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Abstract 
 
Currently the finite-element method (FEM) is considered as the most promising 
analysis tool among the existing methods of analysis which are usually based on the 
continuum mechanics approach, but accuracy of the FEM solutions for nonlinear 
problems of solid mechanics can be hardly guaranteed and the computing cost is still 
prohibitive. To overcome such a drawback of the nonlinear FEM including their 
application to reinforced concrete folded plate structures, this paper presents the 
application of the harmonic coupled finite-strip method (HCFSM) to structure 
stability analysis. The theoretical stress-strain relations of various concrete strength 
classes and reinforcement, knowing only the minimum number of mechanical 
material parameters that come from standard test procedures, are determined from 
the rheological-dynamical analogy (RDA). As an illustrative example, a feasible 
reinforced concrete folded plate structure is analysed in detail. The ultimate 
resistance of two characteristic cross sections of a folded plate structure is calculated 
using working diagrams of concrete and steel according to Eurocode 2 and 
according to the RDA. Diagrams of interaction Nu-Mu are drawn for several 
combinations of material working diagrams and are mutually compared. 
 
Keywords: harmonic coupled finite-strip method, rheological-dynamical limit 
analysis. 
 
 
1  Introduction 
 
The problem of the stability analysis of reinforced concrete folded plate structures 
has gained importance during the past years due to the application of various 
reinforced concrete materials and their utilization of high working stress. In the past 
years, the present problem was treated in the scope of many research projects 
theoretically and experimentally. Most of these projects are, however, subject to 
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several restrictions, especially with regard to cross-sectional geometry, real 
mechanical properties of materials, and nonlinear finite element solutions which can 
be hardly guaranteed. 
 The conventional finite strip method (FSM) is based on the harmonic functions, 
and proved to be efficient tool for analyzing a great deal of structures for which both 
geometry and material properties can be considered as constants along a main 
direction, straight or curved, while only the loading distribution may vary. This 
method was pioneered by Cheung [1]. 

 In this work we present the semi-analytical harmonic coupled finite strip method 
(HCFSM) for geometric non-linear analysis of reinforced concrete plate structures 
under multiple loading conditions. This method takes into account the important 
influence of the interaction between the buckling modes [2]. In contrast, the FSM, in 
its usual form, ignores this interaction and therefore cannot be used in the structure 
stability analysis. The risk of structural instability is analysed as realistically as 
possible under the influence of realistic composite material behaviour. 
 The aim of this paper is based on the rheological-dynamical limit analysis to 
predict the ultimate resistance of structure. On the basis of the RDA, the working 
diagrams of concrete and steel are built, representing simultaneous stress-strain 
pairs. The RDA working diagrams are then compared with recommended diagrams 
from the Eurocode 2 (EC 2).  

As an illustrative example, a feasible reinforced concrete folded plate structure is 
analyzed in detail. Effects of applied actions are firstly calculated using linear FSM. 
Limit state design (ultimate and serviceability) of characteristic cross sections is 
then performed according to the currently valid Serbian technical regulations for 
concrete and reinforced concrete, using the partial factor method. The ultimate 
resistance of so designed two characteristic cross sections is determined from 
diagrams of interaction (Nu-Mu). They are drawn according to Eurocode 2 and RDA 
working diagrams. The ultimate resistance (Nu) of cross sections is then compared 
with effects of applied actions (N) calculated by FSM and HCFSM. The global 
safety factors γ, defined as the ratio between  Nu and normal force due to service 
loading with the same excentricity e=M/N (M is the bending moment of cross-
section due to service load), are also compared at the end. 
 
 
 
 
2 Harmonic-coupled Finite-Strip Method and Stability 

Analysis 
 
2.1 Harmonic-coupled Finite-Strip Method 
 
Typical flat plate structures under consideration here are simply supported by 
diaphragms and may have arbitrary longitudinal edge conditions. For these 
structures, the design process should lead to define the optimal morphology of the 
transversal cross-section, which means its geometry, size, shape and topology. 



