
Abstract

Smart structures include elements of active, passive or hybrid control. For compli-

cated structures, mainly the ones including nonlinearities, or nonlinear control laws,

the theoretical results from the area of control are not very helpful. In this paper, the

fuzzy control is considered, which is a suitable tool for the systematic development

of active control strategies, and the Differential Evolution algorithm is proposed and

used for the calculation of the continuous and discrete free parameters in the fuzzy

control system. Numerical applications for smart piezoelastic beams are presented.

The results obtained are compared with the ones obtained with the fuzzy controller

optimized using Particle Swarm Optimization and with the fuzzy controller optimized

using a Genetic Algorithm.

Keywords: differential evolution, particle swarm optimization, genetic algorithms,

active control of structures, fuzzy control, smart structures.

1 Introduction

During the last years, there has been an increasing application of nature inspired ap-

proaches and evolutionary approaches to many fields, and, especially when the task

is optimization within complex domains of data or information. Nature inspired ap-

proaches represent successful animal and micro-organism team behaviour. Swarm

or flocking intelligence inspired Particle Swarm Optimization [1], ants foraging be-

haviors gave rise to Ant Colony Optimization [2], the mimesis of biological immune

systems led to Artificial Immune Systems [3, 4], the simulation of the foraging be-

haviour of bees led to many approaches like the Artificial Bee Colony (ABC) Algo-

rithm [6, 5], the Virtual Bee Algorithm [7], etc., while the mating behaviour of bees

led to the Honey Bees Mating Optimization Algorithm [8, 9]. Evolutionary algorithms
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(EAs) [10] are search methods inspired from natural selection and survival of the fittest

in the biological world. They simulate the evolution of individual structures via pro-

cesses of selection and pertubation and have been successfully applied to a variety of

optimization problems.

Differential Evolution (DE) is a stochastic, population-based algorithm that was

proposed by Storn and Price [11, 12, 13]. Recent books for the DE can be found in

[14, 15]. DE has the basic characteristics of the evolutionary algorithms as it is an

evolutionary algorithm. It focuses in the distance and the direction information of

the other solutions. In the differential evolution algorithms [16], initially, a mutation

is applied to generate a trial vector and, afterwards, a crossover operator is used to

produce one offspring. The mutation step sizes are not sampled from an a priori

known probability distribution function as in other evolutionary algorithms but they

are influenced by differences between individuals of the current population.

In this paper, the Differential Evolution is used in order to optimize the parameters

of a fuzzy control system that is used for the vibration control problem of a flexible

structure (smart beam). The results obtained are compared with the results of the

fuzzy control system when its parameters are not optimized by any method, with a

fuzzy control system that its parameters are optimized by Particle Swarm Optimization

[17] and with a fuzzy control system that its parameters are optimized by a Genetic

Algorithm [17].

Beams are fundamental elements in many mechanisms and structures [18, 19, 20,

21, 22, 23]. Therefore, the modeling of the dynamic behavior as well as of the control

of beams is a significant problem. A smart structure with bonded sensors and actu-

ators as well as an associated control system, which enable the structure to respond

to external excitations in such a way that it suppresses undesired effects, is consid-

ered. The choice of the control technique is important for the design of controllers

which ensures the performance of the flexible structure under required conditions and

at the same time can be easily applied. It should be mentioned here that the proposed

method is quite general and can be used for the design of other smart structures like

plates, shells, etc. Results in this direction will be reported in the future.

The rest of the paper is organized as follows: In section 2, the modelling of the

smart beams is outlined. In section 3, an analytical description of the proposed fuzzy

control system optimized by DE is given while in section 4 the numerical results are

presented. In the last section, the conclusions and some proposals for further research

are given.

2 Models of Smart Beams and Structures

A smart laminated composite beam with rectangular cross-section having length L,

width b, and thickness h is considered (Figure 1) where the control actuators (thickness

hA) and the sensors (thickness hS) are piezoelectric patches symmetrically bonded

on the top and the bottom surfaces of the host beam. Both piezoelectric layers are
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positioned with identical poling directions and can be used as sensors or actuators.

The mathematical formulation of the model is based on the shear formulation beam

theory (Timosenko theory) and the linear theory of piezoelectricity. Furthermore,

quasi-static motion is assumed, which means that the mechanical and electrical forces

are balanced at any given instant. The numerical solution of the model is based on

the development of superconvergent finite elements using the form of exact solution

of the Timoshenko beam theory and Hamilon’s principle (see [19, 24, 25, 26, 27]).

