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Abstract 
 
The performance of tuned mass dampers (TMDs) diminishes as the input duration 
shortens. As a result, they are not recommended for use against short-duration, 
pulse-like ground motions, such as those occurring in near-field (NF) zones in the 
presence of forward-directivity or fling-step effects. Yet a systematic assessment of 
this control loss is still missing. In this paper, a recent analytical model of ground 
motion pulses is applied to the design and evaluation of TMDs against impulsive 
earthquakes. Based on this model, first a new optimization method is introduced as 
an alternative to the classical H∞ approach. Then the two strategies are tested on 
single- and multi- degrees-of-freedom linear structures subject both to analytical 
pulses and to a large set of NF records possessing pulse-like features. The resulting 
statistical evaluation, expressed by percentile response spectra, shows the 
advantages and disadvantages of a pulse-oriented TMD design, and improves the 
general understanding of TMDs effectiveness under impulsive ground motions. 
 
Keywords: earthquake engineering, structural control, seismic design, damping, 
earthquake resistant structures, ground motion, impulsive loads, response spectra. 
 
1  Introduction 
 
Passive tuned mass dampers (TMDs) are widely used in Civil Engineering to 
mitigate vibrations induced by quasi-stationary dynamic loads (winds, sea waves, 
pedestrians), but their seismic performance is known to depend on ground shaking 
properties. Requiring the motion of the primary structure to react with, TMDs prove 
effective against long-duration, narrow-band ground motions, but may fail in 
reducing the peak response to pulse-like earthquakes [1].  

One typical example of pulse-like earthquakes is given by near-field (NF) ground 
motions. Ground shaking near a fault rupture may be characterized by a short-
duration impulsive motion that exposes structures to high input energy at the 
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beginning of the record. This pulse-type motion can be explained through the 
concepts of “forward-directivity” and “fling-step” effects [2]. The former is due to 
the fault rupture propagating towards the site at a velocity close to the shear wave 
velocity, causing most of the seismic energy to reach the site within a short time, in 
the form of a large energy pulse at the beginning of the record, mostly oriented in 
the fault-normal direction. The latter is due to permanent ground displacements 
accumulating at the site as a result of tectonic movements. Both effects may result in 
large-amplitude, long-period pulses in the velocity and displacement time histories, 
particularly challenging for the structural safety of long-period structures. 

Many studies have been devoted to improving the performance of structures 
exposed to NF ground motion. The use of simplified analytical models of ground 
motion pulses may prove a valid tool for the systematic design and assessment of 
seismo-protective systems. Several models are available for this purpose [3,4]. Most 
of these models, based on discontinuous functions, are not ideal for extensive 
parametric studies. Continuous models have been proposed recently which sound 
more promising for that purpose [5]. One of them is the velocity pulse model 
suggested by He and Agrawal (2008) to study the performance of supplemental 
viscous dampers on a base-isolated building [6]. Based on Belarge model and 
essentially consisting of an amplitude modulated sinusoid, this model can 
successfully depict both buildup and decaying phases of recorded ground motions, 
beyond possessing two valuable properties: (a) existence of a closed-form solution 
for a single-degree-of-freedom (SDOF) structure subject to the ground model; (b) 
existence of a counterpart frequency domain and state-space domain expression that 
can be used in the design of seismic protective systems. 

In this paper, in order to show the possible advantages of a pulse-oriented TMD 
design, this model is applied to the optimization and evaluation of TMDs against 
impulsive earthquakes. A new “pulse design” is introduced as an alternative to the 
classical H∞ approach, and the two strategies are tested on SDOF and multi-degrees-
of-freedom (MDOF) linear structures subject to both analytical pulses and NF real 
records. The resulting statistical assessment, expressed by percentile response 
spectra, shows the pros and cons of a pulse-oriented TMD design and improves the 
general understanding of TMD performance under impulsive ground motions. 
 
 
2  Design of TMDs under pulse-like ground motions 
 
2.1 The analytical pulse model 
 
The ground velocity analytical model proposed in [6] is defined as 
 
    ( ) ( ) 0          ,sin ttvteCttu p

atn
p ≥+= − ω                (1) 

 
where ωp = 2π/Tp = pulse circular frequency; Tp = pulse period; C = amplitude 
scaling factor; v = phase angle of the sinusoidal component; a = decay factor; n = 
skewness parameter; and t0 = beginning time of the pulse.  
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This model is essentially an amplitude modulated sinusoid and can simulate 
recorded NF ground motions by selecting appropriate pulse parameters. The 
parameters n and a, controlling the speed of, respectively, buildup and decay of the 
velocity pulse, can be alternatively expressed in terms of the number of cycles in the 
buildup phase, N, and the pulse decay ratio, ζp (which has the same physical 
meaning as the parameter ζg in the Kanai-Tajimi model), according to 
 
    )( paTnN =  and 22

pp aa ωζ +=               (2) 

 
The model degenerates into a sinusoid as N goes to infinity and/or ζp goes to zero.  

