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Abstract 
 
The authors have developed a beam finite element model for thin walled beams with 
arbitrary cross sections in the large torsion context [1]. Circular functions of the 
torsion angle θx (c=cosθx-1 and s=sinθx) were included as variables. In this paper 
three other three-dimensional finite element beams are derived according to the 
three approximations of the circular functions c and s: cubic, quadratic and linear. A 
finite element approach of these approximations is carried out. Many comparison 
examples are considered. They concern non linear behaviour of beams under twist 
moment and post buckling behaviour of beams under axial loads or bending loads.      
 
Keywords: beam, finite element, non linear, open section, post-buckling, stability, 
thin-walled. 
 
 
1 Introduction 
 
Thin-walled elements with isotropic or anisotropic composite materials are 
extensively used as beams and columns in engineering applications, ranging from 
buildings to aerospace and many other industry fields where requirements of weight 
saving are of main importance. Due to their particular shapes resulting from the 
fabrication process, these structures always have open sections that make them 
highly sensitive to torsion, instabilities and to imperfections. The instabilities are 
then the most important phenomena that must be accounted for in design. 
Nevertheless most of these flexible structures can undergo large displacements and 
deformations without exceeding their yield limit. Again, buckling does not mean 
failure. Many structures depict a stable equilibrium in post buckling state. For these 
reasons the computation of these structures must be carried out according to 
nonlinear models with use of an efficient technique that is able to overcome the 
difficulties encountered in presence of singular points.  
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In literature of thin-walled beams, some finite element models were derived from 
Vlasov’s model in small non-uniform torsion context [2],[3]. Pi [4] and Turkalj [5] 
introduced a correction in the rotation matrix by considering higher order terms and 
obtained improved models for linear and nonlinear stability analyses. Moreover, it 
has been proved that pre-buckling deformations and shortening effects have a 
predominant influence on torsion behaviour and stability of thin-walled beams 
especially in beam lateral buckling investigations. These phenomena result from 
flexural torsional coupling and presence of cubic term in the torsion equilibrium 
equation (shortening effect or Wagner’s terms). These parameters are naturally 
ignored in models developed according to linear stability. Authors [1] have 
developed a beam finite element model for thin-walled beams with arbitrary cross 
sections including flexural-torsional coupling, pre-buckling deflection effects and 
large torsion context (B3Dw element). The efficiency of the model has been proved 
for nonlinear behaviour and post buckling behaviour of thin-walled beams with 
arbitrary cross sections. Comparisons have been made with some available beam 
finite element with co-rotational formulation or test results.  
 
Furthermore, some other finite element models have been investigated for stability 
of thin-walled beams where the trigonometric functions were approximated by 
polynomial functions. A finite element approach with cubic approximation was 
investigated by Attard [6] and Ronagh [7]. In these works, only results on stability 
were reported. Mohri [8] adopted this approximation in presence of cubic curvature 
and developed a semi analytical model for post buckling behaviour of simply 
supported beams when buckling modes are sinusoidal. Dourakopoulos [9] adopted 
the same approximation with boundary element method. DeVille [10] investigated a 
beam finite element with co-rotational formulation and linear approximation of 
circular functions. Similar approximations were obtained in Fraternali [11] with an 
additional higher term for warping component. 
 
Nonlinear behaviour of structures like beam is conditioned by many parameters 
(mesh, geometry data, boundary conditions, initial imperfections, iterative method 
and convergence criteria). It is important to discuss the effect of different 
approximations under the same conditions. In the present original work, a finite 
element formulation is derived according to each approximation (cubic element, 
quadratic and linear approximation). For each element, flexural-torsional coupling is 
taken into account in kinematics (displacement and Green’s tensor components) and 
the equilibrium in Lagrangian assumption. In solution the incremental iterative 
methods are followed. The tangent stiffness matrix of each approximation is carried 
out. Each element is incorporated in a homemade finite element code. Many 
comparison examples are considered. They concern non linear behaviour of beams 
with arbitrary cross section under twist moment and post buckling behaviour of 
columns and beams. For each element, the flexural-torsional equilibrium paths are 
obtained under the same conditions. The efficiency of B3Dw element is confirmed.  
 