Figure 1: Laminated beam with piezoelectric sensors, actuators and the schematic

control system

The linear constitutive equations of the two coupled fields read:

{σ} = [Q]
(

{ε} − [d]T{E}
)

(1)

{D} = [d][Q]{ε} + [ξ]{E} (2)

where {σ}6×1 is the stress vector, {ε}6×1 is the strain vector, {D}3×1 is the electric

displacement, {E}3×1 is the strength of applied electric field acting on the surface of

the piezoelectric layer, [Q]6×6 is the elastic stiffness matrix, [d]3×6 is the piezoelec-

tric matrix and [ξ]3×3 is the permittivity matrix. Equation (1) describes the inverse

piezoelectric effect (which is exploited for the design of the actuator). Equation (2)

describes the direct piezoelectric effect (which is used for the sensor). Additional

assumptions are used for the construction of the simplified model: (a) Sensor and ac-

tuator (S/A) layers are thin compared with the beam thickness. (b) The polarization

direction of the S/A is the thickness direction (z axis). (c) The electric field loading

of the S/A is uniform uni-axial in the x-direction. (d) Piezoelectric material is homo-

geneous, transverse isotropic and elastic. Therefore, the set of equations (1) and (2) is

reduced as follows

{

σx

τxz

}

=

[

Q11 0
0 Q55

]({

εx

γxz

}

−

[

d31

0

]

Ez

)

(3)
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Dz = Q11d31εx + ξ33Ez (4)

The electric field intensity Ez can be expressed as

Ez =
V

hA

(5)

where V is the applied voltage across the thickness direction of the actuator and hA

is the thickness of the actuator layer.

Since only strains produced by the host beam act on the sensor layer and no elec-

tric field is applied to it, the output charge from the sensor can be calculated using

Equation (4). The charge measured through the electrodes of the sensor is given by

q(t) =
1

2







(

∫

Sef

DzdS

)

z=
h
2

+

(

∫

Sef

DzdS

)

z=
h
2
+hS







(6)

where Sef is the effective surface of the electrode placed on the sensor layer.

The current on the surface of the sensor is given by

i(t) =
dq(t)

dt
(7)

The current is converted into open-circuit sensor voltage output by

V S = GSi(t) (8)

where GS is the gain of the current amplifier.

Furthermore, it is supposed that the bending-torsion coupling and the axial vibra-

tion of the beam centerline are negligible and that the components of the displacement

field {u} of the beam are based on the Timoshenko beam theory which, in turn, means

that the axial displacement is proportional to z and to the rotation ψ(x, t) of the beam

cross section about the positive y-axis and that the transverse displacement is equal to

the transverse displacement w(x, t) of the point of the centroidal axis (y = z = 0).
The strain-displacement relationships read

εx = z
∂ψ

∂x
, εxz = ψ +

∂w

∂x
(9)

The kinetic energy of the beam with the layers can be expressed as

T =
1

2

∫

V

ρ{u̇}T{u̇}dV =
b

2

∫ L

0

∫ h
2
+hS

−
h
2
−hA

ρ[(zψ̇)2 + ẇ2]dzdx (10)

on the assumption that the host beam and the piezoelectric patches have identical

densities. The strain (potential) energy is given by
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U =
1

2

∫

V

{ε}T{σ}dV =

b

2

∫ L

0

∫ h
2
+hS

−
h
2
−hA

[

Q11

(

z
∂ψ

∂x

)2

+Q55

(

ψ +
∂w

∂x

)2
]

dzdx (11)

If the only loading consists of moments induced by the piezoelectric actuators and

since the structure has no bending-twisting couple then the first variation of the work

has the form

δW = b

∫ L

0

MAδ

(

∂ψ

∂x

)

dx (12)

where δ is the first variation operator andMA is the moment per unit length induced

by the actuator layer and is given by

MA =

∫

−
h
2

−
h
2
−hA

zσA
x dz =

∫

−
h
2

−
h
2
−hA

zQ11d31E
A
z dz (EA

z =
VA

hA

) (13)

Using Hamilton’s principle the equations of motion of the beam are derived.