3 

 In the FSM, which combines elements of the classical Ritz and the finite-
element methods, the general form of the displacement function can be written as a 
product of polynomials and trigonometric functions 
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( ) ( )
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m k

f Y y x
= =

= ∑ ∑N q                                         (1) 

where Ym(y) are functions from the Ritz method and Nk(x) are interpolation functions 
from the finite-element method. We define the local Degrees Of Freedom (DOFs) as 
the displacements and rotation of a nodal line (DOFs=4). The DOFs are also called 
generalized coordinates.  
 The nonlinear strain-displacement relations in the finite strip can be predicted by 
the combination of the plane elasticity and the Kirchhoff plate theory. Using this 
assumption in the Green-Lagrange strain tensor (2) for in-plane nonlinear strains 
gives Green-Lagrange HCFSM formulation. Also that, neglecting lower-order terms 
in a manner consistent with the usual von Karman assumptions gives HCFSM von 
Karman formulation. 

( ), , , ,1 2ij i j j i k i k ju u u uε = + +                      (2) 
 The essential feature of geometric nonlinearity is that equilibrium equations 

must be written with respect to the deformed geometry – which is not known in 
advance. As a preliminary to tracing the equilibrium paths, it is necessary to 
determine the total potential energy of the structure as a function of the global 
DOFs. The steps in the computation are detailed discussed in [2].  

 The total potential energy of a strip is designated Π and is expressed with respect 
to the local DOFs by the HCFSM. 
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The multiplication results of the membrane and bending actions in the first bracket 
of Eq. (3) are uniquely defined and uncoupled, whilst those in second [von Karman 
assumptions] and third bracket {Green-Lagrange approach} are functions of the 
displacements u0, v0 and w. Consequently, the membrane and bending actions are 
coupled in many ways. 
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 The conventional and the geometric stiffness matrices are, respectively: 
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 The geometric stiffness matrix of structure is built by summing overlapping 
terms of the component strip matrices; in the same way that conventional stiffness 
matrix of structure is built by summing terms of the conventional strip matrices 
using the transformation matrices between the local and global displacements [2]. 
 
 
 
 
2.2 Stability Analysis 
 
Since the principle of the stationary potential energy states that the necessary 
condition of the equilibrium of any given state is that the variation of the total 
potential energy of the considered structure is equal to zero, we have the following 
relation: 

0δΠ =             (7) 
Eq. (7) is satisfied for an arbitrary value of the variations of parameters T

mδ q . Thus 
we have the following conditions, which must be satisfied for any harmonic m: 

T
m

∂Π
=

∂
0

q
            (8) 

 Next, we calculate derivatives of the total potential energy of a strip and finally, 
we get a non-homogeneous and nonlinear set of algebraic equations (9), which are 
the searched stability equations. 
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    (9) 

 We can visualize the construction of a strip stiffness matrix, which is composed 
of twelve block matrices. Assembling block matrices into conventional/geometric 
stiffness matrix of each strip is performed according to the scheme presented in Fig. 
1, where: ST1= uuK̂ , ST2= wwK̂ , ST3= wwK , ST4= wuK , ST5= uwK , ST6= uu

uuK , 
ST7= uu*

uuK , ST8= uu**
uuK , ST9= vu

uuK , ST10= uv
uuK , ST11= u

wuK  and ST12= u
uwK  

(ST5=ST4T, ST8=ST7T, ST10=ST9T, ST12=ST11T). 
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Figure 1: Strip stiffness matrix assembling 
 
 
 

 For equilibrium, the principle of stationary potential energy requires that: 
ˆT ⎡ ⎤= ∂Π ∂ = + − = − =⎣ ⎦R q K K q Q Kq Q 0         (10) 

where Π is a function of the displacements q, and R represent the gradient or 
residual force vector, which is generally nonzero for some approximate 
displacement vector q0 (the subscript 0 denotes an old value). It is assumed that a 
better approximation is given by: 

0 0n = +q q δ .            (11) 
where subscript n denotes a new value. 
Taylor's expansion of Eq. (10) yields: 
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where 0 = ∂ ∂K R q  is the matrix of second partial derivatives of Π calculated at q0 
(i.e. the tangent stiffness matrix or Hessian matrix). Setting Eq. (12) to zero and 
considering only linear terms in δ0 gives the standard expression for Newton-
Raphson iteration: 
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Using this approach, a further iteration yields: 
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 Comparing these expressions with Eq. (9), it is apparent that the conventional 
stiffness matrix remains unchanged, while the geometric tangent matrix becomes 
symmetrical.  