The background of the large torsion model is first reminded in section 2. The 
equilibrium and the constitutive equations are first described in section 2.1. The 
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finite element discretisation, tangent matrix terms and the solution strategy follow in 
section 2.2. In section 3, the finite element formulation according to cubic 
approximation is described and followed by quadratic and linear approximations. 
The main changes are outlined. 
 
 
2  Theoretical and numerical model background 
 
2.1  Equilibrium and constitutive equations 
 
The theoretical model used in this work has been detailed in [1]. For the sake of 
completeness, only a short review is shown hereafter and attention is gone to model 
parts where flexural torsion coupling exist and torsion approximation is present. For 
the study, a straight thin-walled element with slenderness L and an open cross-
section A is pictured in Fig. 1. A direct rectangular co-ordinate system (x,y,z) is 
chosen. Origin of these axes is located at the centre G and shear centre is denoted by 
C. Consider M, a point on the section contour with its co-ordinates (y, z, ω), ω  being 
the sectorial co-ordinate introduced in Vlasov’s model for non uniform torsion. It is 
admitted that there is no shear deformations in the mean surface of the section and 
the contour of the cross-section is rigid in its own plane. Displacements and twist 
angle can be large but deformations are assured to be small. An elastic behaviour is 
then adopted in material behaviour. Displacements of a point M are derived from 
those of the shear centre by: 
 

')'''()'''( xM svcwwzswcvvyuu ωθ−−+−++−=    (1) 

cyyszzvv ccM )()( −+−−=       (2) 
czzsyyww ccM )()( −+−+=        (3) 

 
with 1)cos( −θ= xc  and  )sin( xs θ=                    (4a,b) 
 
u is the axial displacement of centroid, (v, w) are displacements of shear point in y 
and z directions and θx is the torsion angle. Customary symbol (.)’ denotes 
differentiation with respect to x co-ordiante. Since the model is concerned with large 
torsion, the trigonometric functions c and s are conserved without any 
approximation in this section. The components of Green’s strain tensor which 
incorporate large displacements are reduced to the following: 
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In (5a), ε denotes the membrane component, ky and kz are beam curvatures about the 
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main bending axes and R is the distance between the point M and the shear centre C. 
One reads: 

'22 )''(
2
1' xwvu χθε −++=    

svcwwk y """ −+=          

swcvvk z """ ++=              (6a,c) 
 
The variable χ  associated with membrane component in (6a) is defined by: 
 

)()( s'wc'v'vzs'vc'w'wy cc ++−−+=χ                    (6d) 
 
Equilibrium equations are derived from stationary conditions of the total potential 
energy (δU-δW=0). Loads are applied on the external surface of the beam A∂  (Fig.1). 
Their components (λFxe,λFye,λFze) are supposed to be proportional to load 
parameter λ. The beam strain energy δU is written in terms of the stress resultants 
acting on the cross-section as: 
 

dxMBMkMkMNU
L

xRxxsvzzyy∫ ⎟
⎠
⎞

⎜
⎝
⎛ θδ+δθ+δθ+δ−δ−δε=δ ω

2'"' )(
2
1

  (7) 

 
N is the axial force, My and Mz are the bending moments, Bω is the bimoment acting 
on the cross-section and Msv is the St-Venant torsion moment (Fig.1). MR is a higher 
order stress resultant. It includes Wagner coefficient and shortening effects. Doing 
variation on relations (1-3), one obtains for the virtual work δW of the external loads: 
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∫ δθ+δ+δ+δθ+δ+δ+δλ=δ ω

)'''()'''(

''

'' '

 (8a)

  
where ey and ez denote load eccentricities from shear point (ey = y-yc, ez = z-zc), (Mye, 
Mze), Mxe and Bωe define respectively the external bending moments, the torsion 
moment and the bimoment. They are listed below in terms of load eccentricities: 
 
Mye = -Fxe  z,  Mze = -Fze  y, Mxe = -Fye ez+ Fze ey, Bωe = -Fxe  ω         (8b-e) 
 