Pulse parameters have been identified in [6] for 36 recorded NF ground motions 
through nonlinear least square regression. The same set of records, herein termed 
Set-36 for brevity, and their analytical approximations will be used herein to assess 
TMDs performance.  

 

 
2.2 TMD design 
 
Several methods exist to design a TMD on an SDOF structure of period T and 
damping ratio ζs under ground motion. Denoting as mass ratio, μ, the ratio of the 
TMD mass to the structural mass, and as frequency ratio, r, the ratio of the TMD 
natural frequency to the structural natural frequency, any design method will consist 
in: (a) arbitrarily fixing μ (based on costs/benefits considerations); and (b) 
accordingly selecting r and the TMD damping ratio, ζt, so that the 2-DOF combined 
system, obtained mounting the TMD on the SDOF structure, shall be optimum in 
terms of some predefined objective. Depending on the chosen objective, various 
optimization techniques are available. The most widespread techniques minimize 
some norm of a given input-output steady-state transfer function of the combined 
system, typically chosen as the one from the ground acceleration to the structural 
displacement relative to the ground, here denoted as TF. Depending on the chosen 
norm, these techniques can be mainly distinguished into the H2 (norm) design [7] 
and the H∞ (norm) design [8]. Of course, these criteria assume the ground motion as 
a stationary excitation, irrespectively of any short-duration feature.  

In this study, two methods are compared. The first one is the classical H∞ design 
which, for the given ζs and μ, selects r and ζt so as to minimize the H∞ norm of the 
acceleration-to-displacement transfer function TF [10]. This equals to minimizing 
the maximum steady-state structural displacement amplitude under a sinusoidal 
acceleration time-history having constant amplitude and any possible frequency.  

The second one is a new pulse optimization, designated as Hp design, which 
degenerates into the H∞ design if the ground motion degenerates into a sinusoid, but 
differs from the H∞ design otherwise. In the Hp design, the ground acceleration is 
defined by Eqs. (2) and (3), posing v = 0 and t0 = 0s, and scaled to have a unitary 
maximum value; so the input signal depends exclusively on the pulse frequency, ωp, 
and on the pair of buildup and decay parameters, N and ζp. Then, for any assigned 
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pair N and ζp, the “pulse transfer function”, TFp, is evaluated for the combined 
system, reporting the pulse frequency ωp in the abscissas and the corresponding peak 
structural displacement in the ordinates. The new Hp design consists in numerically 
finding the optimal TMD parameters, r and ζt, which minimize the maximum of 
TFp, for the assigned values of ζs, μ, N and ζp. 

In Figure 1, assuming ζs = 2%, μ = 10%, N = 1.0, and ζp = 0.4, the two design 
methods are compared on a SDOF structure of period T = 1s. The numerical 
optimization provides the following TMD parameters: r = 0.873 and ζt = 0.194 for 
the H∞ design, r = 0.859 and ζt = 0.026 for the Hp design. On the left, the steady-
state transfer functions TF are plotted for, respectively, the uncontrolled structure, 
the H∞-controlled structure, and the Hp-controlled structure. On the right, the 
corresponding pulse transfer functions TFp are reported. A trade-off clearly emerges 
between the two design methods: the H∞ design, optimal against sine inputs, loses 
effectiveness under pulse-like inputs; the Hp, optimal for pulse mitigation, is 
severely impaired in steady-state terms. The reason is that, in order to minimize the 
peak response to the pulse load, the Hp design decreases TMD damping ratio with 
respect to the H∞ design, at such an extent that the dotted curve on the left looks 
more like Frahm’s undamped vibration absorber than like Den Hartog’s tuned mass 
damper. The reduced damping allows the TMD to more rapidly respond to the 
impulsive load, but hinders it in reducing the two peaks of the steady-state transfer 
function. Also, the reduced damping has a second inconvenient (not apparent in 
Figure 1), of diminishing TMD capability to control the post-peak, free-decay 
response of the structure.  