 The loss of stability of static equilibrium states of structures subjected to 
conservative loads is in general known as static buckling of the structure. For 
conservative systems, the principle of minimum of the total potential energy can be 
used to test the stability of a structure (static equilibriums are extremes of the total 
potential energy). The Hessian with respect to the local DOFs is denoted as the 
tangent stiffness matrix, of each strip i.e.: 

ˆ +⎡ ⎤= ⎢ ⎥⎣ ⎦
K K K                  (17) 

 The (local) stability of equilibrium states of conservative systems by HCFSM 
can be assessed by looking at the eigenvalues of the tangent stiffness matrix of 
structure (TSMS) ( )( ) ( )( )1 1DOFs r n DOFs r n⋅ ⋅ + ⋅ ⋅ ⋅ +K  with (n+1) nodal lines, which are all real, 

since tangent stiffness matrix of the strip is a symmetric matrix. 
A typical rectangular plate is divided into (n) finite strips with (n+1) nodal lines. Let 
λi denote the ith eigenvalue of 

( )( ) ( )( )1 1DOFs r n DOFs r n⋅ ⋅ + ⋅ ⋅ ⋅ +K               (18) 

Based on theorems of Lagrange-Dirichlet and Lyapunov [3] it can be concluded that 
an equilibrium state is stable if all λi>0, while an equilibrium state is unstable if one 
or more λi<0. If along a load-path (IINCS=1, NINCS), at some equilibrium state one 
or more λi=0, this equilibrium state is denoted as a critical state. Static buckling 
refers in general to case where, starting from some stable state, a critical state is 
reached along the load-path. Buckling occurs where the matrix becomes singular. 
 The integral expressions contain the products of trigonometric functions with 
higher-order exponents, and therefore the orthogonality characteristics are no longer 
valid. To calculate the blocks of the tangent geometric stiffness matrix, it would be 
necessary to know values for the basic unknowns in all series terms at the moment 
of their computation. Therefore, the only possible way to form the tangent stiffness 
matrix using the HCFSM is to take into account all series terms. 
 Depending on the particular problem under consideration, the Green-Lagrange 
nonlinear contributions, Eq. (2) in a manner consistent the von Karman assumptions 
may be safely ignored. Otherwise the next seven blocks must be added 
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 The forces (Nx=tσx, Ny=tσy, Nxy=tτxy) and moments (Mx, My, Mxy) are related to 
the strains through the material properties of the strip. In the present formulation the 
more general case of orthotropic properties is assumed.   
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3  Rheological-Dynamical and EC 2 Limit Analysis 
 
3.1 Rheological-Dynamical Analogy Short Overview 
 
In the material fatigue investigations, both stress σ(t) and total (inelastic) strain 
ε(t)=εel+εve(t)+εvp(t) are functions of time. During the production process, material 
yielding takes place. Various design techniques have been developed, and rheology, 
as a science, gives us an opportunity of assembling and processing differential 
equations with respect to the rheological models. Graphically demonstrated, the 
stress-strain pairs resulting from the same instants of time give us isochronous 
stress-strain diagrams. 
 If the total strain is represented by the sum of the elastic, viscoelastic (VE) and 
viscoplastic (VP) components, each isochronous stress-strain diagram of a long 
prismatic rod (e.g., with a square or circular initial cross-section A0), which is shown 
in Fig. 2a, can accurately be approximated by the rheological body consisting of five 
elements. The model of the rheological body is shown in Fig. 2b, using the 
following symbols: N for the Newtonian dashpot, StV for Saint-Venant’s body, H 
for the Hookean spring, ⏐for parallel connection and ⎯ for connection in series. 
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Since the Hokean spring, Kelvin’s body (K=H|N) and VP body (StV|N) are 
connected in series, the stresses σ(t) in all bodies are equal. 
 