In finite element approach, only the contribution of constant load is considered. 
Distributed loads are converted to equivalent concentrated loads. The contribution of 
eccentric loads to second member and tangent stiffness matrix is not included in the 
present work. Extensive effort is done actually in order to make this possible in 
future with development of an alternative method to Newton-Raphson iterative 
methods, the asymptotic numeric method [12]. The first results have been already 
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obtained. The results will be presented in near future. When only linear terms are 
kept in development, the virtual work of external loads is reduced to: 
 

( )dxBvMwMMwFvFuFW
L

xezeyexxezeyexe∫ ++++++= ''' δθδδδθδδδλδ ω  (9)

  

 
 
 
 

 

 

 

Fig. 1: open section thin-walled beam: definition of kinematics and stress forces 

 
Matrix formulation is adopted hereafter. For the purpose, the following work vectors 
are introduced: 
 
{ } { }Rsvzy

t MBMMMNS ω= ,     { }
⎭
⎬
⎫

⎩
⎨
⎧ θθθ−−ε=γ 2'"'

2
1

xxxzy
t kk  

{ } { }x
t wvuq θ= ,      { } { }xxx

t wvwvu θθθθ "'' ""''=    (10a-d)               

 
{ } { }xezeyexe

t
e MFFFF =  , { } { }00000 eyeze

t
e BMMM ω=    (11a,b)       

 
{S} and { }γ  define beam stress resultants and deformation vectors. Vectors {q} and 
{ }θ  are displacement and displacement gradient vectors. Load forces are arranged in 
two components {Fe} and {Me} which are the conjugate of {q} and {θ}. In previous 
vectors, the trigonometric functions c and s are present in {γ} vector, respectively in 
χ variable of the membrane component ε and in curvatures ky and kz defined in (6a-
d). For numerical development, the following additional vector is used. 
 
{ } { }χα sct =                            (12) 
 
Based on (10-11), the matrix formulation of the equilibrium in compact form is: 
 

{ } { } { } { } { } { } 0=⎟
⎠
⎞⎜

⎝
⎛ ∫ δθ+∫ δλ−∫ δγ dxMdxFqdxS e
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t
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t        (13) 

 
The present model is applied in the case of elastic behaviour. In such context, the 
matrix form between the stress vector {S} and the deformation vector { }γ  when 
derived in the principal axes is: 
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{ } [ ]{ }γDS =           (14) 
 
[D] is the material matrix behaviour. Its terms are functions on elastic and geometric 
characteristics needed for axial, bending, and non uniform torsion behaviour [1]. 
 
In the variational formulation of the equilibrium (13) and the elastic material 
behaviour (14), the {γ } vector and its variation {δγ } are considered particularly 
since all non linear terms including flexural torsional coupling and trigonometric 
functions (c, s) are present in these vectors.  According to (6a-c), the strain 
vector, defined in  (10b), is split into a linear part and two non-linear parts: 
 
{ } [ ] [ ] [ ] { }θαθγ α ⎟

⎠
⎞

⎜
⎝
⎛ −+= )()(

2
1 AAH     (15a) 

 
Applying variation to (15a) one gets for { }δγ  needed in the equilibrium system (13)  

{ } [ ] [ ] [ ] [ ]( ) { }δθαθαθδγ α ),(~)()( AAAH −−+=    (15b) 

 
Matrices [H] and [A(θ)] are classical in non-linear structural mechanics. They are 
independent on torsion approximation. The terms matrices [Aα(α)] and [ ]),(~ αθA that 
take into account for large torsion and flexural-torsional coupling. For this reason 
they are outlined. In what follows, only the flexural-torsional matrices are given. 
The other matrices are detailed in [1]. The [Aα(α)]  matrix terms are: 
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For matrix [ ]),(~ αθA , one gets the following expression: 
 
[ ] [ ] [ ]),()(ˆ),(~ αθθαθ PAA =       (17) 
 
Matrix ⎥

⎦

⎤
⎢
⎣

⎡ ∧
)(θA is linearly dependant on {θ} . Matrix [P(θ,α)] is given by: 
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))1(''())1(''( +−+++−= cwsvzcvswyP ccc  

)1( +−−= czsyQ ccc
 and szcyR ccc −+= )1(     (18b-d) 
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Based on these relationships, the equilibrium equations (13) and the constitutive 
system (14) are then arranged into the following detailed system: 
 

