
Abstract

The wave finite element method (WFE) is investigated for the computation the acous-

tic radiation of stiffened or non-stiffened rectangular plates under arbitrary boundary

conditions. The method aims at computing the forced response of periodic waveguides

(e.g. rectangular plates that are homogeneous or that contains a periodic distribution

of stiffeners) using numerical wave modes. A WFE-based strategy is proposed which

uses the method of elementary radiators for expressing the radiation efficiencies of

stiffened or non-stiffened baffled rectangular plates immersed in a light acoustic fluid.

In addition, a model reduction strategy consisting in using reduced wave bases for

computing these radiation efficiencies with small CPU times is proposed. Numerical

experiments highlight the relevance of the strategies.

Keywords: wave finite elements, model reduction, mid-frequencies, acoustic radia-

tion.

1 Introduction

The wave finite element (WFE) method is investigated for the computation of the

acoustic radiation of stiffened or non-stiffened rectangular plates under arbitrary bound-

ary conditions. The method aims at numerically providing the waves traveling in pos-

itive and negative directions along periodic waveguides, i.e. elastic structures that are

assumed to be modeled by means of identical substructures connected along a main

axis (namely, the direction of propagation). In fact, stiffened or non-stiffened rect-

angular plates that are meshed periodically along their length belong to that class of

waveguides. The WFE method uses the finite element (FE) model of a typical sub-

structure to compute numerical wave modes. These are to be understood as particular

shapes of the displacement and force fields over the system cross-section, “travel-
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ing” with different velocities along the waveguide. The WFE method enables the

propagating, evanescent and complex wave modes to be captured over the low and

mid-frequency range. Using these wave modes as representation bases constitutes

an efficient means for computing the forced response of waveguides under arbitrary

boundary conditions [1].

In this paper, a WFE-based strategy that uses the aforementioned wave modes for

expressing the radiation efficiencies of stiffened or non-stiffened rectangular plates is

proposed. Such plates are assumed to be surrounded by an infinite rigid baffle while

radiating in a light acoustic fluid. The radiation efficiencies are computed using the

method of elementary radiators [2], which requires us to discretize the plates into

small surfaces while expressing the normal velocities of these elementary surfaces in

terms of wave modes. In comparison to the classic FE method, the feature of the

proposed WFE formulation is that it exhibits matrices which do not depend on the

waveguide boundary conditions (i.e. over the limiting ends where reflection of waves

occur), meaning that it can be reused with less computational time to address changes

of those boundary conditions.

In addition, a model order reduction (MOR) strategy consisting in using reduced

wave bases for computing these radiation efficiencies is proposed. The motivation

behind this work is to reduce significantly the computational times compared to the

case when the full wave bases are used in the WFE matrix formulations (it is worth

noting that, even in the WFE framework, the CPU times required to compute the

radiation efficiency of a plate at many discrete frequencies can be substantial). For

any waveguide, a norm-wise error analysis is proposed for efficiently reducing the size

of the wave basis involved in the description of the dynamic behavior. The proposed

MOR strategy has been fully investigated in a previous work [3]. The key idea behind

the strategy is to invoke a finite number of forward / backward passings of waves along

the waveguide for expressing the wave amplitudes. This yields the error induced for

expressing the displacements and forces of the waveguide to be bounded by means of

matrix norms that are not necessarily decreasing functions of the number of retained

wave modes. The resulting error bound is found to be sensitive (that is, it increases)

when the wave basis tends to be oversized. It is shown that the minimum of this error

bound provides the exact number of wave modes to be retained for the computation of

the forced response of the waveguide.

The rest of the paper is organized as follows. In Section 2, the WFE framework

is recalled. The WFE-based strategy for computing the radiation efficiencies of stiff-

ened or non-stiffened baffled rectangular plates radiating in a light acoustic fluid is

proposed in Section 3. The WFE-based MOR strategy which yields the radiation effi-

ciencies of these plates to be described in terms of reduced wave bases of small sizes is

proposed in Section 4. Numerical experiments are brought in Section 5; the accuracy

and relevance of the proposed strategies are highlighted compared to the classic FE

method as well as analytical theories.
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2 WFE method

2.1 Theory

The WFE method aims at numerically describing the waves traveling along periodic

structures [4]. Such structures are called periodic in the sense that their FE models

are described by means of identical substructures that are connected along a main axis

x (namely, the direction of wave propagation). Rectangular plates which are meshed

“periodically” along their length (x−direction) belong to that class of structures. In

the present study, these plates are supposed to be elastic, dissipative (considering a

loss factor η) and subjected to harmonic disturbance under frequency ω/2π (ω being

the pulsation). A rectangular plate with a periodic FE mesh is shown in Figure 1. The

related substructures have the same length d while their left and right boundaries (i.e.

the edges coincident with the y−direction) contain the same number of degrees of

freedom (DOFs), namely n (cf. Figure 1).

Figure 1: Illustration of waves traveling along a rectangular plate (x−direction); FE

model of a representative substructure.

