
Abstract

In this paper, we focus on the interaction fluid structure and specifically the vibro-
acoustic coupling which is generally defined as the contact between bodies interacting
according to the principles of continuum mechanics. For the coupling fluid structure
finite elements models, the importance of the size reduction becomes obvious because
the fluid freedom degrees will be added to those of the structure. A method of con-
densation will be used to reduce the size of the matrices. A numerical vibratory study
is leaded on a three-dimensional structure immersed in water taking the acoustic as-
pect. In this context, we focused very specifically on a deterministic, stochastic and
reliability analysis through numerical simulations in three-dimensional dynamic fluid-
structure interaction problems.

Keywords: fluid-structure interaction, vibro-acoustic, numerical simulation, finite el-
ement method, reliability based design optimization.

1 Introduction

The comprehension of the mechanisms of interactions between a fluid and an elas-
tic solid has a capital importance in several industrial applications. When a structure
vibrates in the presence of a fluid, there is interaction between the natural waves of
each media: the fluid flow generates a structural deformation and/or the movement of
a solid causes the displacement of the fluid. These applications require an effective
coupling. In [3, 5], we find many methods to resolve fluid-structure interaction prob-
lems. Furthermore, the dynamic analysis of the industrial systems is often expensive
from the numerical (CPU) point of view. For the coupling fluid structure finite ele-
ments models, the importance of the size reduction becomes obvious because the fluid

1

 
Paper 215 
 
Reliability-Based Design Optimization for the 
Analysis of Vibro-Acoustic Problems 
 
M. Mansouri1,2, B. Radi1 and A. El Hami2 
1 LM, FST Settat, Morocco 
2 LMR, INSA de Rouen, St Etienne de Rouvray, France 

©Civil-Comp Press, 2012 
Proceedings of the Eleventh International Conference 
on Computational Structures Technology,  
B.H.V. Topping, (Editor),  
Civil-Comp Press, Stirlingshire, Scotland 



freedom degrees will be added to those of the structure.
One of the main hypothesizes in the study of mechanical systems is that the model

is deterministic. That means that the parameters used in the model are constant. How-
ever the experimental works show the limitations of such assumption. This is because
there are always differences between what we calculate and what we measure due
mainly to the uncertainties in geometry, the material properties, the boundary condi-
tions or the load, which has a considerable impact on the vibrating behavior of me-
chanical systems. This is why it is important to use numerical methods in order to take
these uncertainties into count. In [6, 11], we find many approaches to treat mechanical
systems with uncertain parameters.

We presented in this paper a stochastic numerical modal analysis of a solid 3D
immersed in water to simulate the stochastic response, in medium frequencies in con-
sidering the random parameters. In the case of this problem, the presence of several
parameters to random characters namely the Young’s modulus of the structure and
structure density and fluid density, which often show a great variability, which in-
evitably leads to a loss precision important. Better control of these parameters is thus
based on the use of stochastic methods whose main objective is to improve the quality
and the reinterpretation of results from simulations. To do this, a good understanding
and formulation of the main phenomena involved in the coupling problem are needed.

The numerical approach has been to propose a finite element model of the struc-
ture coupled with the fluid and has validated the use of a general computer code for
numerical modeling of problems coupled fluid / structure. The method is illustrated
by an example of a solid 3D immersed in water with properties of both materials are
random.

2 Fluid structure interaction

2.1 Introduction

In the context of this study of fluid-structure interaction, we focus on the vibro-
acoustic problem where the fluid makes an elastic potential energy in contact with
an elastic structure. The two media have their own degrees of freedom, and the cou-
pled dynamic system is governed by the vibratory equations of the structure and the
fluid coupled with each other. The numerical results are deduced from a finite ele-
ment approach of the coupled problem with a non symmetric pressure/displacement
formulation. These numerical techniques are based on a finite element discretization
for solving the equations of problems fluid / structure interaction [12], these methods
are applicable to general computer codes.

