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Abstract 
 
This paper presents a discussion on the characteristics of sets of admissible functions 
to be used in the Rayleigh-Ritz method (RRM). Of particular interest are sets that 
can lead to converged results when penalty terms are added to model constraints and 
interconnection of elements in vibration and buckling problems of beams, as well as 
plates and shells of rectangular planform. The discussion includes the use of 
polynomials, trigonometric functions and a combination of both. In the past, several 
sets of admissible functions that have a limit on the number of terms that can be 
included in the solution without producing ill-conditioning were used. On the other 
hand, a combination of trigonometric and low order polynomials have been found to 
produce accurate results without ill-conditioning for any number of terms and any 
number of penalty parameters that can be accommodated by the computer memory.  
 
 

1  Introduction 
 
1.1  Comparison functions and admissible functions of the 

Rayleigh-Ritz method 
 
In [1] Meirovitch states that the classical Rayleigh-Ritz method consists of selecting 
N  comparison functions iu  to be included in the Rayleigh quotient. These functions 
must satisfy natural and geometric boundary conditions and be differentiable p2  
times ( p  being the order of the highest differential operator in the functional used) 
to construct the linear combination 

∑
=

=
N

i
iin uaw

1

, 

where ia  are unknown coefficients. However, it was noted that a set of admissible 
functions iφ , which have to satisfy only geometric boundary conditions and be only 
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p  times differentiable can be used instead. Furthermore, Meirovitch [1] also states 
that orthogonal and normalized functions such as Bessel functions, Legendre 
polynomials, etc., as well as the Gram-Schmidt orthogonalization process have been 
often used aiming to reduce computational work, although these operations add 
computational cost. It is also worth noting that comparison functions are a subset of 
the admissible functions. 
 
1.2  Building sets of admissible functions with simple polynomials 
 

Simple polynomials have a severe limitation on the number of terms that can be 
included in the solution before an ill-conditioning problem arises. Other sets of 
admissible functions built by orthogonal polynomials using the Gram-Schmidt 
process presented by Bhat in [2] have been proven to give excellent results for plates 
involving free edges, as shown in a publication by Yuan and Dickinson [3]. This 
procedure has been used to build sets of admissible functions by many researchers, 
even though Brown and Stone raised some criticism of this work in [4], where it is 
stated that the convergence of a vibration problem is independent of the selection of 
the set of admissible functions (no need for orthogonal polynomials) and that it 
depends only on the degree of the polynomial represented in the set. In the same 
work Brown and Stone stated that for plate problems, orthogonality of the functions 
should be targeted only on the second derivative of the functions, although they also 
recognized that special polynomials are only needed if higher order polynomials are 
included in the set of admissible functions. This is to make the set of functions more 
stable with respect to inversion and the extraction of eigenvalues of the resulting 
stiffness and mass matrices, although in [5] Li reported that even when orthogonal 
polynomials are used in the RRM, the higher order polynomials become numerically 
unstable due to round-off errors. 
 
1.3  Building sets of admissible functions with transcendental 

functions 
 

Transcendental functions also have some disadvantages. For instance, Li and 
Daniels [6] show that certain sets of admissible functions built by trigonometric 
functions have limitations converging when penalty parameters are included in the 
solution. Sets of functions using trigonometric and hyperbolic functions are very 
complex and are likely to become numerically unstable when several terms are used 
in the solution.  This was noticed by Blevins [6] who recommends using a high 
degree of precision when higher modes are included, as well as Jaworski and Dowell 
[7] who used trigonometric and hyperbolic functions to solve vibration problems of 
beams with multiple steps using a set of functions for clamped-free beams. Jaworski 
and Dowell reported that numerical problems arise due to the difference between the 
values of the hyperbolic functions. In [7] the set of admissible functions built by 
trigonometric and hyperbolic functions was substituted by an approximation in 
higher modes with a combination of sine, cosine and exponential functions 
previously used by Dowell [8]. More recently Dozio [9] published a comprehensive 
study on the use of a set of trigonometric functions, originally proposed by Beslin 
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and Nicolas [10], used to solve vibration problems of rectangular orthotropic plates. 
The method by Dozio offers the same advantages as the proposed set of functions of 
the present work, but the matrices of the system are built with more complex terms, 
and even though many terms of the matrices using the set of admissible functions by 
Beslin and and Nicolas [10] become zero, the matrices of the present method are 
even less sparse. 
 