For the finite element discretization beam finite elements are used, with two degrees

of freedom (d.o.fs) at each node: the transversal deflectionwi and the rotation ψi. They

are gathered to form the degrees of freedom vector Xi = [wi ψi]. After assembling

the mass and stiffness matrices for all elements, it is obtained the equation of motion

in the form

MẌ + ΛẊ +KX = Fm + Fe (14)

where M and K are the generalized mass and stiffness matrices, Fe is the gene-

ralized control force vector produced by electromechanical coupling effects, Λ is the

viscous damping matrix and Fm is the external loading vector. It should be mentioned

here that technical bending theories for plates can be constructed analogously.

The main objective is to design control laws for the smart beam bonded with piezo-

electric S/A subjected to external induced vibrations. For this purpose, a fuzzy control

system optimized by DE is applied in this paper. A two-input, single-output fuzzy in-

ference controller is tested in this paper. This configuration is suitable for a feedback

control force based on the displacement and velocity at a given point (collocated con-

figuration of the local controller). If needed, several independent and decentralized

(local) fuzzy controllers, in general with different characteristics, can be installed at

the various points of a larger structure.
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3 Fuzzy Control System optimized by Differential

Evolution

3.1 Fuzzy Control

Fuzzy systems [28] can be applied in many fields and can solve different kinds of prob-

lems in various application domains. Fuzzy inference rules systematize existing expe-

rience and can be used for the mathematical formulation of nonlinear controllers. The

feedback is based on fuzzy inference and may be nonlinear and complicated. Knowl-

edge or experience on the controlled system is required for the application of this

technique. Less knowledge of the logic and availability of more observations (experi-

mental data) requires the use of some hybrid technique in the form of a neuro-fuzzy

controller. In the area of smart systems the application of neuro-fuzzy control has

been adopted by many authors. In particular, it seems to be suitable for the control of

structures with complicated or nonlinear characteristics, like a fuzzy uncertainty mo-

dellization adopted for structural engineering in [29], the tuned mass damper systems

for aseismic design [30, 31] or the semi-active control using active friction devices or

electrorheological fluid dampers [32].

In order to design a fuzzy control system (construct the control rules, state the mem-

bership functions, tune the parameters, ...) various approaches have been proposed. In

the last years, there is an increasing interest to optimize the fuzzy control systems with

heuristic, metaheuristic, and nature inspired approaches. Mainly, genetic algorithms

have been used for these purposes while Particle Swarm Optimization and Differential

Evolution have not been used so extensively. For example in [33] a method for design-

ing fuzzy logic controllers with symmetric partitioning of the universe of discourse is

presented where both the rule base and membership functions of the input and output

variables are designed optimally using a genetic algorithm. In [34] a genetic algo-

rithm based optimal fuzzy controller design is proposed where the design procedure

is accomplished by establishing an index function as the consequent part of the fuzzy

control rule. An efficient genetic reinforcement learning algorithm for designing fuzzy

controllers is proposed in [35]. In [36] the proposed algorithm combines the genetic

algorithm (GA) and the least-squares estimate (LSE) method to construct the genetic

algorithm-based neural fuzzy system for temperature control. An extensive analysis

of the genetic fuzzy systems can be found in [37]. [38] presents a particle swarm

optimization method for optimizing a fuzzy logic controller for a photovoltaic grid

independent system consisting of a PV collector array, a storage battery, and loads

(critical and non-critical loads). A learning approach based on Particle Swarm Opti-

mization for the determination of the consequent parameters and premise parameters

of a Takagi and Sugeno type fuzzy model is formulated and explained in [39]. [40] in-

troduces the use of the adaptive particle swarm optimization (APSO) for adapting the

weights of fuzzy neural networks. In [41] proposes a zero-order Takagi-Sugeno-Kang

(TSK)-type fuzzy system learning using a two-phase swarm intelligence algorithm

(TPSIA) where the first phase of TPSIA learns fuzzy system structure and parameters
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Displacement

Velocity FarUp CloseUp Equilibrium CloseDn FarDn

Up Max Med+ Low- Null High-

Null Med+ Low+ Null Low- Med-

Down High+ Null Low+ Med- Min

Table 1: Fuzzy Inference System Rules, e.g. If displacement is far up and velocity is

up then control force is max

by on-line clustering-aided ant colony optimization and phase two aims to further opti-

mize all of the free parameters in the fuzzy system using particle swarm optimization.