 
 

Figure 2: Rheological-dynamical analogy of a prismatic column with reduced cross-
section 

 
The governing differential equation has been derived in Ref. [4] 

1 1K K K
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           (21)  

where σY is the yield stress. The yield condition is Y=σY+H'εvp(t). Four constants at 
fixed step time are as follows: VE normal viscosity λK, VP normal viscosity λN, VE 
modulus EK and VP modulus H'. However, these constants cannot easily be 
determined by the physical experiments, especially Trouton’s normal viscosities λK 
and λN. The corresponding homogeneous equation is as follows: 

( ) 0K N K N K K( t ) ( t ) E H ( t )E Hε λ λ ε λ λ ε′ ′+ + + =            (22)  
 On the other hand, a mechanical longitudinal disturbance (strain) propagates in 
an elastic medium at the finite initial phase velocity v0=√EH/ρ. The vibration at an 
arbitrary point M of the rod lags in the phase behind that at the source of the wave. 
If l0 is the initial distance between two ends of the rod (standing wave length), the 
time difference is t-t0=TK

D=l0/v0. The parameter TK
D represents a dynamic time of 

retardation. The natural angular frequency of the discrete dynamical model, which 
represents an undamped free longitudinal vibration of the rod, is as follows:  

0 0 0

0 0 0 0 0

1 1 1DH
KD

K

E A v lk T
m l A l l vT

ω
ρ ω

= = = = ⇒ = =        (23) 

 Bearing in mind Eq. (22), an expression similar to Eq. (23) can be formulated 
setting the rheological model of the rod into the state of critical viscous damping 
(c=ccr), where EK/λK=H'/λN, λK=EKTK, λN=H'T*, TK=T*=TK

D: 
1 1K

D
K N K K

E H
T T T

ω
λ λ ∗

′
= = =           (24) 

According to formulas (23) and (24) we shall have 
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( )

2 2
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     (25) 

 Consequently, propagation of longitudinal elastic waves represents a physical 
basis for the analogy between two different physical phenomena. The RDA Eq. (22) 
becomes: 

0cr( t )m ( t )c ( t )kε ε ε+ + =          (26) 
 Using the principle of analogy, one very complicated nonlinear problem may be 
solved as a simpler linear dynamical one. Consequently, each isochronous stress-
strain diagram can be accurately approximated by the RDA. 
 

 
3.2 Rheological-Dynamical and EC 2 limit Analysis 
  
Description of the highly complex behavior of concrete is a difficult task and to date 
generally accepted constitutive equations do not exist. A variety of models have 
been proposed to characterize the stress-strain relations and failure behavior. All 
these models have certain inherent advantages or disadvantages which depend to a 
large degree on the particular application considered. 

Analytical procedure, based on the model of viscoelastoplastic material and 
RDA, which can be used to predict the buckling strength and determine the buckling 
curves of columns, was introduced by Milašinović [4]. Goleš [5] noticed that the 
application of this procedure is limited to a certain range of slenderness, so 
characteristic load-bearing capacity of two-hinged concrete column may be 
expressed as follows 
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3 1
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γϕ
λ λ
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zz

H
cr R H D E

z

z z

cm D

LE for 
kL k

E
t E t E for 

kL
k I t

f for 

,      (27) 

where EH is initial modulus of elasticity, ER(t) dynamic or RDA modulus, L length 
of the column, kz radius of gyration, λ slenderness ratio of the column, Iz second 
moment of area of cross-section, γ specific gravity, ϕ(t) creep coefficient, and fcm 
mean value of concrete cylinder compressive strength. λE is the upper boundary, 
elastic slenderness value which corresponds to the intersection of Euler and RDA 
buckling curves, while λD represents the lower slenderness limit of applicability of 
RDA procedure. λD is slenderness ratio that corresponds to the intersection point of 
RDA improved buckling curve and horizontal line which represents the mean value 
of concrete cylinder compressive strength fcm (Fig. 3). The critical buckling stress 
obtained for λD is equal to fcm, and stress-strain diagram, which is provided by the 
RDA procedure for slenderness ratio λD, is also valid for all less slenderness ratios. 
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Because of this, the working diagrams for concrete of various strength classes can be 
obtained by applying the RDA procedure on the standard specimen (cylinder) for 
testing compressive strength of concrete, if the mean value of concrete cylinder 
compressive strength fcm, secant modulus of elasticity of concrete Ecm, specific 
gravity γ and Poisson's ratio μ. are known. If μ is unknown, it may be determined 
from the criterion that the compressive strain at the peak stress fcm takes the value 
given in EC 2. 
 The procedure consists of several steps. First, RDA buckling curve is drown 
according to Eq. (28) 