{ } [ ] [ ] [ ] [ ]( ) { } { } { } { } { }( )

{ } [ ] [ ] { }⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟
⎠
⎞
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⎝
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θαθ

δθδλαθαθδθ

α

α
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2
1][][
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AAHDS

dxMFqdxSAAAH
L

tttt

L
      (19a,b)   

 
The elastic equilibrium equations have been derived without any assumption about 
the torsion angle amplitude. Trigonometric functions c and s have been included as 
components in vector {α}. In the analysis, non-linear and highly coupled kinematic 
relationships have been encountered. Due to consideration of large torsion, novel 
matrices [ ])(ααA  and [ ]),(~

αθA derived in terms of functions c and s and flexural-
torsional coupling have been carried out. The finite element approach system (19) is 
summarised hereafter. 
 
2.2 Finite element formulation and solution strategy 
 
3D beams elements with two nodes and 7 degrees of freedom per node are adopted 
in mesh process. In the present study, the beam of slenderness L is divided into some 
finite elements of length l. Linear shape functions are assumed for axial 
displacements u and cubic functions for the other displacements (i.e v, w, θx) are 
used. The vectors {q} and { }θ  are related to nodal variables {r} by: 
 
{ } [ ]{ }erNq )(ξ=  and   { } [ ]{ }erG )(ξθ =          (20a,b) 
 
where [N(ξ)] is the shape function matrix and [G(ξ)] is a matrix which links the 
gradient vector { }θ  to nodal displacements. In the framework of finite element 
method, the system (19) becomes: 
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Symbol ( ∑e ) denotes the assembling process over basic elements. In (21), one reads: 
 
[ ] [ ] [ ] [ ] [ ]),(~)()(),( αθ−α−θ+=αθ α nlnlnll BBBBB ,     
[ ] [ ][ ])( ξ= GHB l ,          
[ ] [ ][ ])()()( ξθ=θ GAB nl ,            
[ ] [ ][ ])()()( ξα=α αα GAB nl  ,        
[ ] [ ] [ ])(),(~),(~ ξαθ=αθ GAB nl

,              
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{ } [ ] { } [ ] { }e
t

e
t

e MGFNf )()( ξ+ξ=  .    (22a-f)          
 
Matrices [Bl] and [Bnl(θ)] are familiar in non-linear structural analysis. [Bnlα(α)] and 
[ ]),(~

αθnlB result from large torsion assumptions and flexural-torsional coupling. 
Vector {f}e is related to the nodal forces. To solve the non-linear problem (21) the 
classical incremental-iterative Newton-Raphson procedure is followed. With this 
aim in view, we have to compute the tangent stiffness matrix. Unknowns of the 
problem { }( ) { } { } { }( )λαλ ,, SrU t =  are sought in the form: 
 
{ } { } { }UUU Δ+= 0   and  λΔ+λ=λ 0                         (23a,b) 
 
Given an initial guess of the solution ({U0}, λ0), the increments of the problem ({ΔU}, 
Δλ) fulfil the following incremental condition:  
 
[ ]{ } { } { }0=λΔ−Δ frK t                                                            (24) 
  
where:  [Kt] = [Kg] + [Ks0]              (25a) 
[ ] [ ] [ ][ ]∑ ξ∫ αθαθ= −

e

t
g dBDBlK 1

1 0000 ),(),(
2

                           (25b) 

[ ] [ ] [ ][ ]∑ ξ∫ ξαθξ= −
e

t
S dGSGlK 1

1 000 )(),()(
2

                                (25c) 

 [Kt] is the tangent stiffness matrix. [Kg] and [KS0] are respectively the geometric and 
the initial stress stiffness matrices. The geometric matrix terms have been defined 
previously in (22). The initial stress matrix is split into:  
 

[ ] [ ] [ ] [ ] ⎥⎦
⎤

⎢⎣
⎡−−−= ),(),(),(,( 000000000000 αθαθαθαθ SSSSS

t
           (26) 

 
All these matrices are 8x8 order. The first, ( [ ]0S ) is function on beam initial stress 
resultants but is independent to torsion approximation. The last ( [ ]0S  and 