1.4  Building sets of admissible functions from polynomial and 

trigonometric functions 
 

In contrast with all the previous options to build sets of admissible functions, several 
publications including the works by Li [5,11] and Zhou [12] have shown that when 
polynomials and trigonometric functions are used to build sets of admissible 
functions, the solutions have a fast convergence rate and results are also accurate for 
higher modes. Although it is now known that only the sum of the series of the 
functions should satisfy the boundary conditions, many researchers have proposed to 
build sets of functions starting with a series containing trigonometric and 
polynomial functions, but enforcing boundary conditions for each term. This 
approach was used in [5,11,12]. Li [5,11] built a series of admissible functions by 
mixing polynomials and trigonometric (cosine) functions. Li stated that the 
polynomials are introduced to take all the relevant discontinuities with the original 
displacement and its derivatives at the boundaries. More recently Dal and Morgul 
[13] presented a similar approach to those presented by Li [5,11] and Zhou [12]. Dal 
and Morgul used sine functions as in the work by Zhou [12] and also enforced 
boundary conditions for each term. Polynomials in the publications by Li [5,11] 
were of order 4, while in the approaches of Zhou [12] and Dal and Morgul [13] the 
maximum order of a polynomial was 3. 
It is important to remember that high order polynomials are the cause of numerical 
instabilities and ill-conditioning. Thus to keep the solution as simple as possible and 
free of numerical problems the minimum number of polynomial functions with the 
lowest order possible are included in the proposed set of admissible functions 
presented in this work. 
 
 
2  Building a set of admissible functions 
 
As mentioned earlier, this work presents a set of functions that can be used to model 
beams, plates and shells; converges fast and allows the use of a large number of 
functions without causing ill-conditioning. In addition, the selected set of admissible 
functions models a structure in a completely free condition and complex boundary 
conditions can be modelled adding as many constraints as necessary using penalty 
functions. 
In the past some researchers gave guidelines to develop sets of admissible functions 
such as the ones given in [14] as follows: 

a) the set of functions must be complete in energy form (all modes of vibration 
must be represented and no modes must be missing), 
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b) the set of functions must be linearly independent, 
c) the functions must satisfy boundary conditions and 
d) the functions must have derivatives at least up to half of the order of the 

partial differential equation. 
Here a more intuitive method was used to build a set of admissible functions 
keeping in mind that in vibration problems the stiffness matrix includes derivatives 
up to the second order with respect to the same variable. The first step in the 
procedure to build a set of admissible functions combining trigonometric and simple 
polynomials is to select the trigonometric function. Sine functions are used as a set 
of functions to exactly model simple supported structures as they constrain the 
displacement at both ends of the structure, while rotation is allowed. On the other 
hand, cosine functions constrain rotation and allow translation, modelling sliding 
structures also in an exact way. Sliding condition is very useful when symmetry is 
used to model symmetrical modes using half of the structure. 
In [15] Budiansky and Hu implemented Lagrangian multipliers in the RRM to 
constrain edges of a plate. Budiansky and Hu showed that the rate of convergence of 
the RRM together with the Lagrangian Multiplier Method is faster when a cosine 
series is used to build the set of admissible functions together with translational 
constraints to model clamped conditions than the combination of a set of admissible 
functions built by sine series and rotational constraints. 
Similarly, in [16] Li presented a comparison of the convergence of the RRM with 
admissible functions built by either a sine or a cosine series plus a polynomial. In 
[16] convergence rates for most boundary conditions were also found to be faster 
using cosine series than sine series. As expected, in this work by Li, sine series have 
their fastest rate of convergence for simply supported conditions, while cosine series 
have their fastest rate of convergence for sliding conditions. In these cases they 
represent exact modes if the beams are uniform and have no discontinuities. For this 
reason, cosine series were selected in this work to build the set of admissible 
functions of a free-free beam. The cosine series used in this work is defined as 
 

⎟
⎠
⎞

⎜
⎝
⎛

L
xiπcos , for n,,i …210=     (1) 