Within the WFE framework, the waves traveling along the x−direction of the struc-

ture are to be described. The computation of the so-called wave modes follows from

Bloch’s theorem, considering the FE model of a representative substructure of the

whole system (see Figure 1). Once the dynamic stiffness matrix of the substructure

is known (e.g. using a commercial FE software), a state vector representation [5] that

links the kinematic / mechanical fields – i.e. the translational and rotational displace-

ments, as well as the forces and moments – between the left (or right) boundaries of

two adjacent substructures k and k − 1 can be expressed as [1]

u(k) = Su(k−1), (1)

where S is a 2n× 2n symplectic matrix. Also, u is to be understood as a 2n× 1 state

vector expressed as

u =

[
q

±F

]
, (2)
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where q and F are n × 1 vectors which denote, respectively, the translational / rota-

tional displacements and the forces / moments over the substructure boundaries. The

sign ahead F results from the convention made for expressing the forces on the left or

right boundaries of the substructures: in the present case, the conventions −F (resp.

F) will be used to denote the left (resp. right) boundary of each substructure.

What states Bloch’s theorem is that the eigenvalues of S – namely {µj}j – can be

expressed as {e−iβj d}j , where {βj}j have the meaning of wavenumbers. Also, the

terms {Φj}j are the eigenvectors of S – also known as wave shapes –, which relate

the spatial distribution of the kinematic and mechanical fields over the width of the

plate (i.e. along the y−direction). The wave modes usually refer to the set of param-

eters {(µj,Φj )}j , or simply the wave shapes {Φj}j . Considering that the matrix S is

symplectic (see above) yields {(µj,Φj )}j to be split into n incident and n reflected

wave modes, i.e. n waves traveling towards and n waves traveling away from the

right (or left) boundary of the waveguide. These incident and reflected wave modes

are denoted as {(µinc
j ,Φinc

j )}j and {(µref
j ,Φref

j )}j; they are usually defined so that

|µinc
j | < 1 and |µref

j | > 1 ∀j (such a consideration follows from the fact that S is a

symplectic matrix – i.e. its eigenvalues come in pairs as (µ, 1/µ) – while it is assumed

that the structure is damped).

Convention. The notations {Φinc
j }j and {Φref

j }j will be used throughout the paper to

denote the waves modes traveling towards and away from the right boundary of the

waveguide. In contrast, the notations {Φinc⋆
j }j and {Φref⋆

j }j will be used to denote the

incident / reflected wave modes with regard to the left boundary of the waveguide (see

Figure 1). Those wave modes are simply linked as Φinc⋆
j = Φref

j and Φref⋆
j = Φinc

j

∀j. This convention is introduced here as a means to simplify the subsequent devel-

opments made in the paper.

Finally, Bloch’s theorem states that the vectors of displacements q and forces / mo-

ments ±F, over any substructure boundary k (i.e. either a coupling interface between

two consecutive substructures k − 1 and k, or a limiting edge of the waveguide), can

be expanded in terms of wave modes as [1]

q(k) = Φinc
q Qinc(k) +Φref

q Qref(k) , ±F(k) = Φinc
F Qinc(k) +Φref

F Qref(k), (3)

where Φinc
q , Φref

q , Φinc
F and Φref

F are square n × n matrices constituted from the dis-

placement and force / moment components of the incident and reflected wave shapes;

also, Qinc(k) and Qref(k) are n × 1 vectors of wave amplitudes whose variation along

the waveguide is governed as [1]

Qinc(k) = µQinc(k−1) , Qref(k) = µ
−1Qref(k−1), (4)

where µ is a n × n matrix defined as µ = diag{µinc
j }j , such that ||µ||2 < 1 (||.||2

being the 2−norm) 1. Considering the aforementioned convention regarding incident

1The fact that ||µ||2 < 1 is readily proved since |µinc
j | < 1 ∀j (see above).
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/ reflected waves, yields the wave mode expansion (3) to be rewritten as

q(k) = Φref⋆
q Qref⋆(k)+Φref

q Qref(k) , ±F(k) = Φref⋆
F Qref⋆(k)+Φref

F Qref(k), (5)

where Φref⋆ and Qref⋆(k) refer to the wave modes which are reflected by the left

boundary of the waveguide (see above), with the convention Φref⋆ = Φinc and Qref⋆(k) =
Qinc⋆(k).

2.2 Forced response computation: application to plates under ar-

bitrary boundary conditions excited by a point force

The forced response computation of rectangular plates excited by a point force and

whose edges are subjected to arbitrary boundary conditions is investigated using the

WFE method. As an example, simply supported rectangular plates (whose related

FE model is depicted in Figure 2) represent a particular kind of structures addressed

within the present study. As discussed in the previous section, the FE models of these

structures are assumed to be periodic in the sense they can be described by means of

identical substructures (say, whose total number is N ) along a specific x−direction

(see Figure 2). It is worth noting that, in the present case, the substructures are sup-

posed to exhibit the same boundary conditions as the whole structure on the edges

parallel to the x−direction (say along the length d).

Figure 2: Wave-based description of a simply supported rectangular plate excited by

a point force and FE model of a representative substructure.