⎥⎦
⎤

⎢⎣
⎡

0S ) are 

highly dependent. The non vanished terms of these matrices are the following: 
 

cQNS 00 )2,4( = , cRNS 00 )3,4( = , cPNS 00 )8,4( = , 

)1()8,5( 000 +−−= cMsMS yz ,  )1()8,5( 000 ++−= cMsMS zy     (27a-e) 

( )szcyNS ccx −+−= )1()8,2( '
00 θ  ( ))1()8,2( '

00 ++−= czsyNS ccxθ  

( ) ( )[ ]
[ ] [ ])1("")1(""

')1()1(')8,8(

00

'''
00

++−+−+
++++−=

cvswMcwsvM
swcvzcwsvyNS

zy

ccxθ        (28a-c) 

 
In these relationships, N0, My0 and Mz0 are axial and bending initial beam stress 
resultants. Coefficients Pc, Qc and Rc have been defined in (18b-d). 
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By this way, a large torsion non-linear finite element model for elastic thin-walled 
beams has been investigated. The calculation of the tangent stiffness matrix was 
possible thanks to the introduction of trigonometric variables c and s present in {α} 
vector. The different solutions are first presented and discussed below. 
 
 
3  Finite element formulations with polynomial 

approximations 
 
In previous formulation, all matrices are derived without any assumption on torsion 
angle amplitudes. Functions c=cos(θx)-1 and s= sin(θx) have been considered without 
any approximations.  In what follows, these functions are computed according to the 
following Taylor’s approximants, ranging from cubic to linear. 
 
When functions c and s are approximated until power 3 (cubic approximation), then: 
         

2
1)cos(

2
x

x
θθ −= , 

6
)sin(

3
x

xx
θθθ −= ,  so: 

2

2
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θ
−= , 

6

3
x

xs
θ

θ −=  (29a-d)  

 
The kinematics (1-3) of displacement components are modified accordingly. 
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When functions c and s are approximated until power 2 (quadratic), one writes: 

2
1)cos(

2
x

x
θθ −= , xx θθ =)sin( , 2

2
xc

θ
−=  and xs θ=     (31a-d) 

 
The 3D displacements of the beam’s contour point are: 
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When the functions c and s are approximated with only linear functions, one gets: 
 

1)cos( =xθ , xx θθ =)sin(  , 0=c  ,           xs θ=    (33a-d) 
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This means, that in kinematic equations, one considers: 
 

')''()''( xxxM vwzwvyuu ωθθθ −−−+−=    

xcM zzvv θ)( −−=    ,    xcM yyww θ)( −+=    (34a-c)  
 
For these approximations, the same procedure is followed as in large torsion context. 
For any approximation, the equilibrium system and its finite element formulation are 
derived. For the equilibrium, the matrix formulation equivalent to (19) is obtained. 
Changes are observed at matrices linked to flexural-torsional coupling (i.e: matrices 
[Aα(α)], [P(θ,α)]). In solution of the nonlinear equations by iterative incremental 
strategies, the initial stress matrices ⎥⎦

⎤
⎢⎣
⎡ ),( 00 αθS  and ⎥

⎦

⎤
⎢
⎣

⎡ ),( 00 αθS of the tangent operator 

[Kt] are carried out. Their terms are derived in the Appendix A for any 
approximation and a finite element model based on 3D beam element including 
warping and according to each previous approximation has been developed. Due to 
highly coupled and non linear equilibrium equations, the Newton-Raphson 
incremental iterative methods are adopted in the solution. Here, the arc-length 
strategy is adopted. The tangent matrix is then carried out. It accounts for large 
displacements, initial stresses, torsion approximation and flexural-torsional 
coupling. These elements are implanted in a general finite element package. The 
large torsion beam element referenced B3Dw has been presented largely and 
validated in [1].  The beam elements are denoted B3Dw3 (for cubic approximation), 
B3Dw2 (quadratic approximation) and B3Dw1 (linear approximation). Some 
examples are presented hereafter. They concern the flexural-torsional behaviour of 
beams under torsion moment and post buckling behaviour of columns and beams. 
 