In [42] a new technique for eliciting a fuzzy inference system (FIS) from data for non-

linear systems is proposed and the parameters of the refined fuzzy model are tuned

by means of differential evolution. In [43] a method is presented for the automatic

design of a hierarchical fuzzy logic controllers (HFLC) using differential evolution

and the feasibility of the method is demonstrated by developing a two-stage HFLC

for controlling a cart-pole with four state variables. A hybrid method to train Fuzzy

Cognitive Maps, based on a two stage learning approach, first stage the nonlinear

Hebbian learning algorithm and second stage the differential evolution algorithm, has

been developed, tested and applied in three problems with different complexity levels

in [44].

3.2 Fuzzy control system for vibration control of smart structures

In order to reduce the displacement field of the cantilever beam system, a non-linear

fuzzy controller [27, 45] was constructed by using the Fuzzy Toolbox of Matlab. More

specifically, a Mamdani-type Fuzzy Inference System, consisted of two inputs and one

output, was developed. The system receives as inputs the displacement (u) and the

velocity (u̇), while gives as output the increment of the control force (z). Triangular

and trapezoidal shape membership functions were chosen both for inputs and output.

In order to describe the present system-controller 15 rules were used. All rules have

weights equal to 1 and use the AND-type logical operator. These rules are presented in

the Table 1. The implication method was set to minimum (min), while the aggregation

method was set to maximum (max). The defuzzified output value has been created by

using the MOM (Mean of Maximum) defuzzification method.

3.3 Structural dynamics and fuzzy control

The Houmbolt numerical integration method was chosen [27, 45] in order to integrate

the equations of motion (Equation 14).

According to this method, when acceleration is constant, and the Houmbolt factors

are set to
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β = 0.25, γ = 0.5 (15)

The total integration time was chosen equal to 1 sec, while the time step (∆t) equal

to 0.001 sec.

The integration constants are

c1 =
1

β(∆t)2
, c2 =

1

β∆t
, c3 =

1

2β
, c4 =

γ

β∆t
, c5 =

γ

β
, c6 = ∆t(

γ

2β
− 1) (16)

In each step (t) of the numerical integration, the fuzzy controller provides a control

force (z), according to the given input values (displacement u and velocity u̇). Both

the control force and the external loads provide the next step’s (t + ∆t) values of

displacement and velocity.

3.4 Fuzzy control system optimized by Differential Evolution for

the vibration control of smart structures

Some parameters of the fuzzy control system described in section 3.2 were optimized

by Differential Evolution. More precisely, the parameters (the break points) of the

triangular and trapezoidal membership functions, the weights of the rules, and the

logical operator are considered as variables. Firstly, a number of individuals is ran-

domly initialized, where an individual is a solution to the problem. In each individual,

the first values correspond to the parameters of the membership functions and can take

continuous values, the next 15 values correspond to the weights of the rules and can

take continuous values in the range [0,1] while the last 15 values correspond to the

AND/OR - type logical operator and can take discrete values equal to 1 for AND and

2 for OR. It should be noted that in DE implementations usually only continuous or

discrete values exist. In our case, there is a combination of continuous and discrete

values in each individual and in order to solve the problem a combination of the equa-

tions used for finding the new solution for the individual in DE for continuous and

discrete problems is used.

More precisely, the position of an individual is represented by a d-dimensional

vector in problem space si = (si1, si2, ..., sid), i = 1, 2, ..., N (N is the population

size, d is set equal to the values parameters plus the values of weights plus the values

of the logical type operator).

The Fitness function that has to be minimized is the following error function

err = ||X − X̄|| (17)

where X is the L2 norm in Rm (m is the total number of the assumed d.o.fs), X =
[X1, ..., Xm] is the nodal displacements and rotations array and X̄ = [X̄1, ..., X̄m] is

the wished value of the nodal displacements and rotations array (it is set equal to zero).
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In Differential Evolution, each individual is randomly placed in the d-dimensio-

nal space as a candidate solution. The mutation operator produces a trial vector for

each individual of the current population by mutating a target vector with a weighted

differential. This trial vector will, then, be used by the crossover operator to produce

offspring. For each parent, si(t), the trial vector, ui(t), is generated as follows: a target

vector, si1(t), is selected from the population, such that i 6= i1. Then, two individuals,

si2 and si3 , are selected randomly from the population such that i, i1, i2 and i3 are all

different. Using these individuals, the trial vector is calculated by perturbing the target

vector as follows (in the continuous case)

ui(t) = si1(t) + β(si2(t) − si3(t)) (18)

where β ∈ (0,∞) is the scale factor. The upper bound of β is usually the value 1

because as it has been proved if the β > 1 there is no improvement in the solutions

[16, 15] and the most usually utilized value is β = 0.5 .