The WFE method aims at describing the kinematic and mechanical fields of such a

rectangular plate, excited by a point force, in terms of wave modes (see above). The

procedure consists in partitioning the whole structure into two connected waveguides

1 and 2 – i.e. two subplates respectively defined from the left and right boundaries of

the whole structure, until the abscissa x where the point force applies – which are com-

posed from N1 and N2 substructures, respectively. Such a partitioning is highlighted

in Figure 2.
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Let us denote as q
(ki)
i and F

(ki)
i the vectors of displacements and forces / moments

(respectively) expressed over the substructure boundary ki of any waveguide i (i =
1, 2). The substructure boundaries for waveguide 1 (resp. waveguide 2) are numbered

from 1 to Ni + 1 from the left end (resp. the right end) until the location of the point

force. The boundary conditions of waveguides 1 and 2 – i.e. over the left end of

waveguide 1 and the right end of waveguide 2 – are supposed to be expressed under

the following general form:

(Lq)1q
(1)
1 = 0 , (LF)1F

(1)
1 = 0 , (Lq)2q

(1)
2 = 0 , (LF)2F

(1)
2 = 0, (6)

where (Lq)i and (LF)i are two incidence matrices used to denote the particular dis-

placement / force components that are equal to zero 2. Also, it is implicitly supposed

that the other boundary conditions of the waveguides – i.e. over their edges parallel to

the x−direction – are expressed by means of Eq. (6). On the other hand, the coupling

conditions between the two waveguides are expressed as

q
(N1+1)
1 = q

(N2+1)
2 , F

(N1+1)
1 = −F

(N2+1)
2 + Fex, (7)

where Fex is a n × 1 vector (n being the number of DOFs used for discretizing any

substructure boundary) which denotes the forces applied on the coupling interface. In

the present case where one single force occurs, only one component of Fex is different

from zero. In Eq. (7), F
(N1+1)
1 and F

(N2+1)
2 are to be understood as the vectors of

internal forces respectively defined on the right boundary of waveguide 1 and the left

boundary of waveguide 2.

Within the WFE framework, a wave mode expansion of the form (5) is considered

for each waveguide i (i = 1, 2) as

q
(k)
i = (Φref⋆

q )iQ
ref⋆(ki)
i + (Φref

q )iQ
ref(ki)
i , (8)

±F(k) = (Φref⋆
F )iQ

ref⋆(ki)
i + (Φref

F )iQ
ref(ki)
i ki = 1, . . . , Ni + 1 i = 1, 2,

where Q
ref⋆(ki)
i and Q

ref(ki)
i are the n × 1 vectors of wave amplitudes for waveguide

i, defined at the substructure boundary ki (i.e. either a coupling interface between two

substructures, or one limiting edge of the waveguide), while (Φref⋆
q )2 = (Φref

q )1 and

(Φref⋆
F )2 = (Φref

F )1. Notice that wave modes traveling along the two waveguides are

similar. The only change concerns the vectors of wave amplitudes which, due to the

discontinuity of the internal force field across the interface where excitation source

occurs, are to be considered different between the two waveguides. Considering the

aforementioned wave mode expansion enables the boundary conditions and coupling

conditions of these two waveguides to be expressed in wave-based form. For this task,

the following simplified notations are introduced:

Q
ref(Ni+1)
i = Qref

i , Q
ref⋆(1)
i = Qref⋆

i i = 1, 2. (9)

2For instance, considering simply supported boundary conditions yields both transverse displace-

ments and bending moments to be zero; in this case, one has (Lq)1 = (Lq)2 and (LF)1 = (LF)2).
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Expressing Eqs. (6) and (7) in wave-based form while using the simplified notations

provided by Eq. (9) and the governing equations (4) results in

(Lq)i

[
(Φref⋆

q )iQ
ref⋆
i + (Φref

q )iµ
NiQref

i

]
= 0, (10)

(LF)i

[
(Φref⋆

F )iQ
ref⋆
i + (Φref

F )iµ
NiQref

i

]
= 0 i = 1, 2.

and

[
(Φref⋆

q )1µ
N1Qref⋆

1 + (Φref
q )1Q

ref
1

]
=
[
(Φref⋆

q )2µ
N2Qref⋆

2 + (Φref
q )2Q

ref
2

]
, (11)

[
(Φref⋆

F )1µ
N1Qref⋆

1 + (Φref
F )1Q

ref
1

]
=
[
(Φref⋆

F )2µ
N1Qref⋆

2 + (Φref
F )2Q

ref
2

]
+ Fex.

In matrix form, these relationships yield

[
(Lq)i(Φ

ref⋆
q )i

(LF)i(Φ
ref⋆
F )i

]
Qref⋆

i = −

[
(Lq)i(Φ

ref
q )i

(LF)i(Φ
ref
F )i

]
µ

NiQref
i i = 1, 2, (12)

and

[
(Φref

q )1 −(Φref
q )2

−(Φref
F )1 (Φref

F )2

] [
Qref

1

Qref
2

]
= −

[
(Φref⋆

q )1 −(Φref⋆
q )2

−(Φref⋆
F )1 (Φref⋆

F )2

] [
µ

N1Qref⋆
1

µ
N2Qref⋆

2

]
−

[
0

Fex

]
.