2



2.2 Modeling

The modelization of our problem is carried out by using a non-symmetric formulation:
a displacement and a pressure (u, p) which presents the advantage of being easily
treated by finite elements methods, because it leads to a representation incorporating
only a one unknown by knot. This formulation presents in fact the interest of being
easily manipulated from a IT (information technology) perspective. Moreover, the
finite element codes which allow us to generate stiffness and mass matrices of coupled
systems treat this type of formulation in a particularly efficient way, especially from a
matrices conditioning.

2.3 Problem statement

We consider here the assumption of small perturbations and it is assumed that the
structure is elastic it’s characterized by the mechanical properties of materials that
are Young’s modulus E, the density ρs and the Poisson’s ratio ν. The structure is
immersed in fluid which is supposed to be perfect, homogeneous, linear and at rest
(stagnant fluid), it’s characterized by its density ρf and its sonic velocity c.

The structure occupies the area Ωs, of Σs boarder, it’s free from any exterior effort
and blocked from one side Γs . The fluid that occupies the field Ωf of border Σf . They
are coupled through the interface noted Σ = Σs ∩ Σf . ns and nf are respectively, the
exterior normal to a solid area Ωs and the exterior normal to a fluid areaΩf . The
problem of the fluid/structure interaction is thus to resolve two problems simultane-
ously: The first problem concerns the structure which undergoes a pressure imposed
by the fluid in the boarderΣ. The second one concerns the fluid which undergoes a
field displacement u imposed by Σ interface.

With the previous hypotheses, the equations of the vibro-acoustic problem govern-
ing the movement of the coupled system in function of displacement u of the structure
and the pressure p of fluid are:

σij,j(u) + ω2ρsu = 0 in Ωs. (1)

∆p+
ω2

c2
p = 0 in Ωf . (2)

u = 0 on Γs. (3)

σij(u)n
s
j = pnf

i on Σ. (4)

∂p

∂nf
= ω2ρfun

f on Σ. (5)

The angular frequency of vibration is denoted as ω. The linearized strain tensor is
denoted as εij and the corresponding stress tensor is denoted as σij.
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2.4 Variational formulation

By introducing the spaces of functions-test ”sufficiently” regular and independent of
time C∗

u = {u|u = 0 on Γs} et C∗
p , the variational formulation of coupled problem

fluid-structure is to find u ∈ C∗
u et p ∈ C∗

p such as ∀v ∈ C∗
u et ∀q ∈ C∗

p :
Taking into account the limits conditions (4) the variational formulation of the struc-
ture is obtained by writing for each field of virtual displacement v, c and a.∫

Ωs

σij(u).εij(v)dV − ω2

∫
Ωs

ρs.uividV =

∫
Σ

p.ni.vi.dΣ ∀v (6)

The variational formulation is obtained for the field of pressure p by using the limits
conditions (5) and what ever the virtual field pressure q statically admissible:∫

Vf

∂p

∂xi

.
∂q

∂xi

dV − ω2

∫
Vf

1

c2
.p.qdV = ω2.ρf

∫
Σ

ui.niq.dΣ ∀q (7)

The variational formulation of the system is the sum of the two variational equations
(6) and (7):

F (u, p) =
1

2

∫
Ωs

(
σij(u)εij(u)− ρs.ω

2.(u, u)
)
dV −

∫
Σ

p.u.dΣ

− 1

2ρf .ω2
.

∫
Vf

[(
∂p

∂xi

,
∂p

∂xi

)
+ k2.p2

]
dV (8)

2.5 Finite elements approximation

The interaction of the fluid and the structure at a mesh interface causes the acoustic
pressure to exert a force applied to the structure and the structural motions produce an
effective ”fluid load.” The governing finite element matrix equations then become:

• For the structure
[M]{ü}+ [K]{u} = [L]{P} (9)

• For the fluid:
[E]{P̈}+ [H]{P} = −ρ[L]t{ü} (10)

[L] is a ”coupling” matrix that represents the effective surface area associated with
each node on the fluid-structure interface (FSI). Both the structural and fluid load
quantities that are produced at the fluid-structure interface are functions of unknown
nodal degrees of freedom. Placing these unknown ”load” quantities on the left hand
side of the equations and combining the two equations into a single equation produces
the following: [

M 0
ρfL

t E

]{
ü

P̈

}
+

[
K −L
0 H

]{
u
P

}
=

{
0
0

}
(11)
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we can still write as follows:(
−ω2

