
Abstract

In this paper we introduce a multiscale method in dynamics using both a nonlocal

discrete model and an local continuum model. The issue in such a method is the

numerical reflections arising from the nonlocal/local and the fine/coarse interfaces.

Therefore, our method introduces accurate reconstruction schemes based on the quasi-

continuum method, as well as absorbing conditions based on a scale decomposition

combined to a perfectly matched layer, to eliminate these suprious phenomena.

Keywords: multi-scale modelling, nonlocal discrete model, scale decomposition,

quasi-continuum method, ghost forces, dynamics, damping.

1 Introduction

Nonlocal discrete models are a prominent tool in Computational Mechanics for de-

scribing fiber reinforced concrete as well as composite or nanometerials. Indeed, they

enable to reveal complex physical phenomena such as solid fracture, plasticity or dam-

age [1]. The nonlocal aspect is due to the interaction range defined on each particle.

Hence, particles interact by means of potentials like Lennard-Jones, Morse, etc, with

each particle included in its interaction range. However, due to the space and time

degrees of freedom necessary, such models are limited to localized regions in which

the particle scale is important. In the remainder of the domain, a reduction method

based on continuum simulations is used, which allows simulations at larger space and

time scales. Consequently, multiscale methods coupling nonlocal discrete model and

continuum mechanics are required (see [2]) and the difficulty lies on the intimate and

accurate coupling so that the critical region behaves as if the entire model were non-

local and discrete.

In order to couple a discrete nonlocal model with a continuum local model in dy-
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namics, we can define two steps: (i) the first one is to couple a nonlocal discrete model

with a local discrete model (ii) the second one is to couple a local discrete model with

continuum a local model. Hence, two approaches can be distinguished to couple dif-

ferent models:

• surface coupling using a discrete interface: Mortar method, edge-to-edge cou-

pling, Quasi-Continuum method [3][4]...

• volume coupling using an overlaping zone: Bridging Domain method [5][6],

Chimera method, Bridging Scale method [7],...

The work presented here deals with both steps, step (i) by means of the Quasi-continuum

method and step (ii) by means of a scale decomposition.

The QC method used for step (i) generates local/nonlocal interface where the lo-

cal discrete model is homogenized from the nonlocal model by using the Cauchy-Born

rule. Nevertheless, undesired forces called “ghost forces” [8, 9] appear in this method,

which are responsible, in dynamics, for spurious reflections at the interfaces that pol-

lute the whole simulation. We provide consistent schemes [10] for the QC methods

where the local/nonlocal interfaces between models remain free from “ghost forces”.

Step (ii) leads to couple macro and micro scales. In dynamics, a part of the micro

scale is not represented by the macro scale which also generates spurious reflexions

at the interfaces. Hence, we develop a new discrete/continnum interface, based on

a scale decomposition coupled to Perfectly Matched Layer [11, 13] permeable for

macro waves and absorbing for micro waves.

2 Local/nonlocal interfaces

In this section, we introduce the discrete nonlocal model. We then show how to ob-

tain a local equivalent discrete model and how to deal with local/nonlocal interfaces

using geometrically consistent QC-type approximation. Finally, we run some dynam-

ics simulations on 2D problems to highlight the gain on the reduction of spurious

reflections.

2.1 The discrete nonlocal model

The discrete aspect is due to the fact that the material is represented through a lattice

of N discrete particles. In the reference configuration, the position Xi of each particle

i is written :

Xi =
d

∑

l=1

Al
iel with

(

A1
i , ..., A

d
i

)

∈ Zd, (1)

where {el}l=1,...,d are known as the d primitive vectors of a d-dimensional (d=1,2 or

3) problem. Let xi be the position of the particle i in the current deformed configura-
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tion. Then, the behavior of the material relies on the interactions Eij defined between

particles, with Eij a pairwise potential such that

Eji = Eij = Eij (ra
i (j)) with r

a
i (j) = xj − xi, (2)

Harmonic, Lennard-Jones or Morse potentials are some examples of pairwise poten-

tials that can be used to describe the material behavior. Hence, the nonlocal aspect of

the model is due to the interaction range rc between particles which includes particles

beyond first neighbors (see Figure 1). Finally, the total energy Etot of the model is

given by

Etot =
N

∑

i=1

Ea
i ({xi}) with Ea

i =
1

2

∑

j 6=i

Eij (ra
i (j)) , (3)

where Ea
i denotes the nonlocal energy associated to the i-th particle [4].