The two mentioned drawbacks, together with the need to rely on predictions of 
pulses features, pose the question of the true advantage of a pulse-oriented 
optimization, whose merits over a classical H∞ design seem substantially 
circumscribed. An answer will be attempted in the next section.  

 
 
 
 
 

 
 

Figure 1: H∞-and Hp-designed TMD (μ = 10%) on an SDOF structure: 
(left) TF (sine input); (right) TFp (pulse input) 
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3 Performance of TMDs on SDOF structures under 
pulse-like ground motions 

 
In this section, the performance of H∞-designed and Hp-designed TMDs on SDOF 
structures is evaluated under, respectively, analytical pulses and real records.  
 
 
3.1 Analytical pulses 
 
Two performance measures are used herein to evaluate TMDs against the analytical 
pulses in Eq. (1): the peak displacement ratio, Rd, obtained dividing the maximum of 
the controlled TFp by the maximum of the uncontrolled TFp; and the root-mean-
square (RMS) velocity ratio, Rv, obtained in the same way but replacing the peak of 
the displacement with the RMS of the velocity.  

Two mass ratios are considered, namely μ = 10% and μ = 50%. These 
percentages, although sensibly larger than the few percents commonly employed in 
wind or traffic mitigation, are however not at all unrealistic, as it will be shown in 
the next sections. 

For each μ, assuming ζs = 2%, the Hp optimization is repeated for a number of N-
ζp pairs in the range [0.2-5.0, 0.0-0.8]. Each N-ζp pair (univocally defining a ground 
motion) produces a different couple of TMD optimal parameters, r and ζt. The 
resulting “maps” are reported in Figure 2 for μ = 50%. The H∞ counterpart of these 
maps is obviously a single couple of optimal parameters, which for μ = 50% 
happens to be r = 0.556 and ζt = 0.408.  
 

 
 

Figure 2: Dependence of TMD optimal parameters r and ζt on pulse 
parameters N and ζp according to the Hp design (μ = 50%) 

 
Then, for each N-ζp pair, the response ratios Rd and Rv are evaluated, alternatively 
adopting H∞ or Hp as the design criterion. This results in four further maps for each 
μ. It is worth noticing that, according to such procedure, the Hp-designed TMD is 
tested under exactly the same motion for which it has been optimized. Results are 
reported in Figure 3 for μ = 50%. 
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Figure 3: Dependence of Rd and Rv on pulse parameters N and ζp according 
to, alternatively, the H∞ and the Hp design (μ = 50%) 

 
In each of the six said maps, 36 markers identify the N-ζp pairs which best fit, 
according to [6], the records in Set-36. The markers are mostly clustered in the range 
[0.6-1.2, 0.2-0.7], their mean value being at N = 1.134 and ζp = 0.432. 

In the said maps, the upper left corner (N = 0.2, ζp =0.8) and the lower right 
corner (N = 5, ζp = 0) represent, respectively, the most impulsive input and a perfect 
sinusoid. Actually, the entire lower side of the map (ζp = 0) represents a perfect sine. 
This explains why, moving rightwards and/or downwards along the maps, the Hp 
design tends to the H∞ design and the response ratios Rd and Rv decrease.  

Around the central cluster of markers, the Hp design enforces a reduction of r 
and, especially, of ζt, with respect to the H∞ design. These reductions improve peak 
control but significantly worsen RMS control. In any case, no matter what the 
design method, TMD performance around that cluster is severely diminished with 
respect to steady-state performance. Since the Hp design is by definition optimal in 
peak terms, large mass ratios appear necessary to satisfactorily control pulse-like 
excitations.  

Far from that cluster, other markers are located in a more favorable position, 
where, thanks to larger values of N and/or lower values of ζp, TMD performance 
improves and differences between the two methods are smaller. 

The large dispersion of the markers within the maps makes the Hp design 
dependent on the ability to predict the main pulse characters of future events. Since 
relying on site-specific accurate predictions is unrealistic, the maps should be 
interpreted, rather than as an operative design tool, as: (a) the representation of the 
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trade-off between Hp and H∞ design as well as between peak and RMS performance; 
(b) the proof that reducing r and ζt improves peak response mitigation under 
impulsive quakes; (c) the measure of the largest possible peak reduction achievable 
with a TMD. 