[
M 0
ρfL

t E

]
+

[
K −L
0 H

]) {
u(ω)
p(ω)

}
=

{
0
0

}
(12)

The foregoing equation implies that nodes on a fluid-structure interface have both
displacement and pressure degrees of freedom. The numerical technics based on a
discretization of the type of finite elements allow us to resolve the equations of the
problem of fluid/structure interaction (12), this methods is applicable with the codes
of generalist calculation. In our work we were interested in the validation of the code
of ANSYS calculation by implementing coupled calculation in elementary cases. We
follow in the present article this measure of validation by proposing a comparison
of the results within the framework of a numerical and experimental modal analysis
of submerged structures. To determine the eigenfrequencies of the coupled system,
the matrix must be symmetrical which is not the case. Therefore a symmetrization
procedure such as Irons method will be used.

2.6 Condensation of coupled system

This method is a natural extension of the modal superposition method, largely used
in dynamic study of structures. We start from the assumption that physique displace-
ments can be described by the superposition of the first (ns) dry structure natural
modes ({P} = 0), and on the other hand that the fluid pressure field can be described
by the superposition of the first pure (nf ) acoustic modes ({u} = {ü} = 0), such as:

{u} = [φs]{q}
{p} = [ψf ]{k}

(13)

where:

• [φs] is the matrix of the ns dry structure first natural modes,

• {q} is the vector of modal displacements,

• [ψf ] is the matrix of the nf acoustic first natural modes,

• {k} is the vector of modal pressures.

Usually, this method is used in the case of interaction between elastic structures and
light fluids (gas), where the effects of added mass are not significant. In the case of
interaction with dense fluids (liquids) where the dynamic characteristics are strongly
modified by the added mass contribution, this method proves less powerful, because
the boundary condition of fluid-structure interface given by equation (5), is not re-
spected there. To solve this problem, we can superposed at the vectorial bases [φs]
and [ψf ] a whole complementary Ritz vectors ([ψr]) which will be used to assure the
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speeds continuity on C and consequently, to better representing fluid-structure inter-
face condition. [ψr] is such as :

{P} = [ψf ]{k}+ [ψr]{r} (14)

where:
[ψr] = ρf [H]−1[L]t[φs] (15)

3 Reliability analysis

Physical tests or measures show that the mechanical properties, the geometrical char-
acteristics of structure elements or applied loads could be random and follow sta-
tistical distributions. Thus leads to define a probabilistic model. In general, ran-
dom variables give a good representation of structural stochastic parameters. Let
X = (X1, X2, . . . , Xm)t be the random vector of the probabilistic analysis. To pre-
serve the integrity of the structure, the failure mode must be defined and the corre-
sponding limit state function G(X) established. The structure is situated in its safe
domain Ds if {G(X) > 0} and it is situated in its failure domain Df if {G(X) ≤ 0}.
Then, the failure probability is:

Pf = Prob(G(X) ≤ 0) (16)

Our purpose is the reliability analysis of a structure where a frictionless contact occurs
between the two solids. In this situation, the analytical expressions of the limit state
functionG and its derivatives are often not available in function of the physical random
variables X1, X2, . . . , Xm. Then, it is only possible to obtain the failure probability
under an implicit numerical form. The response surface methods have been widely
developed in nonlinear reliability analysis. Several authors have proposed solutions
to improve the accuracy of results, to decrease the number of necessary numerical
calculations on FEM codes and to increase the robustness of the algorithms. In our
nonlinear study, we propose an adaptive surface method coupled with the first order
reliability method (FORM) [4, 13]. The sets of design points and the response surfaces
are generated in the space of standard Gaussian variables. The scheme of the adaptive
process is given as follows:

• k = 1, the generated set of points is a central composite design. Its center
coordinates are the mean values of random variables. d(1) is a fixed real number
and the distance from the central point to a ’corner’ in the design is equal to√
md(1) . So
u(k,1) = (0, 0, . . . , 0)T

u(k,r) = (0, . . . ,±d(k), . . . , 0)T , r = 2, . . . , 2m+ 1
u(k,r) = (±d(k),±d(k), . . . ,±d(k))T , r = 2m+ 2, . . . , 2m + 2m+ 1

