
Abstract

This paper considers the shape and topology optimization of the elastic contact prob-

lems using the level set approach. A piecewise constant level set method is used to

represent interfaces rather than the standard method. The piecewise constant level set

function takes distinct constant values in each subdomain of a whole design domain.

Using a two-phase approximation the original structural optimization problem is re-

formulated as an equivalent constrained optimization problem in terms of the piece-

wise level set function. The necessary optimality condition is formulated. The finite

difference method is applied as the approximation method. Numerical examples are

provided and discussed.

Keywords: shape and topology optimization, unilateral problems, piecewise constant

level set method, Uzawa method.

1 Introduction

The paper deals with the solution of a structural optimization problem for an elliptic

variational inequality. This inequality governs unilateral contact between an elastic

body and a rigid foundation. The structural optimization problem for the elastic body

in unilateral contact consists in finding such topology of the domain occupied by the

body and the shape of its boundary that the normal contact stress along the boundary

of the body is minimized. The volume of the body is bounded.

In structural optimization the standard level set method [1, 2] is employed in the

numerical algorithms for tracking the evolution of the domain boundary on a fixed

mesh and finding an optimal domain. This method is based on an implicit representa-

tion of the boundaries of the optimized structure, i.e., the position of the boundary of

the body is described as an isocountour of a scalar function of a higher dimensionality.
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While the shape of the structure may undergo major changes the level set function re-

mains to be simple in its topology. The evolution of the domain boundary is governed

by Hamilton - Jacobi equation. The speed vector field driving the propagation of the

level set function is given by the Eulerian derivative of the cost functional with respect

to the variations of the free boundary. The solution of this equation requires reinitial-

ization procedure to ensure that it is as close as possible to the signed distance function

to the interface. Moreover this approach requires regularization of non-differentiable

Heaviside and Dirac functions. Applications of the level set methods in structural

optimization can be found, among others, in [1, 3, 4, 5, 6, 7, 8, 9].

Recently, a piecewise constant level set method as a variant of traditional level

set method has been proposed for the image segmentation [10], shape recovery [11]

or elliptic inverse problems. For a domain divided into 2N subdomains in standard

level set approach is required 2N level set functions to represent them. Piecewise con-

stant level set method can identify an arbitrary number of subdomains using only one

discontinuous piecewise constant level set function. This function takes distinct con-

stant values on each subdomain. The interfaces between subdomains are represented

implicitly by the discontinuity of a set of characteristic functions of the subdomains

[10]. Comparing to the classical level set method, this method is free of the Hamilton-

Jacobi equation and do not require the use of the signed distance function as the initial

one. Piecewise constant level set method has been used in [12] to solve numerically

topological optimization problem in plane elasticity and in [13] to solve structural

optimization problem for the Laplace equation in 2D domain. Moreover in [14] this

method is used to solve topology optimization problem for plane elasticity with uni-

lateral boundary condition.

In the paper the original structural optimization problem is approximated by a two-

phase optimization problem. Using the piecewise constant level set method this ap-

proximated problem is reformulated as an equivalent constrained optimization prob-

lem in terms of the piecewise constant level set function only. Therefore neither shape

nor topological sensitivity analysis is required. During the evolution of the piecewise

constant level set function small holes can be created without use of the topological

derivatives. The paper extends results contained in [14]. Necessary optimality condi-

tion is formulated. The finite difference method is used as the approximation method.

This discretized optimization problem is solved numerically using the augmented La-

grangian method. Numerical examples are provided and discussed.

2 Problem Formulation

Consider deformations of an elastic body occupying two-dimensional domain Ω with

the smooth boundary Γ (see Figure 1). Assume Ω ⊂ D where D is a bounded smooth

hold-all subset of R2. Let E ⊂ R2 and D ⊂ R2 denote given bounded domains.

So-called hold-all domain D is assumed to possess a piecewise smooth boundary.
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Figure 1: Initial Domain Ω.