Results are summarized, for both μ = 10% and μ = 50%, in Table 1, which 
reports the optimal TMD parameters and the consequent response ratios 
corresponding to the 36 markers, in mean and maximum terms. In addition to the H∞ 
and the Hp methods a third method is introduced, named Hp

*, which is nothing but 
the Hp design applied admitting that no exact prediction is possible on the future 
event, and therefore assuming N = 1.0 and ζp = 0.4 (roughly corresponding to a kind 
of average pulse) at the design stage. In other words, whilst Hp is an unrealistic 
solution, merely showing the theoretical upper bound of TMD pulse performance, 
Hp

* is a viable design strategy, in which a reduction of r and ζt can be enforced at 
the design stage as a means to improve peak performance, at the cost of diminishing 
RMS performance.  
 

 
 

Table 1: Optimal TMD parameters and consequent response  
ratios under the analytical pulses in Set-36 

 
Table 1 reveals that: 

(a) The new Hp
* design seems a promising alternative to the classical H∞ design. 

Preference should be given to Hp
* or to H∞ according to how sensible the designer is 

to the two objectives of peak and RMS response reductions. As far as Rd is 
concerned, Hp

* surpasses H∞, not only in mean terms but especially in worst-case 
terms, showing an enhanced robustness against severe pulses. In this regard, passing 
from 0.878 to 0.806 (max Rd for μ = 10%) actually improves effectiveness (meant as 
the complement to unity of the response ratio) from 1-0.878 = 12.2% to 1-0.806 = 
19.4%, i.e. 1.6 times. On the other hand, Hp

* is only slightly worse than the best 
possible pulse design, Hp, showing that, even with no exact prediction of the pulse 
features, a pulse optimization is reasonable. As far as Rv is concerned, conversely, 
Hp

* worsens H∞ as a result of the lesser damping, though at an extent which may be 
acceptable for μ = 10%, and certainly is for μ = 50%; 

(b) Focusing on the Hp
* design, and assuming μ = 10%, the effectiveness in mean 

terms equals 30.9% and 44.5%, respectively for the peak displacement and the RMS 
velocity; assuming μ = 50% the corresponding values grow to, respectively, 44.7% 
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and 67.6%. Then, increasing the mass ratio from 10% to 50% improves TMD 
effectiveness 1.45 times in peak terms and 1.52 times in RMS terms. 

(c) A properly designed TMD with enough mass ratio can acceptably mitigate the 
effects of ground motion pulses. 
These conclusions hold as long as the pulse model in Eq. (1) is used and the 
performance is evaluated in worst-case terms based on input-output transfer 
functions. In the next subsection, their validity will be verified on real ground 
motion records. 
 
3.2 Real records 
 
Dealing with real records requires a little change of perspective as well as of 
analysis tools. Transfer functions, implying the structure being assigned and the 
ground motion frequency ωp being varied, are now replaced by response spectra, 
implying the structural period T being varied and the ground motion being assigned. 
For all the ground motions in Set-36, response spectra are computed under both the 
real record and its analytical approximation, for the sake of comparison. Spectra are 
evaluated, for the SDOF structure having ζs = 2% and T in the 0-10s range, in terms 
of peak relative displacement d, RMS relative velocity v, and peak absolute 
acceleration A. Both μ = 10% and μ = 50% are considered, and the three methods 
H∞, Hp and Hp

* are compared.  
In Figure 4, for example, displacement spectra are computed under the SCS052 

component of Northridge Earthquake, adopting the Hp
* design. The peculiar 

property of TMDs is apparent, of being advantageous on structures whose period is 
“tuned” to the ground motion and nearly useless elsewhere, i.e. of being seismically 
effective only when strictly needed. This property, intrinsic expression of robustness 
against the severity of seismic effects, results in fact in a “spectral-peak-smoothing 
effect” of TMDs against earthquake loadings. 

 

 
 

Figure 4: Northridge Earthq., Comp. SCS052: (left) record; (right) 
displacement spectra according to the Hp

* design 
 
To account for such effect, once the spectra are computed for the set of the 36 real 
records, for each structural period T the 36 spectral ordinates are sorted in ascending 
order, then “percentile response spectra” are deduced connecting, period after 
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period, the spectral ordinates of equal rank. Implicit in this statistical procedure is 
the assumption of equal-probability of the 36 ground motions. The procedure is then 
repeated for the set of the 36 analytical approximations. Results are exemplified for 
the 95% percentile in Figure 5, which refers to an Hp

*-designed TMD having μ = 
50%. The corresponding “percentile response ratio spectra”, obtained dividing the 
controlled by the uncontrolled percentile response spectra, are then reported 
(extended to μ = 10%) in Figure 6. Figure 6 also includes spectra corresponding to 
an MDOF structure, which will be explained in the next section. 
 

