NM interaction diagram and (b) NQM interaction diagram for frame 1 

 
The vertices of the state of all sections of the frame are arranged within the yield 

and failure surfaces depending on the connectivity, strength and loading. Some of 
them remain elastic, others have yielded and some others have reached the failure 
surface. In the attempt to trace the evolution of the critical sections, the convex hull 
surface, that embraces all vertices determining the lines of defense of the structure as 
monotonic loading progresses, is determined and is proved quite informative. In 
Figure 8, the evolution of the convex hull of the dominant stress states of the cross-
sections of frame 1 for increasing loading levels is presented. It is evident that under 
monotonically increasing loading the stress points that form the convex hull, i.e. the 
outer convex surface of all vertices, at the first loading stage, dominate and lead the 
plastic behaviour usually until collapse.  
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Figure 8: Evolution of convex hull for increasing applied load for frame 1 
 

The deformed shapes of frame 2 under NQM interaction consideration for 
isotropic hardening and rigid-perfectly plastic behaviour are illustrated in Figure 9. 
It is noted that red and green plastic hinges denote negative and positive yielding 
respectively. Due to unbounded ductility, greater displacements are determined and 
more plastic hinges are formed for rigid-perfectly plastic assumption. Figures 10 and 
11 depict the convex hulls of the whole structure and separately those corresponding 
to beams and columns of frame 2. It is evident that due to the action of lateral 
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loading and the absence of a diaphragm, beams are mainly subject to the axial-
bending moment interaction, while the shear force interaction is more intense at 
column cross-sections.  

 

 
 

Figure 9: Deformed shape under NQM interaction consideration for (a) hardening 
behaviour and (b) rigid-p.plastic behaviour. 

 

 
 

Figure 10: Convex hull of frame 2 
 

  
 

Figure 11: Convex hulls of beams and columns of frame 2 
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5 Concluding remarks 
 
The limit analysis under holonomic behaviour and mathematical programming 
offers a broader perspective for an elastoplastic analysis of structures incorporating 
hardening behaviour and stress resultant interaction. The maximum load carrying 
capacity of a structure is established by solving an optimization problem subjected 
to constraints that enforce equilibrium, compatibility, yielding and the 
complementarity conditions. As a result of the disjunctive nature of the latter, the 
aforementioned optimization problem is reformulated as a NLP problem by using a 
penalty function method which performs satisfactorily in terms of robustness and 
efficiency. However, it is worth mentioning that the NLP problem is parameter and 
problem dependent and thus the proper choice of initial values of variables as well 
as setting the lower and upper bounds may be decisive in achieving the desirable 
convergence. 

The optimization problem can incorporate various yield criteria in linearized 
form. In this paper, the generalized Gendy-Saleeb yield criterion is adopted that 
accounts for the axial-shear force-bending moment interaction. Numerical results 
highlight that shear force effect in yield condition may be significant as it leads to 
reduction of the load carrying capacity and thus to unsafe design, as compared to 
axial force-bending moment interaction. Moreover, for more complex configurations 
this may lead also to different collapse mechanisms.  

Finally, wrapping up the vertices of the behaviour of the entire structure or either 
the beams or columns with the corresponding convex hulls and controlling their 
overall shape may be very helpful in optimal design of these structures. 
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