Abstract

A hyperbolic sine shear deformation theory is used for the buckling analysis of functionally graded plates, accounting for through-the-thickness deformations. The linearized buckling equations and boundary conditions are derived using Carrera’s Unified Formulation and further interpolated by collocation with radial basis functions. Numerical results demonstrate the accuracy of the present approach.

Keywords: plates and shells, collocation, meshless methods, functionally graded plates.

1 Introduction

A conventional functionally graded plate (FGM) considers a continuous variation of material properties over the thickness direction by mixing two different materials [1]. The material properties of the FGM plate are assumed to change continuously throughout the thickness of the plate, according to the volume fraction of the constituent materials. Analysis of vibrations of FGM plates can be found in Batra and Jin [2], Ferreira et al. [3], Vel and Batra [4], Zenkour [5], and Cheng and Batra [6]. The analysis of mechanical buckling of FGM structures is less common in the literature. It can be found in Najafizadeh and Eslami [7], Zenkour [5], Cheng and Batra [6], Birman [8], Javaheiri and Eslami [9].

Typically, the analysis of FGM plates is performed using the classical plate theory (CPT) [10, 11], the first-order shear deformation theory (FSDT) [12, 2, 3, 13] or higher-order shear deformation theories (HSDT) [14, 15, 3, 16, 13]. The FSDT gives acceptable results but depends on the shear correction factor which is hard to find as it depends on many parameters. There is no need of a shear correction factor when using a HSDT but linearized buckling equations are more complicated than
those of the FSDT. The Unified Formulation proposed by Carrera [17, 18] made the implementation of such theories easier.

The use of alternative-to-Finite element methods for the analysis of plates, such as the meshless methods based on collocation with radial basis functions is attractive due to the absence of a mesh and the ease of collocation methods. In recent years, radial basis functions (RBFs) showed excellent accuracy in the interpolation of data and functions. Kansa [19] introduced the concept of solving partial differential equations by an unsymmetric RBF collocation method based upon the multiquadratic interpolation functions. The authors have applied successfully the RBF collocation technique to the static and dynamic analysis of composite structures [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. The present paper considers the thickness stretching issue on the buckling analysis of FGM plates, by a meshless technique based on collocation with radial basis functions.

2 Problem formulation

The problem consists of a rectangular sandwich plate of plan-form dimensions \( a \) and \( b \) and uniform thickness \( h \). The co-ordinate system is taken such that the \( x-y \) plane coincides with the midplane of the plate \((z \in [-h/2, h/2])\). The sandwich core is a ceramic material and skins are composed of a functionally graded material across the thickness direction. The bottom skin varies from a metal-rich surface \((z = h_0 = -h/2)\) to a ceramic-rich surface while the top skin face varies from a ceramic-rich surface to a metal-rich surface \((z = h_3 = h/2)\) as illustrated in figure 1. The volume fraction of the ceramic phase is obtained from a simple rule of mixtures as:

\[
V_c = \left( \frac{z - h_0}{h_1 - h_0} \right)^p, \quad z \in [h_0, h_1] \\
V_c = 1, \quad z \in [h_1, h_2] \\
V_c = \left( \frac{z - h_3}{h_2 - h_3} \right)^p, \quad z \in [h_2, h_3]
\]

where \( p \) is a scalar parameter that allows the user to define the gradation of material properties across the thickness direction of the skins. With this formulation the interfaces between core and skins disappear. Note that the core of the present sandwich and any isotropic material can be obtained as a particular case of the power-law function by setting \( p = 0 \). The volume fraction for the metal phase is given as \( V_m = 1 - V_c \). The sandwich may be symmetric or non-symmetric about the mid-plane as we may vary the thickness of each face. Figure 2 shows a non-symmetric sandwich with volume fraction defined by the power-law (1) for various exponents \( p \), in which top skin thickness is the same as the core thickness and the bottom skin thickness is twice the core thickness. Such thickness relation is denoted as 2-1-1. A bottom-core-top notation is used. 1-1-1 means that skins and core have the same thickness.

The sandwich plate is subjected to compressive in-plane forces acting on the mid-plane of the plate. \( \bar{N}_{xx} \) and \( \bar{N}_{yy} \) denote the in-plane loads perpendicular to the edges.
Figure 1: Sandwich with isotropic core and FGM skins.