 

where x  is the axial coordinate of the beam, L  is the beam length and n  is the 
number of terms included in the set of admissible functions. Now, it is only 
necessary to define the simple polynomials in terms of the coordinate system that 
should be used in the set of admissible functions together with the cosine series. 
This can be started knowing that the series must include the rigid-body modes of the 
beam and as mentioned earlier that the set of admissible functions should satisfy the 
boundary conditions as a whole series and not individually. Thus to keep the 
solution as simple as possible and free of numerical problems the minimum number 
of polynomial functions with the lowest order possible (to minimise the chances of 
ill-conditioning) are included in the set of admissible functions presented in this 
work. Then, the two rigid-body modes of a beam should be represented by a unit 
function and a linear function as in the work by Bassily and Dickinson [17], 
Warburton [18] and Zhou [12]. The unit term releases the translational rigid-body 
mode and the linear term releases a rotational rigid-body mode. It is important to 
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note that the unit function is already included in the cosine series for 0=i , although 
for simplicity the unit function will be used in the notation. Next, by inspection it is 
observed that to satisfy all possible combinations of boundary conditions it is only 
necessary to add one more function that allows a second non-zero slope at one of the 
ends of the beam. Thus, a square term is added to the set of functions, because it is 
the lowest order polynomial that can be added to the series. 
This completes the set of admissible functions ( )xiφ  used in this work that it is 
defined as 

( ) 1=xiφ , for   1=i               (2a) 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

L
xxiφ , for   2=i               (2b) 

( )
2

⎟
⎠
⎞

⎜
⎝
⎛=

L
xxiφ , for   3=i               (2c) 

( ) ( )
L

xixi
πφ 3cos −

= , for   n,,i …54=              (2d) 

The set of admissible functions given in Equation (2) are used in the RRM to model 
the transverse deflection of the beam as 

( ) ( ) ( )txWtxw ωsin=, ,     (3a) 
where ( )xW  is the amplitude of the deflection of the neutral axis of the beam 
defined as 

( ) ( )∑
=

=
n

i
ii xcxW

1
φ ,     (3b) 

where ic  are arbitrary coefficients. 
A very important property of the Fourier series is that they are nominally orthogonal 
functions with respect to each other when integrated to the full span [0 to L ]. This 
property can be defined for cosine functions with the following relationship [19]: 

⎩
⎨
⎧

=
≠

=∫ jiL
ji

dx
L

xj
L
xiL

for2
for0

coscos
 

0 /
ππ ,    (4) 

 

A similar relationship applies for sine series. A property of orthogonal functions is 
that their first and second derivatives are also orthogonal [19]. This property is very 
useful to obtain the terms of the elastic stiffness, geometrical stiffness and mass 
matrices of beams, plates and shells. Sets of orthogonal functions used in the RRM 
produce diagonal mass and stiffness. However, as stated in [20] by Mukhopadhyay a 
good set of admissible functions may be chosen, so that off-diagonal terms will be 
relatively small. In the present work, the mass matrix of a beam has off-diagonal 
terms only in the first three rows and columns, corresponding to the terms that 
involve the linear and square functions. This is because the linear and square 
functions are not orthogonal with respect to any other function of the set. The 
absolute value of the off-diagonal terms of the mass matrix decreases as the number 
of terms in the set of admissible function increases, starting with the values of the 
fourth admissible function. However the non-zero second derivative of the series is 
orthogonal as suggested by Brown and Stone [4]. Thus, the stiffness matrix of a 
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beam derived with the present set of admissible functions results in a diagonal 
matrix, although the values of the first two terms in the main diagonal are zero. 
In the cases of a completely free plate or a completely free shallow-shell modelled 
by the set of admissible functions given in Equation (2), the stiffness and mass 
matrices are sparse. Furthermore, even though neither orthogonalization nor 
orthonormalization is carried out to define the set of admissible functions presented 
here, the set of admissible functions does not produce ill-conditioning due to the 
number of terms used in the series as shown by Monterrubio in [21,22,23]. This was 
demonstrated for several vibration and buckling problems involving beams, plates 
and shells and certain connected structures. The aim of the present work in contrast 
to the previous work by Monterrubio is to show how the traditional procedure to 
build sets of admissible functions was used to model free structures combining 
trigonometric functions and simple polynomials. The procedure presented here is 
extremely simple and the functions were still carefully selected to obtain the 
simplest set of functions that converges fast and does not have a limitation in the 
number of functions due to numerical instabilities. 
The set of functions given in Equation (2) as was done by Li in [5,11] use a cosine 
series and a polynomial. The main difference between the present approach and 
those in [5,11] is that even though the structures could be defined to be completely 
free in the work by Li, admissible functions were still obtained solving for boundary 
conditions of a structure with elastic boundary supports. 
Next, a comparison between the present set of admissible functions with the 
Legendre polynomials is carried out to show that these two sets of admissible 
functions model a free-free beam. The Legendre polynomials are obtained starting 
from a simple polynomial with the lowest degree that satisfies the boundary 
conditions of the problem and obtaining the rest of the polynomials using the Gram-
Schmidt orthogonalization process [14]. The Legendre polynomials have been used 
to solve vibration problems of completely free plates [14]. 
The Legendre polynomials are defined by the following Rodrigue’s formula [24]: 