 
4  Comparison examples  
 
Some comparison examples are considered here. They concern non linear behaviour 
of beams with arbitrary cross section under twist moment and post buckling 
behaviour of columns and beams under axial loads or bending loads. Due to 
presence of highly non linear equations and presence of singular points, arc-length 
method is adopted for solution of the incremental equations.  For each element, the 
flexural-torsional equilibrium paths are obtained under the same conditions (mesh, 
initial arc-length increment, convergence criteria and initial imperfections when they 
are needed). 
 
4.1  Torsion behaviour 
 
The flexural torsional behaviour of a channel beem under torsion moment is studied.  
The beam is simply supported in bending and torsion at both ends. Warping is free 
at both ends. The axial displacement is fixed only at one end. The geometric data of 
the beam are depicted in Fig.2a. The elastic constants E=210 GPa G=80,77 GPa.  A 
torsion moment is applied at mid-length. 20 elements are used in the mesh process. 
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Since the beam cross section is singly symmetric, it exhibts a flexural-torsional 
beahviour. The displacements v,w and the torsion angle θx at mid-length of the beam 
are depicted in Fig.2b-d. The torsion moment has been varied from 1 to 100 kNm 
with an automatic arc-length. For the convergence condition, the residue is fixed at 
10-6. One can observe that in large torsion beam behaviour of the beam is 
predominated by shortening effect. For this section the linear part is very limited. 
Effect of torsion approximation is evident. Under linear behaviour assumption, one 
observe that torsion angle increase continuously with the applied moment. With 
B3Dw elements, amplitudes of dipslacements (v and w) are bounded in positive and 
negative values. The polynomial approximations from cubic, quadratic and linear 
are valid near the origin where the torsion angle is less than 1.0 rad ( kNmM x 10≤ ). 
They are not able to follow B3Dw predictions far from the origin.  
 
 
 

0

20

40

60

80

100

‐0,2 ‐0,1 0 0,1 0,2 0,3

cub

car

Lin

larg

MAN

v(m)

Mx(kNm)

 

0

20

40

60

80

100

‐0,4 ‐0,35 ‐0,3 ‐0,25 ‐0,2 ‐0,15 ‐0,1 ‐0,05 0

Mx(kNm)

w(m)

cub

Car

Lin

Larg

MAN

0

20

40

60

80

100

0 0,5 1 1,5 2 2,5 3 3,5 4

MAN
Cub
Lin
Larg
Car

θx(rad)

Mx(kNm)

 
 

Fig.2: Flexural-torsional behaviour of a beam under torsion moment 
(a): data, (b): (Mx,v) curve, (c): (Mx,w) curve, (d): torsion behaviour. 

 
 

4.2  Post buckling analysis of channel section in compression  
 
The previous steel beam with channel cross section is studied now under 
compressive load (λFx). In order to reach the post buckling equilibrium curves, 
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initial additional loads (λMx  λFz) are applied. In the analysis, Fx is fixed to 1 kN and 
the imperfection loads (Fz Mx) are very small, fixed to 0.01. The flexural-torsional 
equilibrium curves are depicted in Figs.3b-d. One can observe that the buckling load 
is independent to torsion approximation. Its value is 366.7 kN. The equilibrium 
curves are instable near buckling load. With B3Dw a looping curve is present in 
(P,v). Near buckling load area, cubic element B3Dw3 follow the decrease part but it 
is not able to describe the perfectly the looping curve. B3Dw2 and B3Dw1 elements 
lead to flat and stiff curves. Limits of these approximations in post buckling 
analyses, far from bifurcation zone are then evident. 
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Fig.3: Post-buckling behaviour of a beam under compression 
(a): data, (b): (P,v) curve, (c): (P,w) curve, (d): (P,θx) curve 

 
 
4.3  Lateral post buckling analysis of I beam  
 
An European steel beam with I300 cross section (b=150,h=300,tf=10,7,tw=6,1mm) is 
considered. The beam, of length L=6m, is subjected at mid length to a concentrated 
load (λQz). In order to reach the post buckling equilibrium curves, initial additional 
loads (λFy,λMx) are applied. In the analysis, Qz is fixed to 1 kN and imperfection 
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loads Fy and Mx to 0.01. The flexural-torsional equilibrium curves are depicted in 
fig.4a-c. These curves are obtained with an automatic arc length varying load until 
500 kN. One can observe that the buckling load is independent to torsion 
approximation. Its value is 78 kN. The displacement v is bounded and don’t increase 
in post buckling state. Cubic element B3Dw3 is slightly different than B3dw 
predictions. B3Dw2 and B3Dw1 elements lead to continuously stiff curves. Limits 
of these approximations in post buckling analyses are then evident. 
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Fig.4: lateral post-buckling behaviour of a beam  