Figure 2: Illustration of a 2-1-1 sandwich with FGM skins for several volume fractions.
$x = 0$ and $y = 0$ respectively, and $\bar{N}_{zy}$ denotes the distributed shear force parallel to the edges $x = 0$ and $y = 0$ respectively (see fig. 3).

3 A quasi-3D hyperbolic sine plate shear deformation theory

3.1 Displacement field

The present theory is based on the following displacement field:

\begin{align*}
    u(x, y, z, t) &= u_0(x, y, t) + zu_1(x, y, t) + \sinh \left( \pi z \frac{u_Z(x, y, t)}{h} \right) \tag{2} \\
    v(x, y, z, t) &= v_0(x, y, t) + zv_1(x, y, t) + \sinh \left( \pi z \frac{v_Z(x, y, t)}{h} \right) \tag{3} \\
    w(x, y, z, t) &= w_0(x, y, t) + zw_1(x, y, t) + z^2w_2(x, y, t) \tag{4}
\end{align*}

where $u$, $v$, and $w$ are the displacements in the $x-$, $y-$, and $z-$ directions, respectively. $u_0$, $u_1$, $u_Z$, $v_0$, $v_1$, $v_Z$, $w_0$, $w_1$, and $w_2$ are the unknowns to be determined. A constant term is assumed for the transverse displacement component instead of (4) ($w = w_0$) to investigate the effect of the thickness stretching on the buckling load.
3.2 Strains

The strains can be related to the displacement field as:

\[
\begin{align*}
\begin{cases}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{cases}
= 
\begin{cases}
\frac{\partial u}{\partial x} + \frac{1}{2} \left( \frac{\partial w_0}{\partial x} \right)^2 \\
\frac{\partial v}{\partial y} + \frac{1}{2} \left( \frac{\partial w_0}{\partial y} \right)^2 \\
\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w_0}{\partial x} \frac{\partial w_0}{\partial y}
\end{cases},
\begin{cases}
\gamma_{xz} \\
\gamma_{yz} \\
\epsilon_{zz}
\end{cases}
= 
\begin{cases}
\frac{\partial u}{\partial z} \ \\
\frac{\partial v}{\partial z} \ \\
\frac{\partial w}{\partial z}
\end{cases}
\end{align*}
\]  

(5)

By substitution of the displacement field in (5), the strains are obtained:

\[
\begin{align*}
\begin{cases}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{cases}
= 
\begin{cases}
\varepsilon_{xx}^{(0)} \\
\varepsilon_{yy}^{(0)} \\
\gamma_{xy}^{(0)}
\end{cases}
+ 
\begin{cases}
\varepsilon_{xx}^{(nl)} \\
\varepsilon_{yy}^{(nl)} \\
\gamma_{xy}^{(nl)}
\end{cases}
+ z \begin{cases}
\varepsilon_{xx}^{(1)} \\
\varepsilon_{yy}^{(1)} \\
\gamma_{xy}^{(1)}
\end{cases}
+ \sinh \left( \frac{\pi z}{h} \right) \begin{cases}
\varepsilon_{xx}^{(Z)} \\
\varepsilon_{yy}^{(Z)} \\
\gamma_{xy}^{(Z)}
\end{cases}
\end{align*}
\]

(6)

\[
\begin{align*}
\begin{cases}
\gamma_{xz} \\
\gamma_{yz} \\
\epsilon_{zz}
\end{cases}
= 
\begin{cases}
\gamma_{xz}^{(0)} \\
\gamma_{yz}^{(0)} \\
\epsilon_{zz}^{(0)}
\end{cases}
+ z \begin{cases}
\gamma_{xz}^{(1)} \\
\gamma_{yz}^{(1)} \\
\epsilon_{zz}^{(1)}
\end{cases}
+ z^2 \begin{cases}
\gamma_{xz}^{(2)} \\
\gamma_{yz}^{(2)} \\
\epsilon_{zz}^{(2)}
\end{cases}
+ \frac{\pi}{h} \cosh \left( \frac{\pi z}{h} \right) \begin{cases}
\gamma_{xz}^{(Z)} \\
\gamma_{yz}^{(Z)} \\
\epsilon_{zz}^{(Z)}
\end{cases}
\end{align*}
\]