Domain Ω is assumed to belong to the set Ol defined as follows:

Ol = {Ω ⊂ R2 : Ω is open, E ⊂ Ω ⊂ D, #Ωc ≤ l}, (1)

where #Ωc denotes the number of connected components of the complement Ωc of Ω
with respect to D and l ≥ 1 is a given integer. Moreover all perturbations δΩ of Ω
are assumed to satisfy δΩ ∈ Ol. The body is subject to body forces f(x) = (f1(x),
f2(x)), x ∈ Ω. Moreover, surface tractions p(x) = (p1(x), p2(x)), x ∈ Γ, are applied

to a portion Γ1 of the boundary Γ. We assume, that the body is clamped along the

portion Γ0 of the boundary Γ, and that the contact conditions are prescribed on the

portion Γ2, where Γi ∩ Γj = ∅, i 6= j, i, j = 0, 1, 2, Γ = Γ̄0 ∪ Γ̄1 ∪ Γ̄2.

We denote by u = (u1, u2), u = u(x), x ∈ Ω, the displacement of the body and by

σ(x) = {σij(u(x))}, i, j = 1, 2, the stress field in the body. Consider elastic bodies

obeying Hooke’s law, i.e., for x ∈ Ω and i, j, k, l = 1, 2,

σij(u(x)) = aijkl(x)ekl(u(x)). (2)

We use here and throughout the paper the summation convention over repeated indices

[15]. The strain ekl(u(x)), k, l = 1, 2, is defined by:

ekl(u(x)) =
1

2
(uk,l(x) + ul,k(x)), (3)

where uk,l(x) = ∂uk(x)
∂xl

. The stress field σ satisfies the system of equations [15]

−σij(x),j = fi(x) x ∈ Ω, i, j = 1, 2, (4)

3



where σij(x),j =
∂σij(x)

∂xj
, i, j = 1, 2. The following boundary conditions are imposed

ui(x) = 0 on Γ0, i = 1, 2, (5)

σij(x)nj = pi on Γ1, i, j = 1, 2, (6)

uN + v ≤ 0, σN ≤ 0, (uN + v)σN = 0 on Γ2, (7)

| σT |≤ 1, uT σT + | uT |= 0 on Γ2, (8)

where n = (n1, n2) is the unit outward versor to the boundary Γ and v = v(x) is a

given profile of the boundary Γ2. Here uN = uini and σN = σijninj , i, j = 1, 2,

represent the normal components of the displacement u and the stress σ, respectively.

The tangential components of displacement u and stress σ are given by (uT )i = ui −
uNni and (σT )i = σijnj −σNni, i, j = 1, 2, respectively. | uT | denotes the Euclidean

norm in R2 of the tangent vector uT .

2.1 Variational Formulation of Contact Problem

Let us formulate contact problem (4)-(8) in variational form. Denote by Vsp and K

the space and set of kinematically admissible displacements:

Vsp = {z ∈ [H1(Ω)]2 = H1(Ω) × H1(Ω) : zi = 0 on Γ0, i = 1, 2}, (9)

K = {z ∈ Vsp : zN ≤ 0 on Γ2}. (10)

Denote also by Λ the set of Lagrange multipliers corresponding to term | uT | in

equality constraint in Equation (8) [15, 16]:

Λ = {ζ ∈ L2(Γ2) : | ζ | ≤ 1}. (11)

The spaces L2(Ω) and H1(Ω) denote the space of square integrable functions as well

as the space of square integrable functions having also square integrable first deriva-

tives on the domain Ω, respectively.