 (a): (P,v) curve, (b): (P,w) curve, (c): (P,θx) curve 
 

4.4 Lateral buckling stability of continuous beams 
 
In order to demonstrate the efficiency of the B3Dw, it is important to consider cases 
when boundary conditions are arbitrary. The last example is devoted to lateral 
buckling of continuous beam ABC with two equal spans under two centrally loads 
Q1 and Q2 applied at each span at point M1 and M2. The beam is under simply 
supported boundary conditions in bending and torsion at ends A, B and C.  The 
warping is free at each beam end and continuous at the central support B. The axial 
displacement is restrained only at support A. This example has been studied by 
Vachagitiphan [13], where a doubly-symmetric steel I-section called UC31 is used. 
Pre-buckling deflection effect on beam lateral buckling resistance is studied by 
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varying load factors of Q1 and Q2 from zero to unity. In numerical approach, 
buckling loads are obtained according to eigenvalue problem solutions (EVP) and 
non linear bifurcations detected along the beam equilibrium curves (B3Dw). In order 
to reach post-buckling range, some initial flexural-torsional imperfections have been 
considered at points M1 and M2. The buckling interaction curves are depicted in Fig. 
5. This section is very sensitive to pre-buckling deflections. Buckling loads carried 
out from EVP solutions underestimate thremousthly beam resistance against lateral 
buckling for all load intensities. When Q1 and Q2 have different intensities the beam 
deformation is not symmetric. But when their intensities are close (Q1=Q2) 
symmetric and anti-symmetric modes are possible. Buckling loads are derived for 
the Anti-symmetric Mode (AM) and Symmetric Mode (SM) from EVP approach 
and nonlinear analysis.  
 

- For the AM, the EVP gives the buckling load (Q1=Q2=212 kN). Based on 
nonlinear analysis approach, these loads increase to (Q1=Q2=265 kN). Fig. 
6a,b depict the post buckling curves of the deflection and torsion angles at 
points M1 and M2 related to this mode.      

- For the SM, the EVP leads the buckling load (Q1=Q2=279 kN). In nonlinear 
analysis, these loads reach value (Q1=Q2=339 kN). The related post buckling 
curves (Q,w) and (Q,θx) at points M1 and M2 are pictured in figs 6c,d.      

- In Vachagitiphan [13], only the interaction curve of AM was depicted. The 
agreement is very good. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5: Buckling load interaction curve for two span continuous I-beam 
(SM: buckling load with symmetric mode, AM: buckling load with anti-symmetric mode) 
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Fig.6: Post buckling equilibrium curves of points M1 and M2: (a) deflection (AM), 
(b) torsion (AM), (c) deflection (SM), (d) torsion (SM). 

 
5 Conclusions 

 
Four beam finite elements have been investigated for thin-walled elements. They use 
three-dimensional  beams with two nodes and seven degrees of freedom (dof) per 
node. Warping is considered as independent degree of freedom.  In the first (B3dw), 
trigonometric functions c=cos θx-1 and s=sin θx are used in the whole model without 
any approximation. The equilibrium equations are derived in discrete form. For non 
linear behaviour, the tangent stiffness matrix is carried out in terms of large 
displacements and initial stresses. The tree others elements are derived with 
polynomial functions for the trigonometric functions c and s: cubic (B3Dw3), 
quadratic (B3Dw2) and linear approximation (B3Dw1). The same procedure has 
been followed in the equilibrium, discretization and derivation of the tangent 
operator. The matrices which are function on flexural-torsional coupling and torsion 
approximation are derived for the equilibrium and tangent operator.  Many 
comparison examples have been considered. They concern non linear behaviour of 
beams with arbitrary cross section under twist moment and post buckling behaviour 
of columns and beams under axial loads or bending loads. For each studied case, the 
flexural-torsional equilibrium paths are obtained under the same conditions. The 
efficiency of B3Dw element is confirmed from benchmark solutions. From the 
equilibrium curves obtained with the other elements, it is concluded that: 

(a) 

(c) 
(d) 

(b) 
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1. For the torsion behaviour, the accuracy is function on approximation. 
B3Dw3 is more accurate than B3Dw2 and B3Dw1 which become inadequate 
or fail when torsion angles become finite or large. 