(7)

being the strain components obtained as

\[
\begin{align*}
\begin{cases}
\varepsilon_{xx}^{(0)} \\
\varepsilon_{yy}^{(0)} \\
\gamma_{xy}^{(0)}
\end{cases}
= 
\begin{cases}
\frac{\partial u_0}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w_0}{\partial x} \frac{\partial w_0}{\partial y}
\end{cases},
\begin{cases}
\varepsilon_{xx}^{(nl)} \\
\varepsilon_{yy}^{(nl)} \\
\gamma_{xy}^{(nl)}
\end{cases}
= 
\begin{cases}
\frac{1}{2} \left( \frac{\partial w_0}{\partial x} \right)^2 \\
\frac{1}{2} \left( \frac{\partial w_0}{\partial y} \right)^2 \\
\frac{\partial w_0}{\partial x} \frac{\partial w_0}{\partial y}
\end{cases}
\end{align*}
\]

(8)

\[
\begin{align*}
\begin{cases}
\varepsilon_{xx}^{(1)} \\
\varepsilon_{yy}^{(1)} \\
\gamma_{xy}^{(1)}
\end{cases}
= 
\begin{cases}
\frac{\partial u_1}{\partial x} \\
\frac{\partial v_1}{\partial y} \\
\frac{\partial u_1}{\partial y} + \frac{\partial v_1}{\partial x} + \frac{\partial w_1}{\partial x} \frac{\partial w_1}{\partial y}
\end{cases},
\begin{cases}
\varepsilon_{xx}^{(Z)} \\
\varepsilon_{yy}^{(Z)} \\
\gamma_{xy}^{(Z)}
\end{cases}
= 
\begin{cases}
\frac{\partial u_2}{\partial x} \\
\frac{\partial v_2}{\partial y} \\
\frac{\partial u_1}{\partial y} + \frac{\partial v_1}{\partial x} + \frac{\partial w_1}{\partial x} \frac{\partial w_1}{\partial y}
\end{cases}
\end{align*}
\]

(9)

\[
\begin{align*}
\begin{cases}
\gamma_{xz}^{(0)} \\
\gamma_{yz}^{(0)} \\
\epsilon_{zz}^{(0)}
\end{cases}
= 
\begin{cases}
\frac{1}{2} \frac{\partial w_0}{\partial x} \\
\frac{1}{2} \frac{\partial w_0}{\partial y} \\
\frac{\partial w_0}{\partial x} \frac{\partial w_0}{\partial y}
\end{cases},
\begin{cases}
\gamma_{xz}^{(1)} \\
\gamma_{yz}^{(1)} \\
\epsilon_{zz}^{(1)}
\end{cases}
= 
\begin{cases}
\frac{1}{2} \frac{\partial w_1}{\partial x} \\
\frac{1}{2} \frac{\partial w_1}{\partial y} \\
\frac{\partial w_1}{\partial x} \frac{\partial w_1}{\partial y}
\end{cases}
\end{align*}
\]

(10)

\[
\begin{align*}
\begin{cases}
\gamma_{xz}^{(2)} \\
\gamma_{yz}^{(2)} \\
\epsilon_{zz}^{(2)}
\end{cases}
= 
\begin{cases}
\frac{1}{2} \frac{\partial w_2}{\partial x} \\
\frac{1}{2} \frac{\partial w_2}{\partial y} \\
\frac{\partial w_1}{\partial x} \frac{\partial w_1}{\partial y}
\end{cases},
\begin{cases}
\gamma_{xz}^{(Z)} \\
\gamma_{yz}^{(Z)} \\
\epsilon_{zz}^{(Z)}
\end{cases}
= 
\begin{cases}
\frac{1}{2} \frac{\partial w_2}{\partial x} \\
\frac{1}{2} \frac{\partial w_2}{\partial y} \\
\frac{\partial w_1}{\partial x} \frac{\partial w_1}{\partial y}
\end{cases}
\end{align*}
\]

(11)

where \( \varepsilon_{\alpha\beta}^{(nl)} \) are the non-linear terms that will originate the linearized buckling equations.
3.3 Elastic stress-strain relations