(13)

Invoking matrix inverses enables these equations to be expressed in the following

compact forms:

Qref⋆
i = C

⋆
i µ

NiQref
i i = 1, 2 ,

[
Qref

1

Qref
2

]
= C

[
µ

N1Qref⋆
1

µ
N2Qref⋆

2

]
+ F. (14)

where C
⋆
i is a n × n matrix whose components denote the reflection coefficients of

wave modes, at the left end of waveguide 1 (case when i = 1) and the right end of

waveguide 2 (case when i = 2). This matrix is expressed as

C
⋆
i = −

[
(Lq)i(Φ

ref⋆
q )i

(LF)i(Φ
ref⋆
F )i

]−1 [
(Lq)i(Φ

ref
q )i

(LF)i(Φ
ref
F )i

]
i = 1, 2. (15)

Also, in Eq. (14), C is a 2n × 2n matrix expressed as

C = −

[
I −(Φref

q )−1
1 (Φref

q )2

−(Φref
F )−1

2 (Φref
F )1 I

]−1 [
(Φref

q )−1
1 (Φref⋆

q )1 −(Φref
q )−1

1 (Φref⋆
q )2

−(Φref
F )−1

2 (Φref⋆
F )1 (Φref

F )−1
2 (Φref⋆

F )2

]
.

(16)

The matrix C can be partitioned as

C =

[
C11 C12

C21 C22

]
(17)

where C11 and C22 are n×n matrices whose components represent the reflection coef-

ficients of wave modes at the coupling interface, while C12 and C21 are n×n matrices
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whose components represent the transmission coefficients of wave modes traveling

along waveguides 1 and 2 (respectively) towards the coupling interface. Finally, in

Eq. (14), F is a 2n × 1 vector expressed as

F = −

[
I −(Φref

q )−1
1 (Φref

q )2

−(Φref
F )−1

2 (Φref
F )1 I

]−1 [
0

(Φref
F )−1

2 Fex

]
. (18)

The vector F is to be understood as a vector of generalized excitation. It can be

partitioned as

F =

[
F1

F2

]
(19)

where Fi is a n × 1 vector whose components denote generalized excitations for the

wave modes of waveguides i.

Considering Eqs. (14), (17), (19) yields the following matrix formulation:




I −C
⋆
1µ

N1 0 0

−C11µ
N1 I 0 −C12µ

N2

−C21µ
N1 0 I −C22µ

N2

0 0 −C
⋆
2µ

N2 I







Qref⋆
1

Qref
1

Qref
2

Qref⋆
2


 =




0

F1

F2

0


 . (20)

Solving this matrix formulation yields the wave amplitudes {Qref
1 ,Qref⋆

1 ,Qref
1 ,Qref⋆

1 }
to be expressed. The calculation of the displacements and internal forces /moments

along the waveguides – i.e. over any substructure boundary ki (i = 1, 2) – follows

from the consideration of the governing equations (4) and the wave mode expansion

(8). The feature of the formulation (20) is that the matrix appearing in the left hand

side term is likely to be well conditioned. This is explained as the matrix involves

identity submatrices on its diagonal, while the fact of right multiplying matrices of the

form C by µ
N (with ||µ||2 < 1) results in a filtering effect for spurious high order

modes (additional discussions can be found in ref. [1]).

3 Acoustic radiation

The strategy for computing the acoustic radiation of stiffened or non-stiffened rectan-

gular plates, using the WFE method, is proposed in this section. In the present study,

those plates are supposed to be surrounded by an infinite rigid baffle while radiating

in an acoustic fluid (air). Also, the plates are supposed to be excited by a point force

(see previous section) while subjected to arbitrary boundary conditions of the form

(6). The vibroacoustic system involving a radiating rectangular plate is depicted in

Figure 3. The fluid is supposed to be inviscid and light, in the sense that its loading on

the plates is neglected.
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Figure 3: Illustration of a rectangular plate surrounded by a rigid baffle and radiating

in a light acoustic fluid.

Within the WFE framework, the dynamic behavior of a stiffened or non-stiffened

rectangular plate vibrating in vacuo is to be expressed from the strategy depicted in

the previous section. Then the resulting normal velocity field of the plate is used for

describing its acoustic radiation. For this kind of problem, a relevant approach is to

compute the radiating power or, equivalently, the radiation efficiency. For this task,

the method of elementary radiators can be used [2]. This suggests to “discretize” the

plate into elementary surfaces of same area Sradiator and constant normal velocities,

and to compute the radiation efficiency as

σ =
q̇H

n Rq̇n

ρ0c0Splate < (q̇n)2 >
, (21)

where q̇n is the vector of normal velocities of the elementary radiators, expressed as

q̇n = iωqn where qn is the vector of normal displacements; also, < (q̇n)2 > is the

mean quadratic velocity averaged over all the elementary radiators, defined as

< (q̇n)2 >=
1

2

1

Nrad

Nrad∑

k=1

|(q̇n)k|
2, (22)

where Nrad is the total number of elementary radiators that are used for discretizing

the plate, while (q̇n)k is the normal velocity of a given radiator k. Also, in Eq. (21),