3 1
σ

λ
γϕ

= cm
RDA

z
*

z

E
k
I

,           (28) 

where ϕ* is the structural creep coefficient, which represents the creep coefficient at 
the limit of elasticity and, according to Ref. [6], may be expressed as follows  

4 4
1 1 1 11 1 1

1 2 1 2
ϕ

με ε με ε

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥ ⎢ ⎥= − ⋅ − − ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

*

E E E E
.     (29) 

εE is the strain at the limit of elasticity. It is observed [5] that the value of ϕ* depends 
very little on εE, so, for concrete, the value of εE=0.0003 can be adopted.  

Slenderness ratio λE is obtained from the terms of intersection of Euler and RDA 
buckling curves 

3
2 1λ π

γϕ
= z

E *
z

k
I

.           (30) 

Stress and strain at the limit of elasticity are as follows 
2

2
σπσ ε

λ
= = E

E cm E
cmE

E ,   
E

.         (31) 

When stresses exceed the elasticity border, the modulus Ecm is not constant any 
more. It becomes equal to the dynamic RDA modulus ER(t). As σ(t) increases ER(t) 
decreases. Thus, the use of relation ER(t) v/s σ(t) may improve the results of Eq. 
(28). Let us assume sinusoidal stress excitation 

( )RDA( t ) sin tσσ σ ω= .              (32) 

The corresponding creep coefficient is as follows 

( ) ( ) ( )
3 1 1E z

z z H

l k
t t t K

k I E ϕϕ σ σ
γ

= = ,       (33) 

where Kϕ is the constant for the column 
3 1 1E z

z z H

l k
K

k I Eϕ γ
= .               (34) 

Now dynamic RDA modulus [4] becomes  

( )
( ) ( )

( ) ( ) ( ) ( )

2

0

2

2
00

1 1

1 1 2 1

D
H K

R

D D
HH K K

E t E t
E t

E tE t E t E t

δ

δ

+
+

=
⎛ ⎞+

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

,          (35) 

where 
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2 Et
σ

πω = ,  
2

D
K

E
T

t
πδ =  and 

( )
D H
K

E
E

tϕ
= .       (36) 

The time tE when stress reaches the point of elasticity is experimentally determined 
value. The function ER(t) v/s σ(t) may be found explicitly. Now, for the computed 
value of σRDA, according to Eq. (28), appropriate ER may be selected and then 
recalculated a new σRDA. This iterative procedure must be performed until there is 
convergence to the stress σRDAI, which represents the compressive strength of 
observed column of slenderness ratio λ. The procedure repeats for different 
slenderness ratios, and improved RDA buckling curve can be drowned. The lower 
slenderness limit λD for the reference sample (cylinder) can be found from the 
intersection of this curve and the horizontal line corresponding to the mean value of 
concrete compressive strength - Fig. 3. RDA working diagram determined for lower 
slenderness limit λD is also valid for all smaller slenderness ratios, including the 
actual slenderness ratio of the sample (λ=8). 

The stress-strain diagram of uniaxial compressed concrete column of slenderness 
ratio λD can be obtained by an iterative RDA procedure, starting from the known 
strain at the elastic limit εel Eq. (31). For i-th step is obtained 

1 1
1

1

i i i i
Ri i i

i i Ri
E

E
σ σ σ σ

ε ε
ε ε

− −
−

−

− −
= ⇒ = +

−
,        (37) 

and follows 
E

el
HE

σ
ε = , 1

1
1

E
el

RE
σ σ

ε ε
−

= + , 2 1
2 1

2RE
σ σ

ε ε
−

= + , 

1
1

i i
i i

RiE
σ σ

ε ε−
−

−
= + , RDAI n

RDAI n
RDAIE

σ σ
ε ε

−
= + , 

RDA RDAI
vp RDAI

HE
σ σ

ε ε
−

= + .            (38) 
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Figure 3: Buckling curves and mean value of concrete cylinder compressive strength 
for concrete of grade C35/45 
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Fig. 4 gives comparison of working diagram of concrete C35/45 according to 