In the case of isotropic functionally graded materials, the 3D constitutive equations can be written as:

\[
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy}
\end{bmatrix}
= \begin{bmatrix}
C_{11} & C_{12} & 0 \\
C_{12} & C_{11} & 0 \\
0 & 0 & C_{44}
\end{bmatrix}
\begin{bmatrix}
\epsilon_{xx} \\
\epsilon_{yy} \\
\gamma_{xy}
\end{bmatrix}
+ \begin{bmatrix}
0 & 0 & C_{12} \\
0 & 0 & 0 \\
C_{12} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\gamma_{xxy} \\
\gamma_{yxy} \\
\epsilon_{zz}
\end{bmatrix}
\]

\[(12)\]

The computation of the elastic constants \(C_{ij}\) depends on which assumption of \(\epsilon_{zz}\) we consider. If \(\epsilon_{zz} = 0\), then \(C_{ij}\) are the plane-stress reduced elastic constants:

\[
C_{11} = \frac{E}{1 - \nu^2}; \quad C_{12} = \nu \frac{E}{1 - \nu^2}; \quad C_{44} = G; \quad C_{33} = 0
\]

where \(E\) is the modulus of elasticity, \(\nu\) is the Poisson’s ratio, and \(G\) is the shear modulus \(G = \frac{E}{2(1+\nu)}\).

If \(\epsilon_{zz} \neq 0\) (thickness stretching), then the elastic coefficients \(C_{ij}\) are those of the three-dimensional stress state, given by

\[
\begin{align*}
C_{11} &= \frac{E(1 - \nu^2)}{1 - 3\nu^2 - 2\nu^3}; \quad C_{12} = \frac{E(\nu + \nu^2)}{1 - 3\nu^2 - 2\nu^3} \\
C_{44} &= G, \quad C_{33} = \frac{E(1 - \nu^2)}{1 - 3\nu^2 - 2\nu^3}
\end{align*}
\]

3.4 Governing equations and boundary conditions

The governing equations of present theory are derived from the dynamic version of the Principle of Virtual Displacements. The internal virtual work is

\[
\delta U = \int_{h/2}^{h/2} \int_{h/2}^{h/2} \left[ \sigma_{xx} \left( \delta\epsilon_{xx} + z\delta\epsilon_{xz} + \sinh \left( \frac{\pi z}{h} \right) \delta\epsilon_{xxz} \right) + \sigma_{yy} \left( \delta\epsilon_{yy} + z\delta\epsilon_{yz} + \sinh \left( \frac{\pi z}{h} \right) \delta\epsilon_{yyz} \right) \\
+ \sigma_{xy} \left( \delta\gamma_{xy} + z\delta\gamma_{xz} + \sinh \left( \frac{\pi z}{h} \right) \delta\gamma_{xzy} \right) + \sigma_{xz} \left( \delta\gamma_{xxz} + z\delta\gamma_{xzz} + \frac{\pi}{h} \cosh \left( \frac{\pi z}{h} \right) \delta\gamma_{xxxz} \right) \\
+ \sigma_{yz} \left( \delta\gamma_{yx} + z\delta\gamma_{yz} + z^2\delta\gamma_{yzz} + \frac{\pi}{h} \cosh \left( \frac{\pi z}{h} \right) \delta\gamma_{yzy} \right) + \sigma_{sz} \left( \delta\epsilon_{sx} + z\delta\epsilon_{sz} \right) \right] dz \, dx \, dy
\]

\[(16)\]
\[ \delta U = \int_{\Omega_0} \left( N_{xx} \delta e_x^{(0)} + M_{xx} \delta e_x^{(1)} + R_x^Z \delta e_x^{(Z)} + N_{yy} \delta e_y^{(0)} + M_{yy} \delta e_y^{(1)} + R_y^Z \delta e_y^{(Z)} + N_{xy} \delta e_{xy}^{(1)} + R_{xy}^Z \delta e_{xy}^{(Z)} + N_{yy} \delta e_y^{(1)} + R_{yy}^Z \delta e_y^{(Z)} \right. \]