Splate is the area of the plate while R is a full square matrix whose components are

Rst =
ω2ρ0S

2
radiator

4πc0

sin(k0rst)

k0rst

(s 6= t) , Rss =
ω2ρ0S

2
radiator

4πc0

, (23)

where k0 = ω/c0 is the acoustic wavenumber and rst is the distance between two

radiators s and t. A typical elementary radiator is depicted in Figure 3. The normal
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velocity of each radiator is supposed to be constant and equal to the normal velocity

at its mid node (cf. Figure 3). In the present framework, the WFE method can be

used for describing the vector of normal displacements (and thus the vector of normal

velocities) over any substructure boundary of waveguides 1 and 2 (see Section 2) as

(qn)i = L′(Φq)iQi (i = 1, 2) where (Φq)i = [(Φinc
q )i(Φ

ref
q )i], Qi = [QincT

i QrefT
i ]T

is the vector of wave amplitudes and L′ is an incidence matrix for capturing the normal

displacements at the relevant DOFs. Thus, the numerator appearing in the right hand

side of Eq. (21) can be written as

q̇H
n Rq̇n = ω2

∑

i

∑

s≥1

QH
i

[
µ

′(s−1)H
(Φq)

H
i L

′HRssL
′(Φq)iµ

′(s−1)
]
Qi (24)

+2ω2
∑

i

∑

s≥1

∑

t>s

Re

{
QH

i

[
µ

′(s−1)H
(Φq)

H
i L

′HRstL
′(Φq)iµ

′(t−1)
]
Qi

}
,

+2ω2
∑

s≥1

∑

t≥1

Re

{
QH

1

[
µ

′(s−1)H
(Φq)

H
1 L

′HR′
stL

′(Φq)2µ
′(t−1)

]
Q2

}
,

where Q1 (resp. Q2) is to be understood as the vector of wave amplitudes for the

radiators located at the left end of waveguide 1 (resp. right end of waveguide 2); also,

µ
′ is a diagonal matrix with components {µα

j }j ({µj}j being the wave parameters

already introduced in Section 2.1), where α is an integer that “scales” the length d
of a plate substructure (see Figure 1) to the length of a radiator; finally, Rst is a

square matrix extracted from the matrix R (see above) and which relates the coupling

between two rows of radiators s and t of a same waveguide i; R′
st is a square matrix

extracted from the matrix R (see above) and which relates the coupling between two

rows of radiators s and t belonging, respectively, to waveguides 1 and 2. Otherwise,

expressing the denominator on the right hand side of Eq. (21) by means of WFE wave

modes does not add any more difficulty.

Regarding Eq. (24), the feature of the WFE approach is that the matrix terms in-

side the square brackets do not depend on the boundary conditions of waveguides (i.e.

over the left and right edges of the plate) as well as their coupling conditions. In other

words, once these terms have been computed, the computation of the radiation effi-

ciency can be achieved many times with small CPU times, e.g. to deal with parametric

analysis involving several kinds of boundary and excitation conditions of the plate.

4 Model reduction

The idea behind the MOR strategy is to approximate the vectors of displacements

q
(ki)
i and internal forces F

(ki)
i of each waveguide i (i = 1, 2), over any substructure

boundary ki (ki = 1, . . . , Ni + 1, Ni being the number of substructures used for

describing the waveguide i) by means of a reduced wave basis {(Φ̃j)i}j=1,...,2mi
(with

a same number m ≤ n of incident and reflected modes). In this framework, the

aim is to compute the forced response of the coupled structure using a reduced matrix
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formulation of small size 2m compared to the conventional matrix formulation (whose

size is 2n) obtained when the full wave bases are considered (cf Eq. (20)).

A MOR strategy that enables a reduced basis to be constructed for each waveguide i
in terms of the relevant wave modes – i.e. which effectively contribute for expressing

the behavior of the coupled system – has been recently proposed in ref. [3]. Here

we apply this strategy to the present case involving rectangular plates excited by a

point force (see previous sections). In the work [3], it is shown that the relative error

made for expressing the displacements and internal forces / moments of such structure

involving two coupled waveguides (see previous sections) can be assessed by means

of the following error bound:

Es = max

{[
(ǫE1 + ǫE2 ) +

||As||

1 − ||As||
(ǫA1 + ǫA2 )

]
1 + ||As||

1 − ||As||
,

[
(ǫE

⋆

1 + ǫE
⋆

2 ) +
||A⋆s||

1 − ||A⋆s||
(ǫA

⋆

1 + ǫA
⋆

2 )

]
1 + ||A⋆s||

1 − ||A⋆s||

}
, (25)

where

ǫE1 =
||Ẽs − L̃Es||

||Es||
, ǫE2 =

||LrEs||

||Es||
, ǫA1 =

||ÃsL̃ − L̃As||

||As||
, ǫA2 =

||LrA
sL̃T ||

||As||
, (26)