rc

i

Vi

Figure 1: 2D discrete model

2.2 The local QC approximation

The aim of the local QC approximation is to define a local equivalent energy ECB
i

by replacing all next-nearest neighbor interactions by nearest neighbor (denoted Vi)

interactions. In order to do so, a local reconstruction scheme r
CB
i (j) based on the

Cauchy-Born rule is introduced :

Ri(j) = Xj − Xi =
∑

l∈Vi

αl
i(j) (Xl − Xi) (4)

=⇒ r
a
i (j) ≈ r

CB
i (j) =

∑

l∈Vi

αl
i(j) (xl − xi) , (5)

where coefficients
{

αl
i(j)

}

l=1,...,d
only depend on the geometry of the lattice and are

all positive. Note, that we use a protocol that only selects the closest particles of Vi to

obtain a unique set of particles in Vi that can define the local reconstruction scheme
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r
L
i (j). Hence, combining (3) and (5) we obtain the formulation of the local equivalent

energy :

ECB
i =

1

2

∑

j 6=i

Eij

(

r
CB
i (j)

)

. (6)

Under the assumption of a uniform deformation, the local QC approximation is con-

sistent if this reconstruction is used on all particles [9]. Nevertheless, if we use both

local and nonlocal definition of the energy to obtain a local and a nonlocal domain,

some spurious phenomena so-called ghost forces arise along interfaces [3, 8, 9].

2.3 A geometrically consistent QC-type approximation : NL2L

scheme

In order to be able to deal with local/nonlocal interfaces, we use a geometrically con-

sistent QC-type approximation, called NL2L scheme, defined in [10]. The idea is to

add a transition domain between local and nonlocal domains, respectively denoted

Jl and Ja. Hence, we use a row of quasi-nonlocal particles that define the interface

denoted Jb that follows the QNL scheme of [8]:

E
Q
i =

1

2

∑

j∈Ja

Eij (ra
i (j)) +

1

2

∑

j∈Jl∪Jb

Eij

(

r
CB
i (j)

)

. (7)

Then, we introduce the reconstruction scheme r
b
i(j) based on particles included in Jb

such that

Ri(j) = Xj − Xi =
∑

l∈Jb

αl
i(j) (Xl − Xi) (8)

=⇒ r
a
i (j) ≈ r

b
i(j) =

∑

l∈Jb

αl
i(j) (xl − xi) . (9)

We denote by Jb,nl the particles close to the interface which have at least one inter-

action with a particle in Jl. Hence, for these particles, we use the QC-type approxi-

mation defined in [10] :

E
QC
i =

1

2

∑

j∈Jl

−2
∑

l∈Jb

αl
i(j)

Eij

(

r
b
i(j)

)

+
1

2

∑

j∈Jl∪Ja

Eij (ra
i (j)) . (10)

Note that the size of the intermediate domain Jb,nl corresponds to the size of the

interaction range rc. The total energy of the model (3) can be rewritten :

Etot =
∑

i∈Jl

ECB
i +

∑

i∈Jb

E
Q
i +

∑

i∈Ja

Ea
i +

∑

i∈Jb,nl

E
QC
i . (11)

Finally, we obtain a geometrically consistent QC-type approximation that is free from

ghost forces whatever the interaction range or the potential used. Moreover, under

some precautions, it is possible to handle cases with corner [10] between the local and

nonlocal domain.

4



particle ∈ Jl

particle ∈ Jb

particle ∈ Ja

particle ∈ Jb,nl

Figure 2: The four kinds of particles of the NL2L scheme

2.4 Applications on dynamics problems

The gain on the accuracy obtained with such a QC-type approximation has been shown

in [10] for statics problems. Moreover it appears that it also reduces spurious reflex-

ions in dynamics . Hence, we want to study the gain obtained on 2D problems with

several local/nonlocal interfaces.

In order to do so, we use an hexagonal lattice that includes 121 × 121 particles.