( ) ( )n
n

nn x
dx
d

n
xP 1

2
1 2 −⎟

⎠
⎞

⎜
⎝
⎛=
!

,     (5) 

Then the first six polynomials are 
( ) 10 =xP ,      (6a) 
( ) xxP =1 ,      (6b) 

( ) ( )13
2
1 2

2 −= xxP ,     (6c) 

( ) ( )xxxP 35
2
1 3

3 −= ,     (6d) 

( ) ( )33035
8
1 24

4 +−= xxxP   and    (6e) 

( ) ( )xxxxP 157063
8
1 35

5 +−= ,    (6f) 

Comparing Figures 1 and 2, it is obvious that the first two functions of both the 
Legendre polynomials and the set of admissible functions developed in this work are 
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identical. Furthermore the third function in both sets is a square function (the 
function in the Legendre polynomials is a linear combination of a square term and a 
constant, both of which appear in the proposed set); while the following functions of 
both series add a nodal point to the previous function. This makes clear that not all 
functions satisfy the free boundary conditions at both ends, but as stated by 
Budiansky and Hu 1946 in [15], the boundary conditions do not have to be satisfied 
individually by the functions in the set of admissible functions, but by the expansion 
of the whole set of admissible functions. 
 

 
Figure 1. First six Legendre polynomials. 

 
To further clarify the role of the functions on the boundary conditions at the ends of 
the beam, the following inequalities show that the selected set of functions permit 
non-zero displacement and translation at both ends 
 
( ) 00 ≠iφ  This condition is satisfied by Equations (2a,2d), 
( ) 0≠Liφ  All functions included in the set defined in Equations (2a,2d) satisfy 

this condition, 

0
0

≠
∂
∂

=x

i

x
φ  This condition is only satisfied by the linear term defined in Equation 

(2b) and 

0≠
∂
∂

=Lx

i

x
φ  This condition is satisfied by the linear and square terms defined in 

Equations (2b,2c). 
The argument above shows that the proposed set of admissible functions is a 
complete set, which models the deflection of a free-free beam. 
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Figure 2. First six admissible functions of the present work. 

 
 
3 Additional comments on the Rayleigh-Ritz method 
 

 
Fig. 3 Modes of vibration of a guide-guide beam. 
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In Kohn [25] it is stated that the Rayleigh-Ritz method generally gives better 
approximations of the eigenvalues than of the eigenfunctions and that the magnitude 
of the errors of the eigenvalues and eigenvectors depends on the smoothness of the 
set of admissible functions. The set of admissible functions presented here is built by 
a cosine series and two simple polynomials (a linear term and a square term).  
Cosine functions are the exact modes of a guide-guide beam and with the addition of 
a unit function results in modes very similar to the clamped-clamped and free-free 
modes of a beam (except for the first two modes). Figure 3 shows that the results of 
the first four non-zero modes of vibration of a G-G beam (line) match the exact 
results (markers - no line) using the first 7 functions of the set presented in Equation 
(2) in the RRM as to be expected. Similarly, good approximations to the first four 
modes of a S-S beam can be obtained using 14 terms in the set of admissible 
functions. The S-S is the case that has the slowest convergence with respect to the 
number of functions. 
In a publication by Williams [26] two important characteristics of the classical RRM 
(without penalty parameters) are mentioned. The first characteristic is that when the 
RRM is used to solve vibration problems, the natural frequencies converge 
monotonically from above as the number of terms in the set of admissible functions 
is increased and the second characteristic is that the lower modes converge first. 
 
4 Examples 
 
To show the versatility and stability of the set of admissible functions presented in 
Equation (2) the first six natural frequencies of thin plates with free (F), simply 
supported (S), guided (G) and clamped edges (C) are presented using 40 terms in 
each direction. Consider a rectangular plate as shown in Figure 4, with dimensions 
a  and b  along directions x  and y , thickness h  and flexural rigidity D  defined as 

( )2

3

112 ν−
=

EhD  ,     (7) 

where ν  is Poisson’s ratio and E  is Young’s modulus. 

