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Abstract

Easily deformable tall structures exposed to a strong vertical component of an earth-
quake excitation are endangered by auto-parametric resonance effects. This non-linear
dynamic process in a post-critical regime caused heavy damage or collapses of many
towers, bridges and other structures in the epicenter area. Vertical and horizontal re-
sponse components are independent on the linear level. However their interaction
takes place as a result of non-linear terms in post-critical regime. Two generally dif-
ferent types of post-critical regimes are presented: (i) post-critical state with possible
recovery; (i1) exponentially rising horizontal response leading to a collapse. Special
attention is paid to processes of transition from semi-trivial to post-critical state in the
case of the time limited excitation period because it concerns the seismic processes.
The solution method combining analytical and numerical approaches is developed and
used. Its applicability and shortcomings are commented. A few hints for engineering
applications are given. Some open problems are indicated.

Keywords: auto-parametric systems, semi-trivial solution, dynamic stability, system
recovery, post-critical response.

1 Introduction

Papers devoted to dynamics of slender structures (towers, masts, chimneys, bridges,
etc.) under earthquake attack are dealing mostly with effects of horizontal excitation
component. However a strong vertical component in epicenter area represents very of-
ten the most dangerous condition leading to structure collapse due to auto-parametric
resonance. This highly non-linear dynamic process caused in the past heavy dam-
ages or collapses of towers, bridges and other structures. In sub-critical linear regime
vertical and horizontal response components are independent. So if no horizontal ex-
citation is taken into account, no horizontal response component is observed. The



semi-trivial solution gives a full image of the structure behavior. If the frequency of
a vertical excitation in a structure foundation finds in a certain interval and its ampli-
tude exceeds a certain limit, the vertical response component loses dynamic stability
and dominant horizontal response component is generated. This post-critical regime
(auto-parametric resonance) follows from a strong non-linear interaction of vertical
and horizontal response components which can lead to a failure of the structure. Con-
sequently, very widely used linear approach, usually doesnt provide any interesting
knowledge in such a case.

Auto-parametric systems have been intensively studied for the last three or four
decades. A few theoretical studies dealing with these effects have been published even
sooner namely in the period of 1968-1985, see e.g. [10], [21], [30]. Then followed
many papers, monographs and other studies dealing with analytical, numerical as well
as experimental aspects of auto-parametric systems and their applications. They have
been given mostly by Tondl and co-authors, see for instance papers: [14], [15], [27],
[28] or one of numerous monographs [29]. Certainly, many other authors contributed
to this topic significantly, see e.g. [3], [9], etc. Some ideas and selected results can
be found also in papers by authors of this study, e.g. [17], [19]. Basic definitions and
results on a level of the rational mechanics can be found in [7], extension onto the
stochastic approach, see e.g. monographs [6], [23], [12] or papers, [16], etc.

Similar auto-parametric systems have been studied during recent years, see e.g.
authors papers [18], [20]. The mathematical models used in these studies idealized the
vertical structure as one concentrated mass related with the basement by a massless
spring. However a following-up research revealed that such approach is not satisfac-
tory in many particular cases. In principle easily deformable tall structures are the
most sensitive regarding effects of auto-parametric resonance. Therefore the structure
itself should be modeled as a console with continuously distributed stiffness and mass
in order to respect the whole eigen-value spectrum. Concerning subsoil conventional
model including internal viscosity can be retained.

2 Mathematical model

Let us consider the theoretical model in a vertical plane outlined in the Fig. 1. The
system is Hamiltonian, see for instance [2]. To deduce the governing differential
system in the form of Lagrange equations the kinetic and potential energies of the
moving system are formulated as follows:

T(t)=5M(5*(t) + r*@*(t))+ (a)
l
+3h E)f[(sb(lﬁ)fv +a(z, 1)* + 97(t) = 20(8)(@(t)x + iz, 1)) sin o(t)]d,
(1)
U(t)=Mg - y(t) + 3C((y(t) — yo(t))* + r2*(t))+ (b)
l

—i—/LgOf[y(t) —2(1 —cos p(t)) — u(z,t)sin(t)]dz + %EJJU”%L t)dz.