The interaction range on each particle includes particles up to the 8th neighbor, which

corresponds to rc = 4r0 with r0 the distance between the first neighbors on the refer-

ence configuration. Then, the interactions between particles are represented through

harmonic potentials such that

Eij(ri(j)) =
1

2
kij (|ri(j)| − |Ri(j)|)

2
. (12)

Finally the nonlocal domain, including 29 × 29 particles, is confined in the center

of the sample as defined in Figure 3.
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Figure 3: Zoom in the nonlocal domain

Figure 4 illustrates the initial displacement imposed along the x direction such that

the initial energy is only included in the nonlocal domain. Then we run simulations
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with both inconsistent and consistent QC-type approximations to see how the waves

spreads over the local/nonlocal interfaces.
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Figure 4: Initial ux displacement

The energy repartition in time highlights the reflections due to local/nonlocal in-

terfaces. Indeed, it appears in Figure 5 that more than 40% of the energy remains

trapped in the nonlocal domain when using the QNL scheme at local/nonlocal inter-

faces. Such reflections are avoided with the NL2L scheme, indeed less than 10% of

the energy remains in the nonlocal domain.
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(a) Inconsistent QC-approximation
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(b) Consistent QC-approximation

Figure 5: Energy repartition in time

Moreover, in Figure 6(a), important discontinuities appears on the ux displacement

fields due to the reflections. In the country, in Figure 6(b), the nonlocal domain has

not be polluted by any spurious reflections.

3 Fine coarse scale decomposition

In this section we present how to obtain an equivalent coarse model based on a fi-

nite element approximation. Then, we propose a coupling method permeable for the

macro informations and absorbing for the micro informations in order to avoid spuri-

ous reflections. Finally some results are presented on 1D problems.
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Figure 6: ux displacement at time step 150

3.1 Coarse model

As it is not possible to use the fine model in the whole simulation due to the compu-

tational cost, we want to introduce a coarse model that enable to represent the macro

part of the displacement field (see Figure 7). The main issue is to enable exchanges of

macro informations between the fine and the coarse model without generating spuri-

ous phenomena.

fine model

fine model+PML

coarse model

Figure 7: Fine and coarse models superposition

The Lagrangian description of the fine model is written as

L =
1

2

N
∑

i=1

miu̇
2
i +

N
∑

i=1

∑

j 6=i

Eij(u) −
N

∑

i=1

f ext
i ui with ui = xi − Xi, (13)

where mi and f ext
i are respectively the mass and external forces applied on the ith

particle. An equivalent formulation of (13) is :

L =
1

2
u̇

T Mu̇ + Etot(u) − (Fext)T
u, (14)

where M is the mass matrix and F
ext is the external force vector.
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In order to obtain the coarse model, we suppose that displacements can be written

as a sum of micro and macro displacements [13] :

u = um + uM , (15)

where um and uM , respectively represent the micro and macro displacements. We

note P and Q the two projectors such that

{

uM = Pu

um = Qu
with P + Q = I, (16)

where PP = P and PQ = O.

A finite element approximation is use to define the macro model, hence the macro

displacement correspond to

uM = NuFE, (17)

where uFE is the nodal displacement vector and N is the matrix of shape functions

that interpolate the displacement of the initial particle positions.

Hence, combining (15) and (16) we can define the macro projector P such that

Pu = NuFE, (18)

which yields

P = N
(

NT N
)−1

NT . (19)

We obtain the Lagrangian description of the macro model using (17) and (13) :

LM =
1

2
u̇

T
MMu̇M + Etot(uM) − (Fext)T

uM (20)

=
1

2
u̇

T
FEMFEu̇FE + Etot(NuFE) − (Fext

FE)T
uFE (21)

where MFE = NT MN is the macro mass matrix and F
ext
FE = NT

F
ext is the macro

external force vector. Finally, the equation of motion of the macro model obtained

from (21) is :

MFEüFE = −
∂Etot(NuFE)

∂(NuFE)
N + F

ext
FE (22)

3.2 Perfectly mathed Layer

As we only couple the macro scale of the displacement field, micro scale of the dis-

placement from the fine model is not transmited to the coarse model and it can be

reflected. In order to avoid such reflections, we add a perfectly match layer (PML) on

the boundaries of the fine model (see Figure 7). Using (13), we obtain the following

equation of motion :

miüi = −
∂Etot(u)

∂ui

+ f ext
i (23)
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We suppose f ext
i = 0 in the perfectly matched layer, the Fourier transformed of (23)

is :

mi (−iω)2
ui = −

∂Etot(u)