 
Figure 4. Completely free rectangular plate. 

 
The amplitude of the deflection of the plate defined in terms of the set of admissible 
functions is 

y

x

b

a



10 

( ) ( ) ( )∑∑=
n

j

n

i
jiij yxcy,xW χφ ,    (8) 

where ijc  are arbitrary coefficients.  
The maximum potential and kinetic energy terms [14] for thin rectangular plates are 
as follows. The maximum potential energy of the plate plateV  due to the strain energy 
of bending and twisting of the plate is 

( )∫ ∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
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∂∂

∂
−+

∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
a b

plate dxdy
yx

W
y
W

x
W

y
W

x
WDV

 

0 

 

0 

22

2

2

2

22

2

22

2

2

122
2

νν  (9) 

The maximum kinetic energy maxT  of the plate is  

∫ ∫=
a b

plate dxdyWhT
 

0 

 

0 

2
2

2
ωρ ,    (10) 

The maximum kinetic energy function maxΨ  is given by  
2ω/maxmax T=Ψ      (11) 

The selected set of admissible functions are used to model the deflection of 
completely free structures. For this reason, all constraint conditions are incorporated 
through the use of the penalty method. Then, the strain energy of translational and 
rotational springs along all four edges of the plate ( 0=x , ax = , 0=y  and by = ) is 
defined as 

( ) ( )dxWkWkdyWkWkV
a

byybyy

b

axxaxxedge  
2
1 

2
1  

0 

2

0

2
0
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+++=  

dy
x

Wk
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b
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2
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⎛

⎟⎟
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⎞
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∂
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+⎟⎟
⎠

⎞
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∂
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+
==

,  (12) 

where 0xk , xak , 0yk  and ybk  are the stiffness per unit length of the translational 
spring supports, while 0rxk , rxak , 0ryk  and rybk  are the stiffness per unit length of the 
rotational spring supports located along the edges at 0=x , ax = , 0=y  and by = , 
respectively. To model each of the 54 cases of plates with constrained boundary 
conditions along the edges only the appropriate stiffness coefficients should have a 
non-zero value. Then the set of linear homogeneous equations of the system are 
found by minimizing the potential and kinetic energy of the plate including the 
energy of the artificial springs 

02 =
∂
Ψ

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
+

∂ ijij

edge

ij

plate

cc
V

c
V maxω

 
   (13) 

To obtain results in non-dimensional form non-dimensional coordinates of the plate 
are introduced and the stiffness and mass matrices are non-dimensionalized by 
dividing them by ab/D  and habρ , respectively. Furthermore, the penalty matrices 
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are also non-dimensionalized introducing non-dimensional penalty parameters (the 
same non-dimensional penalty value is used in all cases). Examples for distributed 
penalty parameters along the edge at 0=x  are presented, while all other non-
dimensional penalty parameters can be obtained in a similar way 

• non-dimensional coordinates of the plate 
a/x=ξ  and b/y=η     (14a, 14b) 

• non-dimensional distributed translational and rotational stiffness parameter 

D
ak

D
akk rxx 0

3
0 ==ˆ       (15) 

The non-dimensional eigen-problem obtained after the Rayleigh-Ritz minimization 
is 

[ ]{ } [ ]{ } { }0cMcPK =−+ 2λedge  ,   (16) 
where edgeP  is the penalty matrix and λ  is the non-dimensional frequency parameter 
defined as [27] 

D
bha 222 ωρλ =       (17) 

The terms of the non-dimensional mass M  and stiffness matrices of a plate K  are 
( ) ( )0,0

lj
0,0

kiklij FEM =  and    (18) 
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⎡ += 2,2
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The terms of the non-dimensional penalty matrices due to the artificial stiffness are 
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An alternative procedure to obtain the frequency parameters is to first solve the 
eigenproblem of the unconstrained structure 
 

[ ]{ } [ ]{ } { }0cMcK =− 2λ ,    (21) 
 

to obtain the frequency parameters iλ  and the matrix X  whose columns contain the 
eigenvectors of Equation (21). Then use matrix X  and its transpose to perform a 
transformation on the stiffness and penalty matrices. Then the frequency parameters 
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of the constrained structure can be obtained solving for the eigenvalues of a matrix 
resulting from the addition of the transformed stiffness and penalty matrices 

[ ]{ } { }ccXPXKXX 2TT λ=+ edge    (22) 
This procedure saves space in the memory of the computer.  
 