 
 

Figure 5: 95% percentile response spectra under the real records in Set-36 
and their analytical approximations, for a SDOF structure 

with or without an Hp
*-designed TMD (μ = 50%) 

 
 

 
 
Figure 6: 95% percentile response ratio spectra under the ground motions in Set-36, 
for SDOF and MDOF structures controlled through an Hp

*-designed TMD (μ = 10% 
or μ = 50%): (up) real records; (down) analytical approximation 

 
In Figure 5, coherently with the results obtained in [6] for an uncontrolled 5%-
damped SDOF structure, the spectra from real records and those from analytical 
pulses appear to match well for approximately T > 1.5s, whereas for T < 1.5s the 
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fitted analytical model proves inadequate because of unmodeled high frequency 
components.  
 

In Figure 6, as far as the SDOF structure is concerned (black curves), real and 
analytical spectra match on average quite well for T > 1.5s. An acceptable matching 
can be recognized, at some extent, for T as low as about 0.6s. Below this threshold, 
instead, discrepancies become unacceptable, with the TMD still effective against 
real records (except below 0.1s, due to the well-known inadequacy of TMDs to 
seismically control “rigid” structures) while even detrimental against their analytical 
approximations (because of their lack of high-frequency components).  

Another interesting result in Figure 6 is that the spectra show several sharp peaks 
superimposed to a nearly constant trend versus T. These peaks correspond to periods 
where the uncontrolled spectra do not experience significant dynamic amplification 
effects, i.e. where the structure is not sufficiently “tuned” to any of the 36 motions 
and therefore needs lesser protection. If an infinite number of motions had been used 
instead of the 36 considered here, these spectra would have had their peaks 
smoothed and would have approached the nearly constant trend underneath, making 
TMD performance look more favorable. This suggests the following criterion to 
condense along the T axis each percentile response ratio spectrum, in order to 
provide a synthetic (scalar) performance index: instead of simply averaging the 
response ratio along T, which would attribute an excessive weight to the said peaks, 
the average is computed of the inverse of the spectral ordinates, and the inverse of 
such average is assumed as the “performance index” (PI). This criterion, in fact 
weighing more the lower than the higher spectral ordinates, seems more adequate to 
catch the spectral-peak-smoothing effect, and will be used from here on. 

By applying such criterion, the displacement, velocity and acceleration PIs are 
reported in Table 2 for 2 different percentiles, namely 50% and 95%. Because of the 
bad matching observed for T < 1.5s, the average is restricted to the range T > 1.5s 
for the analytical motions. For the real records, the PIs are computed separately for T 
< 1.5s and for T > 1.5s. 

 
Table 2 suggests the following conclusions, valid for SDOF structures: 
(a) TMDs effectiveness improves with increasing the percentile of response. Such 

robustness towards the severity of seismic effects is a fundamental property of 
TMDs, reflecting their ability to intervene when the structure is more closely 
“tuned” to the earthquake. This trend is more evident for the analytical pulses than 
for the real records, as a result of the analytical pulses possessing a narrower 
frequency band. The 95% is of particular interest because assumed by many 
building codes worldwide as a reference value for the definition of design loads; 

(b) Focusing on the 95% percentile, for T > 1.5s the Hp
* method is slightly 

superior to the H∞ method in terms of Rd but inferior in terms of RA and particularly 
of Rv. For T < 1.5s (where the analytical model becomes inadequate), the Hp

* 
method (relying on that model) becomes inferior even in terms of Rd. As to the 
(practically inapplicable) Hp design, it does not show any significant advantage over 
the Hp

* method, and will no longer be insisted upon in the sequel. In short, as the 
transfer functions are replaced by the response spectra and real records are 
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considered, the trade-off between Hp
* and H∞ shifts in favor of the latter, and the Hp

* 
method keeps preferable only for peak displacement reduction of flexible structures; 

(c) Focusing on the 95% percentile, analytical ground motions portrait a TMD 
performance close to that obtained using real records. A slight performance 
overestimation is provided by the analytical model only in certain cases, with a 
maximum discrepancy of about 10% for Rv when the H∞ method is applied. If the 
50% percentile is considered, conversely, the analytical model systematically 
underestimates performance in the order of a 10%. It can be concluded that the 
analytical pulse model is an acceptable tool for the assessment of TMD performance 
on SDOF structures subjected to pulse-like records, particularly if large percentiles 
are of interest; 

(d) For real records, TMD effectiveness results on average about 10-15% larger 
for T < 1.5s than for T > 1.5s; 

(e) Focusing on the 95% percentile, and averaging between the two design 
methods as well as between real and analytical inputs, the following PIs are 
obtained: for μ = 10%, Rd = 0.79, Rv = 0.62, and RA = 0.76; for μ = 50%, Rd = 0.65, 
Rv = 0.43, and RA = 0.60. The possibility of extending such conclusions to MDOF 
structures will be considered in the next section. 