In Eqgs (1) following notification has been introduced:



y =y(t) - vertical displacement of the B

point;

Yo = yo(t) - Kkinematic excitation (seismic
random process);

¢ =p(t) - angular rotation of the system in
the B point;

u=wu(x,t) - bending deformation of the ver-

tical console;

M - foundation effective mass;
C - subsoil effective stiffness;
0

- console uniformly distributed
mass;

EJ - console bending stiffness (con-
stant);

Nes Ne - viscous damping parameters of
the C,FEJ stiffness following
Kelvin definition;

Figure 1: Outline of an auto-

Tl - geometric parameters; parametric model with a con-
T - length coordinate along the con- tinuous vertical console
sole.

Non-dimensional response and excitation
components are useful to be introduced:

o) = wo(t)/1, C(t) = y()/1, (1), ulx,t)/1=P(E, 1),

€=/l p=r/l, m=pl @

The material damping of the console is proportional. Therefore the deformation of
that can be expressed in a form of a convergent series:

u(z,t) = ;&i(t) -1p;(x) ordimensionless: (&, t) = ' lai(t) “xi(§), 3)

(Vi) =1-xi(§)),

n n

where basis functions y; () are eigen functions (eigen forms) of the differential equa-
tion:

Xi (&) + xi(€) =0, (A/D)' = pw}/ET 4)
with boundary conditions valid for a console beam: y;(0) = 0, x;(0) = 0, x; (1) =
0, X;" (1) = 0. This approach is useful due to proportional damping which makes time
coordinates «;(t) independent and so the phase shift of each eigen form is constant
over the whole definition interval if the damping is sub-critical.

Let us deduce Lagrangian equations for components ((t), ¢(t) and components
«;(t) arithmetizing coordinates x;(£). Let us adopt approximately (1 — cosp =~ 0)



and (sin ¢ ~ ¢). Hence the system of Lagrangian equations reads:

—#io 3 [(2(t) (1)) O] + wil¢ (1) = Golt) +ne(C(t) = Golt))]= 0, (@)

B(t) = 3l () (t) +

n (5)
+K1 ;[QZ( )611 (C( )O‘z<t> W2QZ( ))60 Z] + wi [gp( ) + nep(t )]: 0, (b)
&;(t) - O, + Sb(f) O —
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Regarding parameters © ;, eigen functions of Eq. (4) with respective boundary con-
ditions have a detailed form as follows:

Xz(é): (Cl - COS )\Z§ + 02 - sin )\,5 + 03 . Ch)\Z§ + 04 . Sh/\z€,>

Cl = sin /\iSh/\ia CQ = —sin )\zCh/\z — COS /\iSh/\ia (7)
Cg = —sin )\iSh)\i,O4 = sin )\zCh)\z -+ cos )\iSh)\i, Ch)\l - COS )\Z +1=0.

where \; = 1.8751,4.6941, 7.8548,10.9955, ...... , etc. are solutions of a transcendent
equation: ch); - cos \; + 1 = 0. In principal analytical form of parameters ©;; can
be carried out. However, the results are very complicated and don’t provide any in-
formation important from physical point of view. Therefore they will be replaced by
numerical integration results in particular cases.

The system (5) represents a simultaneous differential system for ((t), ¢(¢) and
a;(t) having a size related with a number of eigen-forms (4) taken into account. Al-
though the console bending is considered linear, components «;(t) are non-linearly
related with ((t), ¢(t). Nevertheless a mutual link of «;(#) components is not compli-
cated. This fact follows from the linearity of the bending component, proportionality
of its damping and so the orthogonality of relevant eigen forms y; as well as their
second derivatives X;/ in the meaning of Eq. (4) and respective boundary conditions.
Concerning the excitation process (y(t), it will be considered as harmonic in the first
step in order to investigate limits of stable semi-trivial and post-critical regimes. Later
the random non-stationary character of (y(¢) will be respected.