(17)
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• The response surface h̃(k)(u) is a second order polynomial with crossed terms:

h̃(k)(u) = a0 +
n∑

i=1

aiui +
n∑

i=1

n∑
j=1

aijuiuj (18)

• The polynomial coefficients identification is done by the least square method

E(k) =

p∑
r=1

wi[h̃
(k)(u(k,r))− h(u(k,r))]2 (19)

∂E(k)

∂ai

= 0 i = 0, . . . , Nh (20)

p = 2m + 2m+ 1 and Nh = (m+ 1)(m+ 2)/2 is the number of coefficients of
the function h̃(k)(u).wi = 1.

• The SQP optimization algorithm is used to compute the reliability index β(k)
HL

and the design point u(k,r), solutions of the following minimization problem:

β
(k)
HL = min

√
ut.u subjected to: h̃(k) = 0 (21)

• k = k + 1, generation of a new set of points. Its center is the point u(k−1,r) and
the distance from the central point to a ”corner” in the design is equal to

√
mdk

with

d(k) =
d(k−1)

q
(22)

q > 1 is a real number which plays the role of a zoom factor.

Repeat (13) − (17) until a test of convergence on β(k)
HL stops the iterative algorithm.

Then the failure probability is evaluated by the first order reliability method

Pf ≈ Φ(−βHL) (23)

u = (u1, u2, . . . , um)T is a realization of the random vector U. h̃(k)(u) is the approxi-
mated limit state function in the space of standard Gaussian variables. U is the image
of X by the probabilistic transformation and Φ is the standard normal distribution
function. This iterative scheme is particularly efficient. The adaptive central com-
posite designs give a very good representation of the random variables domain. The
second order polynomial and the least square method assure a good compromise be-
tween the computational effort and the approximation accuracy of the real limit state
function h(u). The number of necessary calculations is reasonable and depends on the
number of variables. The SQP algorithm is robust and efficient for this application
in nonlinear finite-element reliability analysis. For more details, the interested reader
can review the different works of [1, 2, 7] and .
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4 Numerical results

The reliability analysis methodology used in the numerical example integrate a set of
reliability analysis tools(based on FORM and SORM)developed under MATLAB with
finite element analysis of vibro-acoustic problem using this programming environ-
ment(for the first numerical application) and using the commercial software ANSYS
(for the second numerical application). In the numerical applications, the reliability
analysis takes into account the deterministic and stochastic analysis. The numerical
results are deduced from a finite element approach of the coupled problem with a non
symmetric pressure/displacement formulation. In a previous work, we were interested
in validating the computer code ANSYS implementing calculations coupled to a sim-
ple case for a plate immersed in water [8]. We continue in this article this validation
approach by proposing a correlation ANSYS/MATLAB as part of the numerical and
experimental modal analysis of a solid 3D immersed in water.

4.1 Deterministic case

We begin by the validation of our fluid-structure interaction in the deterministic case.
The numerical study is simple example considered in this section which consists of
a solid 3D coupled with a compressible fluid which was modeled using MATLAB
code. This application aims at illustrating the methodology proposed in a deterministic
analysis. Geometrical and material properties are:

• For the structure: density = 7860 kg.m−3 ; Young’s modulus = 2.1 × 1011 Pa ;
Poisson’s ratio = 0.3 ; Length= 2 m ; Width = 1 m ; Height = 0.2 m.

• For the fluid: density = 1000 kg.m−3 ; Speed of sound = 1500 m.s−1 ; Length
= 20 m ; Width = 10 m; Height = 10 m.

For the finite elements calculation: SOLID45 is used for the 3-D modeling of solid,
the element is defined by eight nodes having three degrees of freedom at each node:
translations in the nodal x, y, and z directions. FLUID30 is used for modeling the fluid
medium and the interface in fluid/structure interaction problems. Typical applications
include sound wave propagation and submerged structure dynamics. The governing
equation for acoustics, namely the 3-D wave equation, has been discretized taking into
account the coupling of acoustic pressure and structural motion at the interface. The
element has eight corner nodes with four degrees of freedom per node: translations in
the nodal x, y and z directions and pressure. The translations, however, are applicable
only at nodes that are on the interface.