ǫE
⋆

1 =
||Ẽ⋆

s − L̃E⋆
s||

||E⋆
s||

, ǫE
⋆

2 =
||LrE

⋆
s||

||E⋆
s||

, ǫA
⋆

1 =
||Ã⋆sL̃ − L̃A⋆s||

||A⋆s||
, ǫA

⋆

2 =
||LrA

⋆sL̃T ||

||A⋆s||

In Eq. (26), L̃ and Lr are two incidence matrices used for the selection of the retained

wave modes (i.e. the wave modes to be used in the computation of the forced response

of the system) and the residual wave modes, respectively; A and A⋆ are two 2n × 2n
matrices expressed as

A =

[
C

⋆
1µ

N1

1 C11µ
N1

1 C
⋆
1µ

N1

1 C12µ
N2

2

C
⋆
2µ

N2

2 C21µ
N1

1 C
⋆
2µ

N2

2 C22µ
N2

2

]
,A⋆ =

[
C11µ

N1

1 C
⋆
1µ

N1

1 C12µ
N2

2 C
⋆
2µ

N2

2

C21µ
N1

1 C
⋆
1µ

N1

1 C22µ
N2

2 C
⋆
2µ

N2

2

]
.

(27)

Also, in Eq. (26), Es and E⋆
s are two 2n × 1 vectors expressed as

Es =

(
s−1∑

p=0

Ap

)
B , E⋆

s =

(
s−1∑

p=0

A⋆p

)
B⋆ ∀s ≥ 1, (28)

where

B =

[
C

⋆
1µ

N1

1 F1

C
⋆
2µ

N2

2 F2

]
, B⋆ =

[
F1

F2

]
. (29)

Also note that the vectors Es and E⋆
s (Eq. (28) can be partitioned as:

Es =

[
Es1

Es2

]
, E⋆

s =

[
E⋆

s1

E⋆
s2

]
, (30)

11



where Esi and E⋆
si are n × 1 vectors associated to waveguide i (i = 1, 2). The afore-

mentioned matrices and vectors (Eqs. (27-29)) have been derived by expressing the

vectors of wave amplitudes that result from the consideration of s forward and back-

ward passings of waves along the waveguides. When deriving the error bound Es (Eq.

(25)), it is assumed that the spectral radii of the matrices A and A⋆ are less than one,

meaning that there exists two integers s0 and s⋆
0 such that ||As|| < 1 for s ≥ s0 and

||A⋆s|| < 1 for s ≥ s⋆
0. In ref. [3], it has been shown that s can be chosen as

s = max {u ≥ max{s0, s
⋆
0} : ||Au|| ≥ 0.1 , ||A⋆u|| ≥ 0.1} . (31)

Also, in Eq. (26), the tilde sign means that matrices and vectors have been formu-

lated using a reduced wave basis (for each waveguide) instead of the full wave ba-

sis. As an additional requirement, the following assumptions ||Ãs|| ≤ ||As|| and

||Ã⋆s|| ≤ ||A⋆s|| have to be made.

The strategy for selecting the wave modes, as proposed in ref. [3], can be stated as

follows:

1. Check that ρ(A) < 1 and ρ(A⋆) < 1 (see above);

2. Choose integer s according to Eq. (31);

3. Rank the wave modes of each waveguide i (i = 1, 2) with respect to the magni-

tudes of the components of vectors Esi and E⋆
si;

4. Compute the error bound Es by means of Eq. (25) at the highest frequency

considered within the studied frequency band, as a function of m (i.e. the first

m wave modes for both waveguides 1 and 2, as ranked in step 3);

5. Define the domain of validity of Es, i.e. when ||Ãs|| ≤ ||As|| and ||Ã⋆s|| ≤
||A⋆s|| (see above);

6. Identify the minimum value of Es.

It is worth emphasizing that all these steps are to be addressed only at the highest fre-

quency considered within the studied frequency band.

5 Numerical experiments

5.1 Plate characteristics and numerical setup

The WFE-based formulation proposed in section 3 has been applied to investigate the

radiation efficiencies of baffled plates subjected to harmonic loading. For validation

purposes, the characteristics of the plates are similar to those chosen by Berry et al.in

12



ref. [6]. We consider rectangular baffled steel plates of dimensions 0.38 m ×0.455 m

×0.001m respectively in the x-, y- and z directions (see Figure 1), which can be either

clamped or simply supported on their four edges. The chosen material properties are

the following: density ρ = 7850 kg.m−3, Young’s modulus E = 2×1011Pa, Poisson’s

ratio ν = 0.28 and loss factor η = 0.01. As already mentioned, the baffled plates

are surrounded by an acoustic fluid and the fluid loading effect on the structure is

neglected.

Each plate is subjected to a harmonic point force of unitary amplitude in the normal

z-direction, applied at its center. As stated in section 2.2, such a force is taken into

account within the WFE method by splitting the plate into two waveguides connected

at the force location (the plate center in the present case). Both waveguides are mod-

eled using a same number of substructures N1 = N2 = 10, of length d = 0.019 m

in the x-direction and width 0.455 m. The number of DOFs contained over the left or

right edges of each substructure is n = 109 for the clamped plate, and n = 113 for

the simply supported plate. A finer discretization is also considered to improve the

accuracy of the WFE-based numerical model, using substructures of half length (i.e.,

d = 0.0095, that is N1 = N2 = 20) having more DOFs (i.e., n = 221 for the clamped

plate, n = 225 for the simply-supported plate).