 
 
 
 
 

 
 

Table 2: PIs for the SDOF structure under the recorded (Rec.) or 
analytical (Anal.) pulse ground motions in Set-36 
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4 Performance of TMDs on MDOF structures under 
pulse-like ground motions 

 
TMDs assessment, so far limited to SDOF systems, is here extended to a planar 10-
storey shear-type building structure. The structure has a constant mass on every 
floor, a linearly decreasing inter-storey stiffness along the height (with the base 
stiffness being 4 times the top stiffness), and 2% damping ratio in every mode. The 
second and third eigenfrequencies are respectively 2.57 and 4.14 times the first one; 
and the first, second and third modal masses are respectively 77.5%, 12.2% and 
4.4% the total mass of the structure. As for the SDOF case, the first period T of the 
MDOF building is varied from 0 to 10s providing response spectra. The TMD, 
placed on the top storey, is tuned to the first mode of the structure (the target mode), 
according to alternatively the H∞ or the Hp

* methods. 
 

These methods, conceived for SDOF structures, can be adapted to MDOF 
structures through, for instance, the mass ratio equivalence proposed by Warburton 
[8]. The latter states that, as far as the target mode is sufficiently far from other 
modes, the TMD can be designed on an MDOF structure as for an SDOF structure, 
i.e. TMD optimum parameters r (referred now to the frequency of the target mode) 
and ζt are unchanged, provided that the definition of the mass ratio is properly 
adjusted for the MDOF structure. Namely, the (effective) mass ratio μ will now 
denote the ratio of the TMD mass to the effective modal mass of the target mode, 
m1eff, on its turn defined as the modal mass of the target mode, m1, divided by the 
amplitude, φ1top, of the mass-normalized modeshape of the target mode at the top 
floor (where the TMD is placed). As a result, μ is generally larger than the total 
mass ratio μtot, defined on its turn as the ratio of the TMD mass to the total structural 
mass. 

 
In this section, the TMD is assigned the same (effective) mass ratios (and thus the 

same values of r and ζt) used for the SDOF case, i.e. μ = 10% and μ = 50%, 
respectively corresponding to μtot = 4.06% and μtot = 20.3%. In other words, 
according to Warburton’s equivalence, a tuned mass equaling 4% of the total mass 
of the MDOF building is expected to reduce the structural response in the first mode 
as a 10% mass ratio TMD would do for an SDOF system, once the same optimal 
parameters are used. The MDOF/TMD combined system is then tested under the 
ground motions in Set-36, and percentile spectra are computed as for the SDOF 
case, expressed now in terms of 6 different structural responses: maximum peak 
relative displacement d; square root of the viscous energy dissipated during the 
earthquake by the structure, intended as a weighted measure of RMS velocities and 
then denoted as v; maximum peak absolute acceleration A; maximum peak inter-
storey drift ratio dr; peak base shear force S; peak base bending moment M. The 
95% percentile response ratio spectra obtained applying the Hp

* design, reported 
only in terms of d, v, and A for brevity’s sake, are given in Figure 6, superimposed 
to those corresponding to the SDOF case. The PIs for both the H∞ and the Hp

* 
methods are given in Table 3, which is the MDOF equivalent of Table 2. 
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Table 3: PIs for the MDOF structure under the recorded (Rec.) 
or analytical (Anal.) pulse ground motions in Set-36 

 
 
Figure 6 provides MDOF spectra which are very similar to the SDOF ones, except 
for the accelerations, whose curves rapidly converges to unity beyond a certain 
period, as soon as uncontrolled higher modal responses become prevalent. 
 