This sample problem demonstrates the use of FLUID30 and SOLID45 to predict
the acoustic standing wave pattern of a solid submerged in fluid. Figure 1 shows a
diagram of the types elements used in this study and the finite elements discretization
of this immersed structure.
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Figure 1: Element type and finite elements discretization of this immersed structure.

The founding results in the immersed structure and the comparison results between
the ANSYS results and MATLAB one are given in table1. The adopted vibro-acoustic
model gives a good results looking the ANSYS one.

Deterministic case ANSYS MATLAB
R1 23.395 24.14
R2 67.646 67.89
R3 91.626 90.73
R4 131.76 131.02
R5 210.458 212.23

Table 1: The first 5 frequencies of submerged structure (modal synthesis).

There is a substantial drop in natural frequencies of the structure after its immersion
in the fluid which changes the vibration behavior of the structure.

4.2 Probabilistic case

The choice of the random variables is all time a central point. This work is the con-
tinuity of other works done inside the LMR team. In the three dimensions case, the
following variables are taking as random one (see table 2).

Parameters Means Standard deviation Distribution
Young modulus (Pa) 2.1× 1011 0.05× 1011 Gaussian(µ, σ)

Density of structure (Kg/m3) 7860 250 Uniform(a,b)
Density of the fluid (Kg/m3) 1000 40 Uniform(a,b)

Table 2: Moments of the parameters of the problem and Distribution laws.
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The stochastic calculation was carried out using probabilistic design system of the
ANSYS and MATLAB code. This tool is based on a calculation with Monte Carlo
simulation (for 100 samples) and the response surface method (for 40 samples). The
table 3 shows means and standard deviations of the natural frequencies and the finding
results using the structure immersed.

Modes Deterministic case M C RSM FORM SORM Standard deviation
R1 23.39 21.21 22.14 22.78 22.78 2.63
R2 67.64 70.51 68.13 67.04 67.04 3.24
R3 91.62 90.98 91.01 91.11 91.11 4.15
R4 131.76 129.23 130.87 131.52 131.52 6.07
R5 210.45 215.43 211.99 212.62 212.62 10.68

Table 3: Means and standard deviations of the natural frequencies for the immersed
structure.

4.3 Reliability Study

The table 4 summarizes the design parameters and their statistical moments consid-
ered in the immersed structure for this example. The study of reliability analysis is
based on a single state limit function which considers the first natural frequency R1

coupled systems, such as:
G(E, ρs, ρf ) = R1−R0 for immersed structure, In this implicit function of the design
variables, R0 = 24Hz. The Table 4 show a comparison among the results obtained
from FORM and SORM methods. The results are considered satisfactory and demon-
strate the applicability of these techniques in solving reliability problems.

Parameters FORM SORM
Young’s modulus (Pa) 2.165× 1011 2.165.1011

Density of the structure (Kg/m3) 7389.76 7389.76
Density of the fluid (Kg/m3) 947.93 947.93

Reliability index β 2.83 3.41
Probability Pf (

0/0) 0.92 0.13

Table 4: Design parameters and their statistical moments considered in the immersed
structure.

5 Conclusion

In this paper we focus on stochastic simulation of problems of fluid structure interac-
tion. Specifically we have developed stochastic methods for a vibro-acoustic problem.
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We have proposed a modal method combined to response surface method for the reso-
lution of the great size stochastic fluid-structure interaction problems. The developed
methodology integrates finite element and reliability analysis which enable to assess
the reliability index in coupled fluid-structure systems.

The results obtained in the case of a solid three-dimensional coupled to a fluid
show the validity and the potential of the proposed method. This study allows a com-
parison of the numerical results with the FORM and SORM approach, and as such
allowed the validation of the method used in the numerical modelling of the dynamic
behaviour of an immersed three-dimensional structure. Regarding the performance of
analysis tools, it can be concluded that the methodology presented is able to handle
implicit limit state functions based on numerical models of fluid-structure interaction
problems.
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