The forced vibrations of the plates as well as their radiation efficiencies are com-

puted over the frequency range [10 Hz ; 3000 Hz] with a precision of 1 Hz up to 100
Hz and 2 Hz afterwards.

5.2 Forced response computation and model reduction

For each set of boundary conditions, the displacement w in the z-direction at any point

of the plate is computed using Eqs. (20), (3), (4). The accuracy of the WFE method

to retrieve classical results of FE simulations with reduced computational time, which

has been highlighted in previous papers (cf. [1] for instance), is again verified in the

present cases. For example, Figure 4 compares the quadratic velocities obtained with

the WFE method and the FE method at the center of the plate using identical meshes.

A perfect correspondence is seen between the results of the two methods for each set

of boundary conditions. The comparison of Figures 4(a) and 4(b) clearly shows that

the resonance frequencies and vibration levels of the plate are strongly affected by its

boundary conditions. The values of f11 = 52 Hz and f11 = 28 Hz - mentioned in ref.

[6] for the resonance frequencies of the first mode, respectively for the clamped and

the simply supported plate - are retrieved.

The latter results have been obtained using full wave bases, that is n = 109 incident

(or reflected) modes for the clamped plate, and n = 113 incident / reflected modes

for the simply supported plate. As stated in section 4, computational times may be

even more reduced when applying the model order reduction strategy, which provides

appropriate reduced wave bases. The strategy focuses on the consideration of an error

bound Es whose minimum indicates the number of wave modes to be retained [3].

The evolution of Es (in %) as a function of the number of retained wave modes is

13



10
−5

10
0

10
1

10
2

10
3

10
−5

10
0

Frequency [Hz]

Q
u

a
d

ra
ti

c 
v

el
o

ci
ti

es
 [

m
2
.s

−
2
]

(a)

(b)

Figure 4: Center point quadratic velocity ω2|w|2: (– –) FE computation; (—) WFE

computation; (a) clamped plate, (b) simply supported plate.

shown on Figure 5(a) considering the clamped plate with coarse mesh. The error is

seen to be minimized (reaching a value of 0.16 %) when the first m = 57 modes of

the ordered full basis are retained in the reduced basis for each waveguide. It has to be

noted that this minimum lies in the green shaded area, which represents the validity

domain defined in section 4 (i.e., ||Ãs|| ≤ ||As|| and ||Ã⋆s|| ≤ ||A⋆s||).
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Figure 5: Es (%) evolution for the clamped plate with coarse mesh (n = 109).

This value m = 57 represents the optimal number of wave modes required to

retrieve the solution provided by the full wave basis, without overestimating the size of

the reduced basis. The quadratic velocities computed using the reduced basis defined

by the MOR algorithm are indeed exactly superimposed with the initial quadratic
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velocities, as displayed in Figure 6 at the plate center. An example of solution obtained

using a reduced basis not provided by the MOR strategy is also shown on Figure

6; in this case, the last 10 modes have been removed from the full basis, i.e., the

reduced basis contains 99 wave modes. Non negligible variations are observed at

some frequencies, for instance between 2000 Hz and 2400 Hz. In spite of this higher

number of wave modes, the results are therefore less accurate than when using the 57

wave modes of the reduced basis provided by the MOR algorithm.
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Figure 6: Center plate quadratic velocity ω2|w|2: (– –) full basis (109 wave modes);

(—) reduced basis provided by the MOR algorithm (57 wave modes); (– . –) reduced

basis obtained by removing 10 modes (99 wave modes).

5.3 Acoustic radiation computation

The acoustic radiation resulting from the forced vibrations of the clamped and simply-

supported plates is investigated using the WFE-based formulation developed in section

3. As explained, the radiation efficiency is obtained by summing the contributions of

elementary radiators uniformly distributed over the plate surface. Various numbers of

radiators may be taken into account in the acoustic computations depending on the

chosen substructure discretization. In the following, 140 to 560 radiators have been

used, corresponding respectively to the initial and finer meshes described in section

5.1. Radiation efficiencies computations have been performed using full modal bases

as well as reduced bases provided by the MOR strategy (see section 5.2). The use of

the reduced bases has proved to decrease substantially the computational costs [3]. In

the present case, a global time reduction of 72% has been achieved regardless of the

retained number of radiators or the boundary conditions.

Figure 7 presents the radiation efficiency obtained for the plate clamped on its

four edges, taking into account 560 radiators. The present result is compared to the

radiation efficiency shown by Berry et al.in [6] for the same configuration. A very
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Figure 7: Radiation efficiency of the clamped plate: (– –) from Berry et al.[6]; (—)

using the present approach with 560 radiators.

good agreement is found in the low-frequency range. At upper frequencies however,

the radiation efficiency computed with the present method tends to be underestimated

as compared to the levels found by Berry et al..