For the discrete values of the individuals, after the calculation of the target vector,

the following equations are used in order to transform the continuous values calculated

by Equation 18 into discrete values

sig(ui) =
1

1 + exp(−ui)
(19)

ui(t) =

{

1, if rand3 < sig(ui)
0, if rand3 ≥ sig(ui)

(20)

The base vector si1 can be determined in a variety of ways and the two most known

ways are by selecting a random member of the population or by selecting the best

member of the population. In this paper, we use a random member of the population

because after a number of tests the choise of a random member produced the best

results. The differences vector si2 and si3 are selected randomly.

After the completion of the mutation phase of the algorithm, a binomial crossover

operator [16] or uniform crossover operator [15] is applied. In this crossover opera-

tor, the points are selected randomly for the trial vector and for the parent. Initially, a

crossover operator number (Cr) is selected [15] that controls the fraction of parame-

ters that are selected from the trial vector. TheCr value is compared with the output of

a random number generator, randi(0, 1). If the random number is less or equal to the

Cr the corresponding value is inherited from the trial vector, otherwise it is selected

from the parent

s′i(t) =

{

ui(t), if randi(0, 1) ≤ Cr

si(t), otherwise.
(21)
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Thus, the choise of the Cr is very significant because if the value is close or equal

to 1, then, most of the values in the offspring are inherited from the trial vector (the

mutant) but if the value is close to 0, then, the values are inherited from the parent

[15].

After the crossover operator, the fitness function of the offspring s′i(t) is calculated

and if it is better than the fitness function of the parent, then, the trial vector is selected

for the next generation, otherwise the parent survives for at least one more generation.

The algorithm stops after a prespecified number of generations.

4 Numerical Results

The problem of a cantilever beam was studied in the present paper. The beam has

a total length equal to 0.8 m and the structure has been discretized with four finite

elements resulting in a model with eight degrees of freedom. A dynamic loading is

used as disturbance that simulates a strong wind and is a periodic sinusoidal load-

ing pressure (sin20t) that influences the displacement of the fourth (free end) finite

elements. The purpose of the fuzzy controller is to reduce the oscillation. The con-

troller is collocated, takes as input the displacement and the velocity of the free end

and gives back the control force to be applied at the same point. The results obtained

with the fuzzy controller optimized by DE are compared with those of the classical

fuzzy controller (without any optimization procedure), with the results of fuzzy con-

troller optimized by Particle Swarm Optimization (PSO) [17] and with the results of

fuzzy controller optimized by a Genetic Algorithm (GA). The results of the classic

fuzzy controller have been compared with the results that arose from classical control

(LQR) in [27, 45] giving, with suitably chosen parameters for the fuzzy controller,

comparable reduction of the vibrations with the LQR control by using fewer inputs

(two instead of sixteen measurements in this example) and less effective reduction of

the velocities. The whole algorithmic approach was implemented in Matlab on a Cen-

trino Mobile Intel Pentium M 750 at 1.86 GHz. The parameters of the DE algorithm

are selected after thorough testing and are:

• the number of individuals is equal to 15,

• the number of generations is equal to 20,

• the parameter β is set equal to 0.5,

• the crossover rate Cr is set equal to 0.8.

Particle Swarm Optimization (PSO) is a population-based swarm intelligence al-

gorithm that was originally proposed by Kennedy and Eberhart as a simulation of the

social behavior of social organisms such as bird flocking and fish schooling [1]. PSO

uses the physical movements of the individuals in the swarm and has a flexible and

well-balanced mechanism to enhance and adapt to the global and local exploration
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abilities. The wide use of PSO, mainly during the last years, is due to the number

of advantages that this method has, compared to other optimization methods. Some

of the key advantages are that this optimization method does not need the calculation

of derivatives, that the knowledge of good solutions is retained by all particles and

that particles in the swarm share information between them. Furthermore, PSO is less

sensitive to the nature of the objective function, can be used for stochastic objective

functions and can easily escape from local minima. Concerning its implementation,

PSO can easily be programmed, has few parameters to regulate and the assessment

of the optimum is independent of the initial solution. In Particle Swarm Optimization

implementation, the parameters were chosen in such a way that in all algorithms the

same number of function evaluations are needed. The results of the Particle Swarm

Optimization fuzzy controller are analyzed in more details in [17]. Thus, the parame-

ters are:

• the number of swarms is set equal to 1,

• the number of particles is equal to 15,

• the number of iterations is equal to 20,

• the parameters e1 and e2 are both set equal to 2.