5  Results 
 
Results of the frequency parameters of the 55 cases of rectangular plates with simply 
supported, clamped, guided and free conditions were obtained by assigning 
appropriate penalty parameters k̂ . Forty  terms of admissible functions were used in 
each direction. Results in Table 1 correspond to those obtained with the higher 
penalty value in the series p10  where …,,, 321=p  that still converges 
monotonically from below. This means that the Rayleigh-Ritz method converges 
from above with respect to the number of terms used in the set of admissible 
functions, but from below when artificial springs are used to model constraints. The 
rigid body modes are not included in Table 1. Cases 20 SFFF, 21 FFFF, 38 SGFG, 
40 GGFG, 41 FGFG, 42 GGGG, 52 SGFF, GGFF, GFFF have 1, 3, 1, 1, 2, 1, 1, 1, 2 
rigid body modes.  
 

Case Mode 
k̂  1 2 3 4 5 6 

1 SSSS 1E+10 19.739 49.348 49.348 78.957 98.698 98.698 
2 SCSC 1.E+09 28.951 54.744 69.329 94.589 102.220 129.105 
3 SCSS 1.E+09 23.646 51.675 58.647 86.136 100.272 113.233 
4 SCSF 1.E+09 12.687 33.065 41.702 63.016 72.399 90.614 
5 SSSF 1.E+10 11.685 27.756 41.197 59.066 61.861 90.297 
6 SFSF 1.E+09 9.631 16.135 36.726 38.945 46.739 70.741 
7 CCCC 1.E+09 35.986 73.397 73.397 108.225 131.592 132.215 
8 CCCS 1.E+09 31.827 63.333 71.079 100.798 116.363 130.361 
9 CCCF 1.E+09 23.921 39.999 63.224 76.713 80.576 116.665 
10 CCSS 1.E+09 27.054 60.540 60.787 92.840 114.562 114.709 
11 CCSF 1.E+09 17.537 36.024 51.813 71.078 74.328 105.791 
12 CCFF 1.E+09 6.920 23.905 26.585 47.653 62.708 65.535 
13 CSCF 1.E+09 23.371 35.572 62.878 66.764 77.378 108.874 
14 CSSF 1.E+09 16.792 31.114 51.397 64.022 67.541 101.117 
15 CSFF 1.E+09 5.351 19.075 24.671 43.088 52.708 63.760 
16 CFCF 1.E+09 22.168 26.407 43.596 61.177 67.179 79.818 
17 CFSF 1.E+09 15.192 20.584 39.736 49.449 56.280 77.325 
18 CFFF 1.E+09 3.471 8.507 21.285 27.199 30.957 54.188 

 
Table 1. Frequency parameters of a plate with the 55 possible combinations of 

boundary conditions including free, simply supported, guided and clamped 
conditions. 
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Case Mode 
k̂  1 2 3 4 5 6 