Variational formulation of problem (4)-(8) has the form: find a pair (u, λ) ∈ K×Λ
satisfying

∫

Ω

aijkleij(u)ekl(ϕ − u)dx −

∫

Ω

fi(ϕi − ui)dx −
∫

Γ1

pi(ϕi − ui)ds +

∫

Γ2

λ(ϕT − uT )ds ≥ 0 ∀ϕ ∈ K, (12)

∫

Γ2

(ζ − λ)uT ds ≤ 0 ∀ζ ∈ Λ, (13)

i, j, k, l = 1, 2. The results concerning the existence of solutions to system (12)-(13)

can be found, among others, in [15].
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2.2 Structural Optimization Problem

Before formulating a structural optimization problem for (12)-(13) let us introduce

first the set Uad of admissible domains. Domain Ω is assumed to satisfy the volume

constraint of the form

V ol(Ω) − V olgiv ≤ 0, V ol(Ω)
def
=

∫

Ω

dx, (14)

where the constant V olgiv = const0 > 0 is given. Moreover this domain is assumed

to satisfy the perimeter constraint [3], [16, p. 126]

Per(Ω) ≤ const1, P er(Ω)
def
=

∫

Γ

dx, (15)

The constant const1 > 0 is given. The set Uad has the following form

Uad = {Ω ∈ Ol : Ω is Lipschitz continuous,

Ω satisfies conditions (14) and (15) }, (16)

The set Uad is assumed to be nonempty. In order to define a cost functional we shall

also need the following set M st of auxiliary functions

M st = {η = (η1, η2) ∈ [H1(D)]2 : ηi ≤ 0 on D,

i = 1, 2, ‖ η ‖[H1(D)]2 ≤ 1}, (17)

where the norm ‖ η ‖[H1(D)]2= (
∑2

i=1 ‖ ηi ‖2
H1(D))

1/2. Recall from [7] the cost

functional approximating the normal contact stress on the contact boundary

Jη(u(Ω)) =

∫

Γ2

σN(u)ηN(x)ds, (18)

depending on the auxiliary given bounded function η(x) ∈ M st. σN and φN are

the normal components of the stress field σ corresponding to a solution u satisfying

system (12)-(13) and the function η, respectively.

Consider the following structural optimization problem: for a given function η ∈
M st, find a domain Ω⋆ ∈ Uad such that

Jη(u(Ω⋆)) = min
Ω∈Uad

Jη(u(Ω)) (19)

From Šverák theorem and [17, Theorem 2] follows the existence of an optimal domain

Ω⋆ ∈ Uad to the problem (19).

3 Level set approach

In [6, 7] the standard level set method [2] is employed to solve numerically problem

(19). Consider the evolution of a domain Ω under a velocity field V . Let t > 0 denote

the artificial time variable. Under the suitable regular mapping T (t, V ) we have

Ωt = T (t, V )(Ω) = (I + tV )(Ω), t > 0.
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By Ω−
t we denote the interior of the domain Ωt and by Ω+

t we denote the outside

of the domain Ωt. The domain Ωt and its boundary ∂Ωt are defined by a function

φ = φ(x, t) : R2 × [0, t0) → R satisfying:

φ(x, t) = 0, if x ∈ ∂Ωt,

φ(x, t) < 0, if x ∈ Ω−
t , (20)

φ(x, t) > 0, if x ∈ Ω+
t .

Function φ satisfying (20) is called the level set function. In the standard level set

approach Heaviside function and Dirac function are used to transform integrals from

domain Ω into domain D [2].

Assume that velocity field V = V (x, t) is known for every point x lying on the

boundary ∂Ωt, i.e., such that φ(x, t) = 0. Therefore the equation governing the evo-

lution of the interface ∂Ωt in D × [0, t0], known as Hamilton-Jacobi equation, has the

form [2]
∂φ(x, t)

∂t
+ V (x, t) · ∇xφ(x, t) = 0. (21)

φ(x, 0) = φ0(x), (22)

where φ0(x) is a given signed distance function of the set Ωt.