3 Semi-trivial solution and its stability

Let us consider the harmonic excitation transformed into the dimensionless form:
Yo = Apsinwt =  (y=ag-sinwt, Ay=ag-l (8)

and assume that the stationary semi-trivial solution exists. Its general form can be
written as follows:

(s =a. -coswt+ag-sinwt, =0, o =0 9)

Substituting Eqs (9) into the system (5), Eqs (5b) and (5c) are satisfied identically,
while Eqn (5a) doing obvious modifications provides the coefficients a., a:

2
Ge = — "0(;%3%, a, = L (W —w? +wfun?) | 8 = (@ —ud)’ +uiwin? (10)

Expression (9) together with coefficients (10) represents an approximate simple linear
stationary solution of the single degree of freedom (SDOF) system moving in vertical
direction being excited kinematically in the point B. The resonance curve of the
response amplitude has the form:

a2w!
R = al+ a2 = 001+ wp) (11)
which can be seen in the Figure 2. However the solution being characterized by this
curve can be unstable beyond a certain value of the excitation amplitude ay in some
intervals of the excitation frequency w. For this reason the stability analysis must be
carried out. Very well known general monographs dealing with this topic appeared
together with their re-editions, i.e. [7]. Nevertheless, dynamic stability of non-linear
systems with one or a couple of degrees of freedom has been discussed using vari-
ous methods by many authors in problem oriented papers, e.g. [3], [5], or in auto-
parametric system focused monographs, e.g. [26].
Let us adopt the linear perturbation approach in order to assess the stability limits of
the semi-trivial solution (9). Indeed, it can be written approximately in the arbitrarily
small neighborhood of the semi-trivial solution:

C(t)=Cs(t)+q(t) =Cs(t)+qe(t) coswt  +qu(t)sinwt ,  (a)
ot)= 0 +p(t) = Pe(t) cos gwt +py(t)sin wt , (b) (12)
a;(t)= 0 +s;(t)= Se,i(t) cos swi+s () sin twt . (c)

where absolute value of the perturbation amplitudes ¢.(t), gs(t), ... are small. The ar-
gument (¢) will be omitted in further text whenever possible ((, ¢, a;, ¢, Ge, gs, ---) etc.
Introducing expression (12a) into Eqn (5a) and taking into account that (; represents
its semi-trivial solution, following equation for perturbation ¢ can be extracted:

i+ wi(qg+mn4) =0 (13)



Eqgn (13) is linear and homogeneous. It is obvious that tlim Ge,qs = 0ifn. >0

and so stationary solution vanishes. For this reason the vertical response component
remains independent and stable in the neighborhood of the semi-trivial solution (s (on
the level of the linear perturbation approach).

Let us put now the second column of the expressions (12a-c) into Eqgs (5b,c). Keep-
ing only the linear terms of perturbations p, s and respecting that ¢ = 0, one obtains
the following differential system:

Pt) — 21 (8)p(t)+

+K1 ;[Sz(t)glz + (18100, — wisi(t)0o,] + Wi (p(t) + nep(t))=0, (14
§;(t)02,; + p(t)01,; —

—(C(®)p(t) + GO)P(E))bo; — wip(t)Bo,s + w3 (si(t) + 1ei(t))03,:=0.

The system (14) as expected is linear similarly like Eq. (13). However three co-
efficients include harmonic components due to (s, (s terms being given by Eqn (9).
Hence the system (14) is of the Mathieu type (with parametric excitation) and its so-
lution stability should be verified, cf. for instance [1] or [31].

As the next step functions p, s in Eqs (14) should be replaced by means of their
first harmonics represented by the third column in Eqs (12a-c). The method of har-
monic balance enables to obtain the following homogeneous algebraic system for
De, Pss Se,is Ss,i parameters:

P-p+S;-s1+Sy-s9+...4+S,-s,=0
Sl : p+D1 - 81+ 0 +.. .+ 0 =0

So-p+ 0 +Ds-se+...+ 0 =0 n
e TR — (P-Y8:D/'8)p=0, (15
=1

S.,-p+ 0 + 0 +...4+D,-s,=0

where sub-matrices P, S;, D; € R?*2 and vectors p, s; € R? have a form as follows:
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p_|~ c+ (—wP F WKL, W as + wiwnes; | pe
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| +300iw7 - ae — 101w — O ws, 700,07 - as e 16
Si = 1 2 1 2 1 2 2 Si= , (16)
190,1‘01 e _ZQO,iw 'ac_zel,iw —Qo,iwg | Ss,i
[ 1, 2 2 1,2
D.— —qw iy +w3ls;,  Swwinbs;
O 1 2 1,.,2 2 )
| —ww3nels,, — 3w 02; + w3bs;




The system (15) is presented in two versions: (2n + 2) x (2n + 2) (large) and 2 x 2
(compact). The latter one is enabled due to special form of the large version. In
such a case sub-vectors s; can be easily eliminated and the system in the compact
version can be obtained. However matrix elements of the compact version are very
complicated indeed and so applicability can be a bit problematic. Anyway each form
is suitable for a particular purposes of analytical or numerical treatment. For instance
the basic analysis of stability can be done using the compact version of the system
(15). Obtaining eigen-vectors p(;) sub-vectors s;(;) can be subsequently easily derived
by back substitution into large version of the system (15). The only sensitive step can
be find inversion of matrices D;. Inspection of Eqgs (16) provides that the determinant
of D; is always positive whenever the damping 7. (console) is positive and matrices
D; are all regular. If there is 7. = 0, one of the determinants det(D;) can vanish for w
coinciding with the eigen-frequency of the console as it corresponds with particular \;.
This case however is very seldom and should be treated by a special way. It manifests
as a turning point on a stability limit.

Let us be aware that the algebraic system Eqgs (15) is meaningful only under cer-
tain conditions. The system response should be fully or at least nearly stationary in
order to be entitled to apply the harmonic balance method. In other words functions
De, Pss Se,is Ss,i» although being dependent on time, should enable to be approximated
by constants within the interval of one period or at least to be considered as functions
of the slow time”. Under circumstances of a chaotic or quasi-periodic response with
noticeable energy transfer between ( and ¢, o; components, the harmonic balance
method is inapplicable and the system (15) becomes meaningless. Rich references
can be addressed to get experiences with early stage of the post-critical processes with
dominating chaotic component, see e.g. papers [1], [4], [9], or monographs [11], [22],
[24] or even with random character, e.g. [13][19]. For special considerations regard-
ing non-linear dynamic systems, see [25].

If the above general condition is complied with, p,, ps, 5.4, ss; can be taken as
parameters. The system (15) being homogeneous cannot provide non-trivial solution
unless the determinant of its matrix vanishes. So that the zero determinant of the
system matrix will lay out the shape of the stability limit.

4 Numerical experiments - domain with possible sys-
tem recovery

Let us recall the system at the Fig. 1 and verify its properties regarding the dynamic
stability. Zero determinant of the system (15) will be repeatedly evaluated in a certain
interval of frequency w for various combinations of parameter values presented in the
table below. Various combinations of values presented throughout the table have been
applied in order to obtain typical results concerning the semi-trivial solution stability.
The standard code and programming of Wolfram Mathematica package and some in
house developed blocks have been used.

To get an overview about influence of system parameters onto the semi-trivial so-
lution stability let us investigate at first Fig. 2. The black graphs represent resonance



M ¢ H EJ Me Ne l Q:T/l

10,0 11,0 0,125 100 0,05 0,05 8,0 0,05
250 0,10 0,10 0,10

500 0,15 0,15 0,15

1000 0,20 0,20 0,25

2500 0,25 0,25 0,35

5000 0,30 0,30 0,45

Table 1: Parameters of the system analyzed

curves following Eq. (11) for various excitation amplitudes a. The red curves stand in
stability limits under circumstances that the console bending stiffness is employed by
one, two or three eigen-forms. Respective pictures (a)-(f) are evaluated for six bend-
ing stiffness levels of the console. In principle it is obvious that increasing number
of eigen-forms taken into consideration leads always to drop of the stability limit as
the system is getting to be weaker. A certain exception represent narrow areas around
eigen-frequencies of the system, whatever type they are.
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Figure 2: Stability limits of the semi-trivial solution including one, two or three con-
sole eigen-forms (n = 1,2, 3) for various bending stiffness of the console; dampings
n. = 0,05,n. = 0,05, ratio p = 0, 2.