The same trends are observed when considering the case of the simply supported

plate, shown in Figure 8. The radiation efficiency obtained with 140 radiators has

been displayed to investigate the influence of the number of radiators. Differences
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Figure 8: Radiation efficiencies of the simply supported plate: (– –) from Berry et

al.[6]; (– . –) using the present approach (140 radiators); (—) using the present ap-

proach (560 radiators) .
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are negligible at low frequencies, while above 1 kHz it appears that the levels may be

overestimated when less information is taken into account.

Analyzing the radiation efficiencies displayed in Figures 7 and 8 also enables us to

raise conclusions regarding the influence of the boundary conditions on the acoustic

behavior of the plate. As expected, the radiation efficiency reaches higher levels in

the case of clamped boundary conditions, although the vibration levels are slightly

reduced. For example, the magnitude of the first radiation efficiency peak for the

clamped plate, around f = 120 Hz is for instance 1.7 times higher that of the simply-

supported plate (around f = 90 Hz). The same approximate ratio holds for the high

frequency levels.

5.4 Acoustic radiation of stiffened plates

The effect of stiffeners on the acoustic radiation of a plate is investigated for the case

of the simply supported plate. The stiffeners are modeled as rectangular beams with

cross-sectional area 16.25 mm ×10 mm, aligned with the x-direction of wave prop-

agation. Examples of stiffened plates are shown in Figure 9. The stiffenings consist

respectively of four beams spaced by 130 mm for the first configuration (Figure 9(a)),

and ten beams spaced by 32.5 mm for the second one (Figure 9(b)). It is worth not-

ing that the substructures used to compute the stiffened plates vibrations within the

WFE method are therefore complex and of varying thicknesses with respect to the

position in the y-direction. Both configurations provide the same number of DOFs on

the substructure boundary, n = 109, as for the non-stiffened plate.

Figure 9: Stiffened plate configurations: (a) four stiffeners; (b) ten stiffeners

The influence of the stiffeners on the vibrational behavior of the plate is illustrated

on Figure 10, which compares the quadratic velocities at the centers of the stiffened

plates and the initial non-stiffened plate. As expected, the presence of stiffeners sup-

presses the vibrations at the lowest frequencies while decreasing the vibrating levels

over most of the frequency range. The attenuation effect increases with the number

of stiffeners. Those results are in accordance with the results presented by Nicolas

and Berry in ref. [7], where a similar plate but different stiffeners sizes, shapes and

positions were considered.
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Figure 10: Center point quadratic velocities: (– –) non-stiffened plate; (– . –) plate

with 4 stiffeners; (—) plate with 10 stiffeners.

The influence of stiffeners on the acoustic radiation of plates is finally investigated

by computing the radiation efficiencies of the above stiffened plates. The trends found

in ref. [7] are again retrieved: the stiffeners are seen to considerably increase the

radiation efficiency of the plate, the radiating power level being therefore reduced to a

lesser extent than the vibrational level. For example, the magnitudes of the first peaks

visible in Figure 11 are respectively 3.2 and 6.3 times higher for the plates with 4 and

10 stiffeners than for the non-stiffened plate, while ratios of 2.5 and 7.4 are found for

the mean radiation efficiencies over the whole frequency range between the stiffened

and non-stiffened plates.

6 Conclusion

In this paper, a formulation based on the WFE method has been developed to inves-

tigate point force driven vibrations of various rectangular plates and their radiated

sound. For this purpose the plates are modeled as waveguides, that is to say periodical

repetitions of a characteristic substructure in one direction of propagation. The main

features of this method include:

− the computation of wave mode bases from the finite element model of the given

substructure, the maximum number of modes being linked to the discretization

of the substructure;
− a matrix formulation that links the DOFs at the substructure nodes (namely the

normal displacements and internal forces) to the boundary conditions and exter-

nal excitations;
− the computation of the plate radiation efficiency from the normal velocities of

elementary radiators uniformly distributed over the plate; those velocities are

obtained from the aforementioned matrix formulation.
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Figure 11: Radiation efficiencies: (– –) non-stiffened plate; (– . –) plate with 4 stiff-

eners; (—) plate with 10 stiffeners.

A model order reduction strategy has been implemented. Involving matrix norm-based

criteria, the algorithm provides a reduced wave mode basis which enables substantial

computational time savings while obtaining similar results as when using the full ba-

sis.

The above methods have been applied to various plates of same dimensions but dif-

ferent boundary conditions (namely fully clamped or simply-supported plates), possi-

bly equipped with beam stiffeners. The results in terms of vibrational levels as well

as radiation efficiencies are found in good agreement with theoretical results from ref.

[6] or provided by commercial software. The clamped boundary conditions is seen to

slightly increase the plate resonance frequencies and radiation efficiency while reduc-

ing the vibration level, as compared with the simply-supported boundary condition.

A similar trend is observed when adding stiffeners to the plate, to a greater extent.

The proposed method is therefore seen to provide an efficient way of addressing vi-

broacoustic issues involving complex periodic structures with reduced computational

costs.
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léger et en fluide lourd”, Journal de Physique IV, 2: C1-487–C1-494, 1992.

20