Eurocode 2 and RDA, under the short-term uniaxial pressure. For comparison is 
adopted stress-strain diagram given by EC 2 for the nonlinear analysis of structures, 
according to the expression 

( )
2

1 2
σ η η

η
−

=
+ −

C

cm

k
f k

,           (39) 

where η=εc/εc1, εc1 is the strain at the peak stress (εc1=2.25‰) and 
11 1 ε= ⋅cm c cmk . E / f .          (40) 

 According to RDA the maximum strain is εcu1=4.447‰. For practical application, 
it is recommended to limit the value of this strain to εcu1=3.5‰, as in EC 2.  
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Figure 4: Comparison of working diagrams of concrete C35/45  
according to EC 2 and RDA  

 
 Milašinović [6] gave a detailed description of the iterative RDA procedure for 
obtaining the stress-strain diagram of a steel rod, when its coefficient of linear 
thermal expansion αT, specific heat c, mass density ρ, modulus of elasticity EH and 
slenderness ratio at the point of elasticity λE are known. He experimentally verified 
the procedure on the prototype. On the basis of known physical parameters of 
material, established by the prototype, and basic mechanical parameters of steel 
bars, that are standard tested, Goleš in [5] theoreticaly obtained RDA stress-strain 
diagrams of reinforcement. Modulus of elasticity EH and yield stress σY of 
reinforcement are adopted according to declaired properties of material (σY=fyk, 
EH=ES). Structural creep coefficient can be calculated from Eq. (29), whith adopted 
εE=0.001 and Poisson's ratio μ=1/3. Elasticity stress and corresponding strain can be 
determined from [6]  

1
σϕσ σ ε

ϕ
= =

+

*
E

E Y E*
H

,   
E

 .             (41) 

 Slenderness ratio of the fictitious sample (or true model) can be determined from 
the first term in (27) as folows 
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2π
λ λ

σ
= = H

E tm
E

E .              (42) 

Relation between the true model and the prototype, both of circular cross-sections, 
according to Ref. [5] may be written as 

0 0
εφ

φ ε
= p,prtm

,tm ,pr
pr p,tm

l l ,           (43) 

where lo,tm and lo,pr are lengths of the true model and the prototype, φtm and φpr their 
diameters, εp,tm and εp,pr their proportional strains. With λ=4l0/φ, proportional strain 
and stress of true model can be determined as follows 

2

2

λ
ε ε ε σ ε

λ
= = =pr

p,tm p,pr p p H p
tm

,   E .        (44) 

Iterative procedure continues as in Ref. [6]. According to Ref. [5], the number of 
iterations in viscoelastoplastic (VEP) range depends on type of steel. For the 
reinforcement  RA 400/500 (B400) whith mechanical characteristics: fyk=400MPa, 
ftk=500MPa, εuk≥10%, Es=200GPa, number of iterations should be between i=2 and 
i=5. Lower yield point, for this steel, should be neglected. The stress-strain diagram 
for this steel, obtained by RDA iterative procedure, is shown in Fig. 5a. The diagram 
in Fig. 5b is drown for the same steel, accoding to EC 2.  
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Figure 5: Working diagrams of steel B400, for the bar diameter Ø19mm, 

according to a) - RDA and b) - EC 2  
 
 
4  Applications 
 
An reinforced concrete 20m long simple supported folded plate structure, with 
applied vertical uniformly distributed load: self-weight of structure g, self-weight of 
covering on sloped planes Δg=0.5kN/m2 and snow load on sloped planes 
s=1.0kN/m2 (Fig. 6), is analyzed. The structure is made of concrete C35/45 and 
reinforcement B400. Linear FSM analysis for 10 strips and 100 series terms is 
performed using elasticity modulus of E=34GPa and Poisson's ratio μ=0. Diagrams 
of internal forces and bending moments along the transverse central cross-section 
are shown in Fig. 7. 
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Figure 6: Cross-section of analysed folded plate structure 
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Figure 7: Internal forces and bending moments along the transverse central cross-
section, according to linear elastic FSM 