Comparing Table 3 with Table 2, it can be observed that: 
(a) Rd is unchanged for the MDOF case with respect to the SDOF case; 
(b) Rv increases for the MDOF case, although at different extents: for T < 1.5s, Rv 

is little affected (the first mode is still prevalent); for T > 1.5s, Rv increases about 15-
20% under real records, but only about 6% under analytical pulses (which excite less 
the higher modes due to their lacking of high frequency components), so that the 
discrepancy between real records and analytical pulses augments, reaching a 
maximum of 25% (instead of merely 10%), with the pulse model systematically 
overestimating TMD performance; 

(c) RA increases even more than Rv, typically about 15-25%; but since this 
happens for both real records and analytical pulses, the discrepancy between them 
remains small. 

 
In conclusion, as far as the peak displacement or peak accelerations are 

considered, the analytical approximation works for the MDOF structure as well as 
for the SDOF structure; for the RMS velocity, it overestimates TMD benefits. Also, 
the TMD is still effective to reduce d and v, but scarcely effective against A for 
medium-to-long periods. The H∞ and the Hp

* methods are comparable in reducing d, 
but H∞ is superior in reducing A and even more v. 

 
Not shown for brevity, results for the base shear force S and the base bending 

moment M are very similar to those reported above for d, while results for the drift 
ratio dr are somewhat intermediate between those obtained for d and for A. 
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5 Validation on a larger set of 166 real records with 
impulsive features 

 
To validate previous results on a larger set of real records, the H∞ and the Hp

* 
strategies are tested under 166 near-field records (including the 36 used above). 
Comparison with the analytical model is here abandoned. The 166 records, herein 
termed Set-166, are assembled through merging Set-36 with the following two sets, 
identified in the literature as representative of pulse-like NF ground motions (and 
characterized by moment magnitude Mw > 5.6): 

• Set-140: 70 ground-motion pairs (140 components) assembled in [9].  
• Set-104: 52 ground-motion pairs (104 components) used in [2].  

The resulting 166 records, downloaded from the PEER NGA strong-motion 
database, are here used with no further correction processing (neither rotation nor 
amplitude scaling), so as to provide an ensemble of records whose amplitude 
distribution is, grossly speaking, statistically representative of the seismic hazard for 
a building located in a generic NF zone (for the chosen magnitude interval).  

Results are presented in Figure 7 (for the H∞ design only) and in Table 4 
(comparing H∞ and Hp

* options), for both the SDOF and the MDOF cases. 
Figure 7, compared with Figure 6, testifies the beneficial smoothing effect 

obtained enlarging the set of records.  
Comparing Table 4 with Tables 2 and 3, a substantial coherence can be 

appreciated between Set-36 and Set-166. Dividing, cell by cell, Table 4 by the 
corresponding values of Tables 2 and 3, and then taking the average, a value of 1.00 
is obtained. Not reported for brevity, similar results are obtained for dr, S and M.  

 

 
 

Figure 7: 95% percentile response ratio spectra under the real records in 
Set-166, for SDOF and MDOF structures controlled through 

an H∞-designed TMD (μ = 10% or μ = 50%) 

 
It can be concluded that the results obtained in previous sections for the set of 36 
ground motions are generally valid for a larger set of typical impulsive ground 
motions. With the limitations pointed out in previous sections, the set of 36 
analytical ground motions is therefore adequate to statistically assess TMDs 
effectiveness under impulsive records. That is, to the purpose of TMD evaluation, 
the analytical model in Eqs. (1) to (2) is an useful assessment tool and the 36 N, ζp 
pairs are well distributed so as to be statistically representative. 
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Table 4: PIs for SDOF and MDOF structures under 
the real records in Set-166 

 
 
6 Case-Study: a Roof-Garden TMD against Pulse-Like 

Ground Motions 
 
These conclusive pages suggest one possible solution for achieving the large mass 
ratios necessary for a TMD to effectively control impulsive earthquakes.  

The example is the Roof-Garden TMD (RGTMD), proposed by the author to 
reduce the seismic response of a multi-storey building structure recently constructed 
in Siena, one of the most beautiful medieval towns in Central Italy. The building is 
the D Unit of the Portasiena Linear Building complex, a polyfunctional commercial 
centre on which roof-gardens of the “intensive” kind were prescribed for 
architectural reasons. A rendering view of the complex and an axonometric 
projection of the 3D FEM model for the D Unit are given in Figure 8. 

Involved in the structural design of the complex, the author explored the idea of 
turning the additional mass of the roof-garden into an innovative TMD, capable of 
both environmental and seismic protection. This is achieved by adding a new floor 
atop the building, connected to the original top storey through a proper system of 
bearings and dashpots, and filled with planted soil.  