19 SSFF 1.E+10 3.367 17.316 19.293 38.211 51.036 53.487 
20 SFFF 1.E+09 6.644 14.902 25.376 26.001 48.450 50.579 
21 FFFF 13.468 19.596 24.270 34.801 34.801 61.093 
22 SSSG 1.E+09 12.337 32.076 41.946 61.685 71.555 91.296 
23 SCSG 1.E+09 13.686 38.694 42.587 66.300 83.490 91.706 
24 SGSF 1.E+09 9.736 17.685 39.189 42.384 47.967 74.526 
25 SGSG 1.E+09 9.870 19.739 39.479 49.348 49.348 78.957 
26 CSCG 1.E+09 23.816 39.090 63.537 75.843 79.528 114.785 
27 CSSG 1.E+09 17.332 35.051 52.099 69.914 73.440 106.483 
28 SSGG 1.E+09 4.935 24.674 24.674 44.413 64.153 64.153 
29 CSGG 1.E+08 7.238 25.554 32.274 49.953 64.654 76.830 
30 SSGF 1.E+09 4.034 18.821 24.010 41.174 53.026 63.287 
31 SCGF 1.E+08 5.704 24.694 24.944 45.755 63.681 64.403 
32 SGGF 1.E+09 2.408 9.181 21.997 30.510 33.426 56.190 
33 SFGF 1.E+09 2.378 6.881 21.821 26.372 29.208 51.646 
34 CGSG 1.E+09 15.418 23.646 49.966 51.675 58.647 86.136 
35 CGCG 1.E+09 22.374 28.951 54.744 61.675 69.330 94.589 
36 SGGG 1.E+08 2.467 12.337 22.207 32.076 41.946 61.685 
37 CGGG 1.E+08 5.593 13.686 30.226 38.694 42.587 66.300 
38 SGFG 1.E+08 11.685 15.418 27.756 41.197 49.965 59.066 
39 CGFG 1.E+08 3.516 12.687 22.035 33.065 41.702 61.698 
40 GGFG 1.E+07 5.593 9.736 17.685 30.226 39.188 42.384 
41 FGFG 1.E+07 9.631 16.135 22.373 36.726 38.945 46.738 
42 GGGG 1.E+07 9.870 9.870 19.739 39.478 39.478 49.348 
43 CCCG 1.E+09 24.578 44.771 63.985 83.277 87.256 123.256 
44 CCSG 1.E+09 18.349 41.251 52.632 74.086 85.147 106.843 
45 CCGF 1.E+09 7.776 25.850 32.217 51.192 64.917 76.337 
46 CCGG 1.E+07 8.996 32.895 33.051 55.008 77.226 77.291 
47 CGCF 1.E+09 22.259 27.495 48.533 61.402 68.199 90.289 
48 CGSF 1.E+09 15.293 21.897 45.058 49.684 57.400 82.031 
49 CSGF 1.E+09 6.601 19.954 31.677 47.034 53.632 76.003 
50 CGGF 1.E+08 5.541 10.898 30.024 34.223 37.326 61.183 
51 CFGF 1.E+08 5.508 8.986 27.359 29.857 36.177 56.973 
52 SGFF 1.E+08 8.700 15.273 26.365 32.867 49.568 53.854 
53 CGFF 1.E+08 3.493 10.181 21.838 31.427 34.029 58.071 
54 GGFF 1.E+07 4.899 6.068 15.922 29.277 30.611 40.376 
55 GFFF 1.E+07 5.366 14.621 22.002 29.681 36.045 40.050 

 
Table 1 (cont.). Frequency parameters of a plate with the 55 possible combinations 

of boundary conditions including free, simply supported, guided and clamped 
conditions. 
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The guided results can be compared with those presented in the work by Bert and 
Malik [28]. In most cases there was no difference between the results presented here 
and the results in [28] and the maximum difference between the two sets of results 
were always found in the third decimal place. 
Cases with two opposite edges either simply supported or guided have an analytical 
solution, while the solution of the remaining cases can be solved using approximate 
or numerical methods [28]. Furthermore Bert and Malik classified the 55 cases 
presented in Table 1 according to the boundary conditions and type of solutions: 

• Cases 1 to 6 with two opposite edges simply supported have an analytical 
solution. 

• Cases 7 to 21 are possible by approximate or numerical methods only. 
• Cases 22 to 25 with two opposite edges simply supported have an analytical 

solution 
• Cases 26 to 33 with one edge simply supported and opposite edge guided 

have an analytical solution. 
• Cases 34 to 42 with two opposite edges guided have an analytical solution. 
• Cases 43 to 55 are possible by approximate or numerical methods only. 

 
6  Conclusions 
 
In this paper a discussion on set of admissible functions to be used in the RRM is 
presented and it has been shown how a set built by cosine functions and a linear and 
square terms can be used to model beams, plates and shells in free condition and 
then constraints can be added using the penalty method. Because the set of functions 
presented here do not impose a limit in the number of terms of functions that can be 
used, a large number of constraints can be used to model complex constraints.  The 
availability of large number of terms, limited only by computer memory, also helps 
to improve the accuracy of the natural frequencies and modes of vibration. Results 
show that in most cases frequency parameters of rectangular plates with any type of 
boundary conditions converged to the exact results to at least the fourth significant 
number. The method used to build the set of functions presented in Equation (2) is 
intuitive and avoids normalization or orthogonalization of the functions. 
Furthermore, the integrals that define the mass, stiffness, geometric stiffness and 
penalty matrices using this method can be easily solved in close form by hand and 
the set of admissible functions presented in this work seems to be the simplest set 
that does not causes ill-conditioning when a large number of functions are included 
in the solution. 
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