Picture (a) demonstrates that low bending stiffness leads to the stability loss be-
ing concentrated in the area around the 1st eigen-frequency of the console. In this
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Figure 3: Stability limits of the semi-trivial solution (n = 1,2, 3) for various ratio
o = r/l (ground width/height); dampings 7. = 0, 05,7, = 0,05, EJ = 500.

frequency domain the number of eigen-forms taken into account is very weak and
stability is lost even for small excitation amplitudes ay. We can see a local maxi-
mum in the neighborhood of w = 1,0 (eigen-frequency of the semi-trivial solution)
at the same picture, when two or more eigen-forms (n = 2 or more) are taken into
account. This interval is however very short and respective positive influence should
be neglected. Finally it can be stated that one or two instability interval have been
ascertained w € (s7 — $2) and w € (s3 — s4) or w € (s1 — s4) depending on the
excitation amplitude ay and the number n of eigen-forms respected.

Instability intervals are concentrating mostly in proximity of frequencies wy, wy, ws
(sub-soil and system basic properties) and w456, = ws - A1 23 . (console flexibility).
Therefore it is obvious that minimum of stability limits is moving to higher frequen-
cies with increasing bending stiffness of the console. As a special case can be consid-
ered picture (b) where nearly w, and w5 coincide and twofold eigen-frequency occurs.
Thereafter for higher £.J the stability minimum exceeds w = 1, see pictures (c)-(f).
This knowledge can serve as an instruction for engineering practice.

Let us have a look at the Fig. 3 demonstrating an evolution of the stability limits
when the ratio ¢ = r/, i.e. ground width/console height is changing. We start with the
picture (b). It represents an approximate boundary (exact value is o, = 0, 086 keeping
other parameters) below which the static stability is violated. In other words for o < o,
the system is instable even in a static state leading to final collapse. Therefore the
dynamic problem is worthy to be investigated for o > p.. Of course a position of the
static stability boundary in general is a function of all system parameters. The above
value o, corresponds to parameters in use.
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Figure 4: Stability limits of the semi-trivial solution (n = 1, 2, 3) for various values of
the sub-soil viscous damping; other parameters 7. = 0,05, E'J = 500, o = 0, 2.

Position of dynamic stability limits minimum is well expressed for each ratio p.
The position as well as the value of the minimum are nearly independent from num-
ber of eigen-forms n being taken into consideration. The position on the frequency
axis is visibly rising with increasing ratio o abandoning resonance area of semi-trivial
solution. As it follows from pictures (d)-(f), the stability loss is less and less probable
even for higher amplitudes of excitation. Therefore the broad band excitation is also
less and less dangerous. This attribute should be taken into account in a practical en-
gineering, despite its technical application is much more complex as adjusting of the
console stiffness.

The third parameter significantly influencing the semi-trivial solution (or the sys-
tem) stability is the sub-soil viscous damping. Although a lot different models of
the damping can be discussed, Voigt model is probably able to describe the principle
properties of the system response respecting the damping. It follows from Fig. 4, that
resonance curves of the semi-trivial system are rapidly dropping with increasing 7.
parameter while the shape of stability limits doesn’t change considerably. Instability
area concentrates around frequency w, and more or less keeps its position and extent.
Therefore for design practice is recommended to try as much increase the sub-soil
viscosity as possible using some special stuffs for material treating. Internal damping
of the console 7. influences the stability limits as well, see Fig. 5. However variation
of this parameter didn’t lead to considerable changes in shape and character of respec-
tive stability limits provided that other system parameters are kept. Indeed the interval
ne € (0,05;0,30) where the system was tested is large enough to cover usual damp-
ing ratio values encountered in civil engineering regarding concrete or steel. Hence
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Figure 5: Stability limits of the semi-trivial solution (n = 1, 2, 3) for various values of
the console material damping; other parameters 7. = 0,05, £/J = 500, 0 = 0, 2.

in practice 7. # 0 should be respected, however its value occurring within a domain
recommended by the most standards. Slightly different is the case of the sub-soil
damping ratio 7)., where the real values can approach the critical damping.