∂ui

. (24)

The perfectly matched layer is constructed by converting the real coordinates into

complex coordinates as a function of frequency ω [11, 12]. Hence, the following

operation is performed :

∂ui →

(

1 +
d(xp)

−iω

)2

∂ui, (25)

where d(xp) is the damping term that controls the damping as a function of xp, the

distance away from the PML boundary (see Figure 8). Combining (24) and (25), we

obtain :

mi

(

1 +
d(xp)

−iω

)2

(−iω)2
ui = −

∂Etot(u)

∂ui

. (26)

Finally, by performing inverse Fourier transform on (26), the perfectly matched layer

equation of motion becomes :

miüi = −
∂Etot(u)

∂ui

− 2mid(xp)u̇i − mid(xp)
2ui, (27)

which leads to

Mü = −
∂Etot(u)

∂u
− 2MDu̇ − MD2

u, (28)

where is D a diagonal matrix of the damping term d(xp).

3.3 Implementation

The same discretisation in time ∆t is used in both coarse and fine models and a verlet

algortihm is chosen to update the velocities and displacements at each time step.

Moreover, in region with the fine model without PML, we update the macro dis-

placement of the coarse model by extracting the macro displacement from u. The

PML added to the fine model will absorb all informations from the fine scale. Thus, at

each time step we update the macro displacement in the PML region with the macro

displacement uFE from the coarse model.

Finally, we use as similar algorithm as [13] to run the simulation :

1. Update displacements u
n+1 and u

n+1
FE :

(

u

uFE

)n+1

=

(

u

uFE

)n

+ ∆t

(

u̇

u̇FE

)n

+
∆t2

2

(

ü

üFE

)n

(29)

2. Update velocity u̇
n+1(∗) :

u̇
n+1(∗) = u̇

n +
∆t

2
ü

n (30)
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3. Compute accelerations ü
n+1 for ü

n+1
FE :

ü
n+1 = M−1

(

Fext −
∂Etot(un+1)

∂un+1

)

− D2
u

n+1 − Du̇
n+1(∗) (31)

ü
n+1
FE = M−1

FE

(

F
ext
FE −

∂Etot(Nu
n+1
FE )

∂Nu
n+1
FE

N

)

(32)

4. Update velocities u̇
n+1 and u̇

n+1
FE :

(

u̇

u̇FE

)n+1

=

(

u̇

u̇FE

)n

+
∆t

2

[

(

ü

üFE

)n

+

(

ü

üFE

)n+1
]

(33)

5. Cross macro scales :
{

NuFE = Pu

Nu̇FE = Pu̇
in the fine model (34)

{

u = NuFE + Qu

u̇ = Nu̇FE + Qu̇
in the PML (35)

3.4 Application

To evaluate the reductions of spurious reflections, we use this method on 1D problems

as defined in Figure 8. We use 120 particles in the fine model (PML included). The

size L of the coarse element is equal to 20×r0, 10 elements are used in the overlapping

region that include the elements needed for the PML.

Figure 8: Definition of the 1D problem

We generate incident waves with different wavelengths in the fine model, then we

calculate the parts of this initial energy that have been reflected, transmitted and ab-

sorbed by the fine-coarse scale interface. In Figures 9 and 10, we see some examples

of incident wave before and after passing the fine-coarse scale interface.

As illustrated in Figure 11, we note that for short wavelength, almost all the initial

energy have been absorbed, and globally we avoid any reflection at the fine-coarse

scale interface. In the case of large wavelenghts, the initial energy is transmitted

to the coarse model without dissipations. Nevertheless, for short-large wavelengths,

the energy of the system is increased by the passing over the interface which has no

physical meaning. Hence, this point should be the object of further works.
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Figure 9: Initial incident waves
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Figure 10: Incident waves after reaching the interface
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Figure 11: Repartition of the energy after the wave reached the interface

4 Conclusions

We explored and proposed solutions to the two different mechanisms responsible

for spurious phenomena in dynamics. The proposed NL2L scheme based on a QC-

approximation shows relevant results on 2D dynamics simulations to avoid reflections

at local/nonlocal interfaces. In the case of fine/coarse interfaces, the first results point

out that we are also able to avoid spurious reflections. Nevertheless further studies are

needed to understand and to control the rise of energy for large wavelenghts.
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