3.1 Piecewise constant level set formulation

Recall hold-all domain D is an open bounded domain in R2. Let us assume D is

partitioned into N subdomains {Ωi}
N
i=1 such that

D =
N
⋃

i=1

(Ωi ∪ ∂Ωi) (23)

where N is a given integer and ∂Ωi denotes the boundary of the subdomain Ωi. Define

a level set function φ : D → R such that [10, 12, 13]

φ = i in Ωi, i = 1, 2, ..., N. (24)

This function is used to identify all the phases in D. In order to guarantee that there

is no vacuum or overlap between different subdomains Ωi assume function φ satisfies

the following constraint:

W̃ (φ) = 0, (25)

W̃ (φ)
def
= (φ − 1)(φ − 2)...(φ − N) =

N
∏

i=1

(φ − i). (26)

The constraint (26) means that for every x ∈ D there exists a unique i ∈ {1, 2..., N}
such that φ(x) = i. Using this approach the characteristic function χi, i = 1, 2, ..., N ,

of the subdomain Ωi is represented as [10]

χi =
1

αi

N
∏

j=1,j 6=i

(φ − j) where αi =
N
∏

k=1,k 6=i

(i − k), (27)
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i.e., it is constructed using one level set function φ only. Each characteristic function

χi is expressed as a product of linear factors of the form (φ − j) with the ith factor

omitted. Therefore as long as (24) holds, χi(x) = 1 for x ∈ Ωi and equals zero

elsewhere.

3.1.1 Density function

Consider piecewise constant density function ρ : D → R2 defined as

ρ(x) =

{

ǫ if x ∈ D \ Ω̄ ,

1 if x ∈ Ω.
(28)

where ǫ > 0 is a small constant. Function (28) can be constructed as a weighted sum

of the characteristic functions χi. Denoting by {ρi}
N
i=1 a set of real scalars, we can

represent a piecewise constant function ρ taking these N distinct constant values by

ρ(x) =
N

∑

i=1

ρiχi(φ(x)). (29)

3.2 Constrained optimization problem

We confine to consider a two-phase problem in the domain D. Therefore we set N = 2
and D = Ω̄1 ∪ Ω̄2. Using (27) and (29) we have

χ1(x) = 2 − φ(x) and χ2(x) = φ(x) − 1, (30)

and

ρ(x) = ρ1χ1(x) + ρ2χ2(x) = (1 − ǫ)φ(x) + 2ǫ − 1. (31)

Moreover function (26) takes the form

W (φ)
def
= (φ − 1)(φ − 2). (32)

Using (24) as well as (31) the structural optimization problem (19) can be transformed

into the following one: find φ ∈ U
φ
ad such that

min
φ∈Uφ

ad

Jη(φ) =

∫

Γ2

ρ(φ)σN(uǫ)ηNds (33)

where the set U
φ
ad of the admissible functions is given as

U
φ
ad = {φ ∈ H1(D) : V ol(φ) − V olgiv ≤ 0,

W (φ) = 0, P er(φ) ≤ const1}, (34)

where

V ol(φ)
def
=

∫

Ω

ρ(φ)dx, Per(φ)
def
=

∫

Ω

| ∇φ | dx. (35)
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The element (uǫ, λǫ) ∈ K × Λ satisfies the state system (12)-(13) in the domain D

rather than Ω:
∫

D

ρ(φ)aijkleij(uǫ)ekl(ϕ − uǫ)dx −

∫

D

ρ(φ)fi(ϕi − uǫi)dx −
∫

Γ1

pi(ϕi − uǫi)ds +

∫

Γ2

λǫ(ϕT − uǫT )ds ≥ 0 ∀ϕ ∈ K, (36)

∫

Γ2

(ζ − λǫ)uǫT ds ≤ 0 ∀ζ ∈ Λ. (37)

For the existence of the optimal solution φ ∈ H1(D) to the optimization problem

(33)-(37) see [11] or [18, Theorem 3.2.1, p. 75].