S Numerical experiments - the limit of irreversibility

As it has been mentioned above, the post-critical regime can be of two types. Both
of them are governed by the full differential system (5). The first type means a re-
sponse process running within a certain limits around the semi-trivial solution. When
the excitation is stopped, the system is able to recover and to return to a standstill.
Overstepping the limit of irreversibility (or the outer stability limit) the second regime
emerges leading to inevitable collapse of the system. The response becomes non-
periodic rising exponentially beyond all limits. The mathematical model (5) is not
able any more to give a true picture of such terminal states. Its applicability finishes
shortly after the limit of the irreversibility.

To trace this limit the analytical investigation of the system (5) doesn’t probably
provide any understandable results. Therefore simulation processes should be under-
taken in order to outline this limit. Numerical solution of the system (5) in full version
has been multiply performed as long as the numerical process fails due to numerical
stability loss. This collapse occurs in a certain time from the beginning of the inte-
gration, because the cumulative errors lose an ability to eliminate themselves. So that
the moment when this state occurs indicate that the limit of irreversibility has been

11



0.5 1.0 1.5 @ 2.0

Figure 6: Outer stability limit (limit of irreversibility) of the system - blue curves for
the increasing console bending stiffness; other parameters 7. = 0,05, o = 0, 2.

reached.

Some result have been plotted in Fig. 6 for three console bending stiffness. The
stability limit of the semi-trivial solution has been plotted only for n = 3 (three eigen-
forms considered). Green curves represent limits of irreversibility. There are plotted
three limits in every picture (a)-(c). Each one demonstrates interconnection of points
when numerical process collapsed after a certain time 7.. Three levels of 7. have been
investigated. It is obvious, that increasing 7., the result converges to a fixed curve
making a lower envelope of all partial results. Therefore there exists a limit curve
characterizing the limit of irreversibility independent from 7, and the solution process
itself.

Results demonstrate that the blue curves are approaching stability limits of the
semi-trivial solution especially for higher values of the bending stiffness of the con-
sole. Special problems emerged for low bending stiffness when the eigen-frequency
wy oversteps the first bending eigen-frequency of the console.

6 Conclusion

Authors deal with easily deformable tall structures which are very sensitive to effects
of auto-parametric resonance (chimneys, towers, etc.). If the amplitude of a verti-
cal excitation in a structure foundation exceeds a certain limit, a vertical response
component loses stability and dominant horizontal response component arises. This
post-critical regime (auto-parametric resonance) follows from the non-linear interac-
tion of vertical and horizontal response components and can lead to a failure of the
structure.

The Hamiltonian functional is formulated and subsequently a respective Lagrangian
governing system is carried out. The differential system shows that horizontal and ver-
tical response components are independent on the linear level. Their interaction takes
place arising from the non-linear terms in post-critical regime only. Two generally dif-
ferent types of the post-critical regimes are presented in the paper: (i) Although in the
post-critical state, a certain area in the neighbourhood of the stable state exists from
where the structure response can return back to the stable state, when the stability con-
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ditions are regained; sensitivity of the system parameters concerning auto-parametric
stability loss is carefully analysed; (ii) Beyond the primary area of the instability the
rocking response component rises rather exponentially leading inevitably to a failure
of the structure. Consequently, the presence of the horizontal component in the sys-
tem response does not automatically mean inevitable collapse of the structure. Such
a response can keep the stationary character and can disappear, if the excitation is re-
moved. However, if the limit of the irreversibility is overstepped, horizontal response
components rise beyond any limits and the structure collapses.

In principle solution methods combining analytical and numerical approaches have
been developed and used. Their applicability and shortcomings are commented upon.
A few suggestions for engineering applications in a design practice are given and some
open problems are indicated.
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