A detailed description of the structure and of three possible schemes of RGTMD 
is given in [10]. The structure is schematized as a planar 6DOF model with 5% 
damping in every mode. The three lower modes have natural frequencies 2.35 Hz, 
9.29 Hz and 18.9 Hz and modal mass ratios 57.9%, 25.4% and 9.3%. The mass of 
the RGTMD (1270 kg/m2) is 17.1% the mass of the building (μtot = 17.1%), 
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corresponding to an “effective mass ratio” μ = 76.3%. The H∞ design is applied by 
numerically minimizing the peak modulus of the transfer function from the ground 
acceleration to the maximum interstorey drift ratio, resulting in the optimal 
parameters r = 0.421 and ζt = 0.523. 

 

 
 

Figure 8: Simulation of an RGTMD in Portasiena Linear Building: (left) 
architectural rendering of the complex; (right) FEM model of the D Unit 

 
With and without the TMD atop, the structure is simulated under the records in Set-
166. The satisfactory performance of the RGTMD is confirmed by Table 5, which 
compares the 50% and the 95% percentiles of interesting peak responses. Looking in 
particular at the 95% percentile, the maximum displacement d and the maximum 
interstorey drift ratio dr drastically drop to, respectively, 57.6% and 54.1% if the 
RGTMD is installed; the maximum acceleration A only reduces to 94.4% due to the 
effect of uncontrolled higher modes; the reduction of the base shear force S is 
someway intermediate (73.1%). Finally, as a remarkable byproduct of deploying a 
large mass ratio, the 95% percentile of the TMD peak displacement relative to the 
structure, dTMD, is limited to 11.1 cm, which is compatible with a variety of 
constructive options for the TMD bearing system, including the simple and cost-
effective rubber bearing arrangement suggested in [10]. 

 
 

 
 

Table 5: Peak seismic responses of the D Unit under the real records in Set-166 
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7  Conclusions 
 
The paper investigates the effectiveness of TMDs against impulsive seismic 
excitations. In order to explore the possible advantages of a pulse-oriented TMD 
design, the analytical pulse model by He and Agrawal is adopted, and an extension 
of the classical H∞ design is proposed, termed Hp, which minimizes the peak 
structural response to a given analytical pulse. This new Hp design, by virtue of a 
reduced damping ratio, improves control in peak terms, but worsens it in RMS 
terms. Also, since it presumes the exact knowledge of future pulses, it is impractical 
in reality. The Hp

* variant is thus introduced which, merely relying on an average 
estimate of ground motion features, shows a pulse performance only slightly inferior 
to that of Hp, resulting on the other hand a directly useable design tool. 

 
The H∞ and the Hp

* methods are then tested on SDOF and MDOF structures 
under real records and analytical pulses, in order to: (a) assess the accuracy of the 
pulse model as a design tool; and (b) compare the two design approaches. Percentile 
response spectra (and their condensation into performance indices) are introduced as 
the natural tool to evaluate a control strategy which proves “more effective when 
more needed”, and a large set of real records is used to achieve statistical 
consistency. In order for the TMD to attain a satisfactory performance, mass ratios 
are tried which are much larger than usual but still practicable, for instance recurring 
to the concept of the Roof-Garden TMD, recently proposed by the author. 

 
As a result of this work, conclusions can be summarized as follows: 
1. TMDs can be effective even against impulsive loads if large mass ratios are 

used; the effectiveness, larger in RMS than in peak terms, increases with the 
percentile of structural response, indicating TMD robustness towards the 
severity of seismic effects;  

2. As far as peak displacement is concerned, the effectiveness of a TMD on an 
SDOF structure is similar to that of a TMD of equal “effective” mass ratio on 
an MDOF structure; but as RMS velocity or peak acceleration are 
considered, the effectiveness in the MDOF case decreases with an increase in 
the structural period as a result of uncontrolled higher modes, while for the 
SDOF case it keeps nearly constant; 

3. If real records are considered, the Hp
* design surpasses the H∞ design in 

reducing the peak displacement of SDOF systems; in all other cases the H∞ 
design seems generally preferable; the advantages of taking into account the 
impulsiveness of the ground motion directly at the design stage are therefore 
circumscribed to very peculiar cases, and the H∞ method can be generally 
recommended as a design tool; 

4. As long as the structural period is sufficiently large (i.e. close to or longer 
than the pulse period), the analytical pulse model proves an accurate and 
efficient tool for the assessment of TMDs under impulsive ground motions. 

 
Extending the scope of the present study to the case of nonlinear structural systems 
will be the object of a future work. 
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