3.3 Necessary optimality conditions

Let us formulate the necessary optimality condition for the optimization problem (33)-

(37). In order to do it we introduce the Lagrangian L(φ, λ̃):

L(φ, λ̃) = L(φ, uǫ, λǫ, p
a, qa, λ̃) = Jη(φ) +

∫

D

ρ(φ)aijkleij(uǫ)ekl(p
a)dx −

∫

D

ρ(φ)fip
a
i dx −

∫

Γ1

pip
a
i ds + (38)

∫

Γ2

λǫp
a
T ds +

∫

Γ2

qauǫT ds + λ̃c(φ) +
3

∑

i=1

1

2µi

c2
i (φ),

where i, j, k, l = 1, 2, λ̃ = {λ̃i}
3
i=1, c(φ) = {ci(φ)}3

i=1 = [V ol(φ),W (φ), P er(φ)]T ,

cT (φ) denotes a transpose of c(φ), µm > 0, m = 1, 2, 3, is a given real. Element

(pa, qa) ∈ K1 × Λ1 denotes an adjoint state defined as follows:
∫

D

ρ(φ)aijkleij(η + pa)ekl(ϕ)dx +

∫

Γ2

qaϕT ds = 0 ∀ϕ ∈ K1, (39)

∫

Γ2

ζ(pa
T + ηT )ds = 0 ∀ζ ∈ Λ1. (40)

The sets K1 and Λ1 are given by

K1 = {ξ ∈ Vsp : ξN = 0 on Ast }, (41)

Λ1 = {ζ ∈ Λ : ζ(x) = 0 on B1 ∪ B2 ∪ B+
1 ∪ B+

2 }, (42)

while the coincidence set Ast = {x ∈ Γ2 : uN + v = 0}. Moreover B1 = {x ∈ Γ2 :
λ(x) = −1}, B2 = {x ∈ Γ2 : λ(x) = +1}, B̃i = {x ∈ Bi : uN(x)+v = 0}, i = 1, 2,

B+
i = Bi \ B̃i, i = 1, 2. The derivative of the Lagrangian L with respect to φ has the

form:

∂L

∂φ
(φ, λ̃) =

∫

D

ρ′(φ)[aijkleij(uǫ)ekl(p
a + η) − f(pa + η)]dx +

λ̃c′(φ) +
3

∑

i=1

1

µi

c(φ)c′(φ), (43)
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where the derivatives are equal to

ρ′(φ) = 1 − ǫ, c′(φ) = [V ol′(φ),W ′(φ), P er′(φ)], (44)

V ol′(φ) = 1, W ′(φ) = 2φ − 3, (45)

Per′(φ) = χ{∂Ω=const0} max{0,−∇ · (
∇φ

| ∇φ |
)} − χ{∂Ω>const0}∇ · (

∇φ

| ∇φ |
). (46)

The necessary optimality condition takes the form [16, 19]: if φ̂ ∈ U
φ
ad is an optimal

solution to the problem (33)-(37) than there exists Lagrange multiplier λ̃ ∈ R3 such

that λ̃1, λ̃2 ≥ 0 satisfying

L(φ̂, λ̃) ≤ L(φ̂, λ̃⋆) ≤ L(φ, λ̃⋆) ∀(φ, λ̃) ∈ U
φ
ad × R3, (47)

Condition (47) implies that [15, 16] for all φ and λ̃

∂L(φ̂, λ̃)

∂φ
≥ 0 and

∂L(φ̂, λ̃⋆)

∂λ̃
≤ 0, (48)

holds at the point (φ̂, λ̃⋆).

4 Numerical implementation

Problem (33) - (37) is discretized using the finite difference approximation [2, 13].