 
 Limit state design (ultimate and serviceability) of characteristic cross sections is 
performed according to currently valid Serbian technical regulations for concrete 
and reinforced concrete, using partial factor method. Diagrams of interaction (Nu-
Mu) of two characteristic cross sections are drawn using various combinations of 
working diagrams (WD) of concrete and steel according to Eurocode 2 and 
according to RDA (A-both WD according to EC 2; B-both WD according to RDA, 
without strain limitation in concrete; C-both WD according to RDA, with limited 
maximum strain in concrete to εcu=3.5‰; D-RDA WD of steel and EC 2 WD of 
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concrete; E-EC 2 WD of steel and RDA WD without strain limitation of concrete 
and F-EC 2 WD of steel and RDA WD with limited maximum strain in concrete to 
εcu=3.5‰) – Figs. 8 and 9. Partial safety factors for material are not applied. Tension 
force is treated as negative. Positive bending moment of the border beam stretches 
the bottom side of cross-section. 
 
 

 
 
 

10
0

35
,9

5
25

,7
5 45

,7
5

45
,7

5

20

40
,8

5

1
2
3

4

5

10

 

-4

-2

0

2

4

6

8

10

12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Mu [MNm]

Nu [MN]

A

B

C

D

E

F

e = 17.78 cm

e = 10.629 cm

FSM

HCFSM lin

HCFSM

 
Figure 8: Cross-section of the border beam with reinforcement Ø19mm and 

corresponding Nu-Mu diagram 
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The ultimate resistance (Nu) and global safety factors γ=Nu/N of two selected 
cross-sections are shown in Table 1. Eccentricity of normal force due to applied 
actions is e=M/N, where M and N are bending moment and normal force calculated 
by FSM, linear HCFSM and nonlinear HCFSM. In the case of nonlinear HCFSM, 
only the Green-Lagrange predictions are compared, because the von Karman 
solutions are almost similar to those from linear HCFSM. It has to be noted that 
applied load in HCFSM slightly differ from that shown in Fig. 4 (variable uniformly 
distributed load is added at the border beam). That is the reason why the effects of 
applied loads for linear HCFSM differ from those of FSM.  

 
 

Combination of working diagrams of concrete and steel 
A B C D E F 

border beam 

FS
M

 

effects of 
applied load N=-696.75kN;   M=121.05kNm;   e=-0.17373m 

Nu -1530 -1570 -1570 -1570 -1530 -1530 
γ 2.20 2.25 2.25 2.25 2.20 2.20 

lin
ea

r 
H

C
FS

M
 effects of 

applied load N=-779.66kN;   M=149.60kNm;   e=-0.19188m 

Nu -1490 -1520 -1520 -1520 -1490 -1490 
γ 1.91 1.95 1.95 1.95 1.91 1.91 

no
nl

in
ea

r 
H

C
FS

M
 effects of 

applied load N=-765.27kN;   M=143.91kNm;   e=-0.18805m 

Nu -1505 -1535 -1535 -1535 -1505 -1505 
γ 1.97 2.01 2.01 2.01 1.97 1.97 

cross-section in nodal line 1 

FS
M

 

effects of 
applied load N=43.79kN;   M=7.61kNm;   e=0.17379m 

Nu 107.60 116.52 113.64 112.78 112.49 110.48 
γ 2.46 2.66 2.60 2.58 2.57 2.52 

lin
ea

r 
H

C
FS

M
 effects of 

applied load N=44.57kN;   M=8.35kNm;   e=0.18735m 

Nu 98.75 105.15 104.08 102.75 102.21 101.68 
γ 2.22 2.36 2.34 2.31 2.29 2.28 

no
nl

in
ea

r 
H

C
FS

M
 effects of 

applied load N=44.22kN;   M=8.22kNm;   e=0.18589m 

Nu 99.52 107.59 105.98 103.56 103.29 103.02 
γ 2.25 2.43 2.40 2.34 2.33 2.33 

 

Table 1 - The ultimate resistance and global safety factors of two cross sections 
 