Genetic Algorithms (GAs) [46] are search procedures based on the mechanics of

natural selection and natural genetics. A GA is a stochastic iterative procedure that

maintains the population size constant in each iteration, called a generation. Their ba-

sic operation is the mating of two solutions in order to form a new solution. To form

a new population, a binary operator called crossover, and a unary operator, called mu-

tation are used [16, 47]. In Genetic Algorithm implementation, the parameters were

chosen in such a way that in all algorithms the same number of function evaluations

are needed. Thus, the parameters for the GA are:

• the number of individuals is equal to 15,

• the number of generations is equal to 20,

• the mutation rate is set equal to 0.5,

• 1-point crossover was selected with crossover rate equal to 0.8.

The load, the displacement, the displacement velocity, the rotation and the rotation

velocity, for the four kinds of control (classic fuzzy control, fuzzy control optimized

by DE, fuzzy control optimized by PSO and fuzzy control optimized by GA), are pre-

sented in the graphs below. The values without control are shown with a dashed line.

The membership functions obtained by the fuzzy controller without any optimization

procedure (Figures 2(a), 3(a)), when optimized by DE (Figures 2(b), 3(b)), when op-

timized by PSO (Figures 2(c), 3(c)) and when optimized by GA (Figures 2(d), 3(d))
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Figure 2: Membership functions for the inputs of the classical fuzzy controller (a), the

fuzzy controller optimized by DE (b), the fuzzy controller optimized by PSO (c) and

the fuzzy controller optimized by GA (d)

are presented. Figure 4 presents the control force at the free end for classic fuzzy con-

troller, for the fuzzy controller optimized by DE, for the fuzzy controller optimized by

PSO and for the fuzzy controller optimized by GA.

As it can be seen, the fuzzy controllers optimized by DE, by PSO and by GA give

superior control results compared to the classical fuzzy controller. More precisely, the

displacements (Figures 5) and the rotations (Figures 7) are almost zero in the case of

the fuzzy controller optimized by DE, in the case of fuzzy controller optimized by PSO

and in the case of the fuzzy controller optimized by GA and the displacement (Figure

6) and rotation (Figure 8) velocities have significantly smaller values for the fuzzy

controller optimized by DE, for the fuzzy controller optimized by PSO and for fuzzy

controller optimized by GA compared with the ones obtained by the classical fuzzy

controller. It should be noted that the fuzzy controller optimized by DE gives better

control results than the fuzzy controller optimized by PSO and the fuzzy controller

optimized by GA, as the displacements (Figures 5(b)), the rotations (Figures 7(b)), the

displacement velocities (Figure 6(b)) and the rotation velocities (Figure 8(b)) obtained

by the fuzzy controller optimized by DE have smaller values compared with the ones

12
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Figure 3: Membership functions for the outputs of the classical fuzzy controller (a),

the fuzzy controller optimized by DE (b), the fuzzy controller optimized by PSO (c)

and the fuzzy controller optimized by GA (d)

of the fuzzy controller optimized by PSO and of the fuzzy controller optimized by

GA. Of course, as the differences in the results are small we can say that all methods,

DE, PSO and GA, can be applied with very good results in order to optimize the fuzzy

controller used for the vibration control of beams.

5 Conclusion

In this paper, a fuzzy control system optimized by Differential Evolution (DE) was

used for the vibration control of beams with piezoelectric sensors and actuators. The

parameters of the fuzzy controller was selected optimally by using the DE algorithm.

The results obtained for a sinusoidal loading pressure using the fuzzy controller sys-

tem optimized by DE are very efficient. A comparison of the proposed method with

a classic fuzzy controller, a fuzzy controller optimized by PSO and a fuzzy controller

optimized by GA for this specific problem revealed the high performance of the pro-

posed method. Also, a comparison between them revealed the fact that the fuzzy

controller optimized by DE gives superior results compared to the fuzzy controller
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Figure 4: Control force at the free end for classical fuzzy controller (a), for the fuzzy

controller optimized by DE (b), for the fuzzy controller optimized by PSO (c) and for

the fuzzy controller optimized by GA (d)

optimized by PSO and the fuzzy controller optimized by GA. Future research is in-

tended to be focused in the application of the proposed algorithms for the design of

other smart structures like plates, shells and in the modification of the methods in or-

der to be used for optimally design other parts of the fuzzy system like the definition

of the control rules.
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