Denote by φi,j = φ(t, xi
1, x

j
2) the approximation of φ at the grid point (xi

1, x
j
2) for a

given time t. Recall forward, backward and central differences as

δx1

+ φi,j =
φi+1,j − φi,j

hx1

, δx2

+ φi,j =
φi,j+1 − φi,j

hx2

, (49)

δx1

− φi,j =
φi,j − φi−1,j

hx1

, δx2

− φi,j =
φi,j − φi,j−1

hx2

, (50)

δx1

0 φi,j =
φi+1,j − φi−1,j

2hx1

, δx2

0 φi,j =
φi,j+1 − φi,j−1

2hx2

. (51)

The regularization term is approximated as follows
∫

D

| ∇φ | dx ≈

∫

D

√

φ2
x1

+ φ2
x2

+ ε1dx, (52)

where ε1 > 0 is small positive number and φx1
, φx2

are partial derivatives of φ with

respect to x1 and x2 respectively discretized using central differences,

(φx1
)i,j = δx1

0 φi,j, (φx2
)i,j = δx2

0 φi,j. (53)

The curvature term is approximated using the following formulas:

∇ · (
∇φ

| ∇φ |
)i,j = [(

φx1

| ∇φ |
)x1

+ (
φx2

| ∇φ |
)x2

]i,j ≈

1

hx1

[(
φx1

| ∇φ |
)i+1/2,j − (

φx1

| ∇φ |
)i−1/2,j] +

1

hx2

[(
φx2

| ∇φ |
)i,j+1/2 − (

φx2

| ∇φ |
)i,j−1/2], (54)

9



where

(
φx1

| ∇φ |
)i+1/2,j =

δx1

+ φi,j
√

(δx1

+ φi,j)2 + 1
4
(δx2

0 φi,j + δx2

0 φi+1,j)2 + ε1

,

(
φx1

| ∇φ |
)i−1/2,j =

δx1

− φi,j
√

(δx1

− φi,j)2 + 1
4
(δx2

0 φi−1,j + δx2

0 φi,j)2 + ε1

,

(
φx2

| ∇φ |
)i,j+1/2 =

δx2

+ φi,j
√

(δx2

+ φi,j)2 + 1
4
(δx1

0 φi,j + δx1

0 φi,j+1)2 + ε1

,

(
φx2

| ∇φ |
)i,j−1/2 =

δx2

− φi,j
√

(δx2

+ φi,j)2 + 1
4
(δx1

0 φi,j−1 + δx1

0 φi,j)2 + ε1

.

5 Numerical experiments

The discretized structural optimization problem (33)-(37) is solved numerically. We

employ Uzawa type algorithm [15] to solve numerically optimization problem (33)-

(37). The algorithm is programmed in Matlab environment. As an example a body

occupying 2D domain

Ω = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ 0 < v(x1) ≤ x2 ≤ 4}, (55)

is considered. The boundary Γ of the domain Ω is divided into three pieces

Γ0 = {(x1, x2) ∈ R2 : x1 = 0, 8 ∧ 0 < v(x1) ≤ x2 ≤ 4},

Γ1 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ x2 = 4}, (56)

Γ2 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ x2 = v(x1)}.

The domain Ω and the boundary Γ2 depend on the function v given as in [6, 14].

Figure 2 presents the obtained optimal domain. The areas with low values of density

function appear in the central part of the body and near the fixed edges. The obtained

normal contact stress is almost constant along the optimal shape boundary and has

been significantly reduced comparing to the initial one.

6 Conclusions

The numerical results obtained seem to be in accordance with physical reasoning.

They indicate that the proposed numerical algorithm allows for significant improve-

ments of the structure from one iteration to the next and is more efficient than the

algorithms based on standard level set approach. Unlike in the previous papers here

the original topology optimization problem is approximated by the two-phase opti-

mization problem. This problem is transformed into the constrained optimization
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Figure 2: Optimal domain Ω⋆.

problem where the piecewise constant level set function is variable subject to opti-

mization. Compared with the standard level set approach the proposed approach does

not require the solution of the Hamilton - Jacobi equation or to perform the reinitial-

ization process of the signed distance function. The proposed method has also a hole

nucleation capabilities as with topological gradient based methods.
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