 Nonlinear geometric effects which are of major importance in the deformational 
response as well ultimate and serviceability load analysis of longer reinforced 
concrete folded shells are used in order to examine structure stability. 
 The comparative efficiency of the von Karman and the Green-Lagrange HCFSM 
solutions is presented in the large-displacement stability analysis. Various span 
lengths (10, 15, 20, 25 and 30m) of structure and various series terms (1, 3, 5-29 and 
31) are considered in the analysis. The convergence is established when the norm of 
the residual forces value is less or equal to 0.1 (accuracy 1/1000). The total loading 
was divided into 8 (0.6, 0.04, 0.04, 0.04, 0.04, 0.04, 0.1 and 0.1) increments of load. 
The load factor 0.8 corresponds to the service load. 
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Figure 10:  Variation of central deflection w in nodal line 1 and normal force Ny in 
nodal line 11 with load intensity 

 
 As shown in Fig. 10, the effect on nonlinear behavior is less pronounced in the 
20m long structure. In this example the response always involves a hardening 
structure. 
 

   
 

Figure 11: HCFSM convergence of central deflection w and moment My at the nodal 
line 1 for the last loading level 

 
 Fig. 11 illustrates the convergence of the deflection w and the moment My. The 
convergence is non-monotonic for all predictions: Green-Lagrange (LAG), von 
Karman (VK), and linear (LIN). However, the convergence of the moment My is 
poor, and many more series terms would be required for the moment values to 
converge to the exact answer. 
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 The corresponding increment of load in term of TSMS eigenvalue is depicted in 
Fig. 12. To illustrate the static equilibrium in the context of stability, the load-part 
curves which corresponds to stable equilibrium states is plotted with solid line, 
while the load-part curves which corresponds to unstable equilibrium states is 
plotted with a dashed line. Analysis of the influence of the load on TSMS 
eigenvalue was demonstrated to all span lengths (10, 15, 20, 25 and 30m) and 31 
series terms adopted in the computations. For all structures the stability regions were 
observed for both the von Karman and the Gree-Lagrange predictions under all load 
increment. It was stated that span length have a serious influence on equilibrium 
state. Consequently when span length increases a drop of TSMS eigenvalue is 
observed. Also that when load increases the rise of TSMS eigenvalue was observed 
for both the von Karman and the Green-Lagrange predictions. It is in accordance 
with the response which involves a hardening structure for 20m span length.  

 

  

  
 

Figure 12: Variation of TSMS eigenvalue with load intensity for inputs with 
different structure span lengths and 31 series terms involved in computations 
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5  Comparative Finite Element Analysis 
 
During the research, we compared HCFSM results with those obtained in ABAQUS 
with shell elements. The variations of central deflection w in nodal line 1 and normal 
force Ny in nodal line 11 with load intensity are presented in Fig. 10. We used STRI3 
element which is the only element in ABAQUS library that is intended to use for 
thin plates imposing the Kirchof's theory [7]. This element models arbitrarily large 
rotations but only small strains. 

 
 

Figure 13: Shell model in ABAQUS with 3800 STRI3 elements 
 

The uniform mesh size shown in Fig. 13 has been varied for convergence study. 
Fig. 14 presents central deflection convergence.  
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Figure 14: ABAQUS convergence of central deflection 
 

 
6  Conclusions 
 
The HCFSM computational model for the analysis of reinforced concrete folded 
plates has been described and the results of several numerical applications with 
comparative finite element analysis has been presented and discussed. Good 
correlation was found between the HCFSM and the FEM results throughout the 
entire structural response for 20m span length, which demonstrates the effectiveness 
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of the HSFSM code. Geometric nonlinear effects need to be taken into consideration 
in order to obtain realistic numerical solutions for longer shells because that span 
length has a serious influence on equilibrium state. When the lowest eigenvalue of 
the tangential stiffness matrix of structure becomes negative, a bifurcation state can 
be missed when using a finite element program if this matrix is not calculated and 
checked. A variation in the RDA stress-strain diagrams of concrete and 
reinforcement has a negligible influence on the ultimate load compared with EC 2 
for shorter shells, as long as a collapse mechanism based on the EC 2 for nonlinear 
analysis is developed. However, as the cracked concrete model depends on the 
existing strain field, a rigorous convergence criterion in terms of displacements and 
dynamic RDA modulus should be adopted. 
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