2. In stability analyses, the buckling loads of beams under axial or lateral loads 
are independent to torsion approximation. All elements lead to the same 
buckling loads with the same accuracy. 

3. In post buckling behaviour, the equilibrium curves of B3Dw1 and B3Dw2 
elements are valid only in regions near bifurcation. B3Dw3 is accurate until 
moderate torsion angles are reached. 

4. B3Dw is reconsidered for the lateral buckling stability of two span 
continuous beams under two centrally concentrated loads. The interaction 
curve is carried out. It is observed that buckling modes are anti symmetric 
when intensity loads is different. Under equal loads symmetric and anti 
symmetric are possible.  

 
In this paper, only a constant load contribution is considered in the finite element 
procedure. The effect of non constant load effects has not been included in the finite 
element model. This part will contribute to the right hand side and to the tangent 
stiffness matrix. By this way, the load application from shear point and centroid will 
be taken into account. This work is now in good progress with application of the 
asymptotic numerical method [12]. The results will be presented in the near future.  
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Appendix A: Flexural torsional matrix terms according to 
different approximations 
 
A.1  Equilibrium system  
 
For this approximation, the equilibrium system is carried as followed in large 
torsion. Equivalent system as (19) is obtained. Changes are observed at matrices 
linked to flexural-torsional coupling (matrices terms [Aα(α)] [P(θ,α)]). The non 
vanished terms of these matrices are:  
 
A.1.1 Cubic approximation 
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A.1.2 Quadratic approximation 
 
Matrix [Aα(θ,α)] terms: 
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A.1.3 Linear approximation 
 
Here the formulation is less different than in the precedent approximations. In the 
equilibrium equations, the coupling is not strong. One arrives to: 
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A.2 Initial stress matrices terms 
 
A.2.1 Cubic approximation 
 
The equilibrium system is nonlinear and highly coupled.  The Newton-Raphson 
iterative method is adopted is solution procedure. The tangent operator is then 
derived.  The initial stress matrices due to flexural-torsional coupling needed in 
solution [ ]S  and 

⎥⎦
⎤

⎢⎣
⎡S terms have the following expressions. 



19 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−= )

2
1()

6
()2,4(

23

00
x

c
x

xc zyNS θθθ    

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= )

6
()

2
1()3,4(

32

00
x

xc
x

c zyNS
θ

θ
θ   

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−= )

2
1('')

2
1('')8,4(

22

00
x

xc
x

xc wvzvwyNS θθθθ   

)
2

1()8,5(
2
0

0000
x

yxz MMS θ
θ −−−=   )

2
1()8,6(

2
0

0000
x

zxy MMS
θ

θ −+−=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−== xc

x
cx zyNSS θθθ )

2
1()2,8()8,2(

2
'

000   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−== )

2
1()3,8()8,3(

2
'

000
x

cxcx zyNSS θθθ  

( ) ( )[ ] ( ) ( )""""'')8,8( 00
'''

00 vwMwvMwvzwvyNS xzxyxcxcx +−−+++−= θθθθθ  

 
 
A.2.2  Quadratic approximation 
 
The initial stress matrices [ ]S  and 
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⎡S  terms are: 
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A.2.3  Linear approximation 
 
Here the formulation is less different than in the precedent approximations. In the 
equilibrium equations, the coupling is not strong. The initial stress stiffness matrix is 
given by: 
 

[ ] [ ] [ ] [ ]tSSSS 0000 −−=  
 
Here the matrix [ ]S  is constant and depend only on beam initial stresses. The non 
vanished terms of this matrix are.  
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Matrix  ⎥⎦
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⎡S  is not present. 
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