\[ \left. + Q_{xx} \delta \gamma_{xx}^{(0)} + M_{xx} \delta \gamma_{xx}^{(1)} + R_{xx} \delta \gamma_{xx}^{(Z)} + Q_{xx} \delta \gamma_{xx}^{(0)} + M_{xx} \delta \gamma_{xx}^{(1)} + R_{xx} \delta \gamma_{xx}^{(Z)} + Q_{xy} \delta \gamma_{xy}^{(0)} + M_{xy} \delta \gamma_{xy}^{(1)} + R_{xy} \delta \gamma_{xy}^{(Z)} + Q_{yy} \delta \gamma_{yy}^{(0)} + M_{yy} \delta \gamma_{yy}^{(1)} + R_{yy} \delta \gamma_{yy}^{(Z)} \right) dx \ dy \]

where \( \Omega_0 \) is the integration domain on plane \((x, y)\) and

\[ \begin{cases} N_{xx} \\ N_{yy} \\ N_{xy} \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases} dz, \quad \begin{cases} Q_{xx} \\ Q_{yy} \\ Q_{xy} \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \sigma_{xz} \\ \sigma_{yz} \\ \sigma_{zz} \end{cases} dz \]

\[ \begin{cases} M_{xx} \\ M_{yy} \\ M_{xy} \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases} dz, \quad \begin{cases} M_{xz} \\ M_{yz} \\ M_{zz} \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \sigma_{xz} \\ \sigma_{yz} \\ \sigma_{zz} \end{cases} dz \]

\[ \begin{cases} R_x^Z \\ R_y^Z \\ R_{xy}^Z \end{cases} = \int_{-h/2}^{h/2} \sinh \left( \frac{\pi z}{h} \right) \begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases} dz, \quad \begin{cases} R_x^Z \\ R_y^Z \\ R_{xy}^Z \end{cases} = \int_{-h/2}^{h/2} \cosh \left( \frac{\pi z}{h} \right) \begin{cases} \sigma_{xz} \\ \sigma_{yz} \\ \sigma_{zz} \end{cases} dz \]

\[ \begin{cases} R_x^2 \\ R_y^2 \\ R_{xy}^2 \end{cases} = \int_{-h/2}^{h/2} z^2 \begin{cases} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{cases} dz. \]

The external virtual work due to external loads applied to the plate is given as:

\[ \delta V = -\int_{\Omega_0} \left( p_x \delta u + p_y \delta v + p_z \delta w \right) dx \ dy \]

\[ = -\int_{\Omega_0} \left( p_x \left( \delta u_0 + z \delta u_1 + \sinh \left( \frac{\pi z}{h} \right) \delta u_Z \right) + p_y \left( \delta v_0 + z \delta v_1 + \sinh \left( \frac{\pi z}{h} \right) \delta v_Z \right) 
\]

\[ + p_z \left( \delta w_0 + z \delta w_1 + z^2 \delta w_2 \right) \right) dx \ dy \]

(22)

The external virtual work due to in-plane forces and shear forces applied to the plate is given as:

\[ \delta V = -\int_{\Omega_0} \left[ N_{xx} \frac{\partial \delta w_0}{\partial x} \frac{\partial w_0}{\partial x} + N_{yy} \frac{\partial \delta w_0}{\partial y} \frac{\partial w_0}{\partial y} + N_{xx} \frac{\partial \delta w_1}{\partial x} \frac{\partial w_1}{\partial x} + N_{yy} \frac{\partial \delta w_1}{\partial y} \frac{\partial w_1}{\partial y} \right] dx \ dy \]

(23)
being $\bar{N}_{xx}$ and $\bar{N}_{yy}$ the in-plane loads perpendicular to the edges $x = 0$ and $y = 0$ respectively, and $\bar{N}_{xy}$ and $\bar{N}_{yx}$ the distributed shear forces parallel to the edges $x = 0$ and $y = 0$ respectively.

The virtual kinetic energy is given as:

$$
\delta K = \int_{\Omega_0} \left\{ \int_{-h/2}^{h/2} \rho \left( \dot{u}\delta \dot{u} + \dot{v}\delta \dot{v} + \dot{w}\delta \dot{w} \right) dz \right\} dx dy
$$

$$
= \int_{\Omega_0} \left[ I_0 (\dot{u}_0 \delta \dot{u}_0 + \dot{v}_0 \delta \dot{v}_0 + \dot{w}_0 \delta \dot{w}_0) \\
+ I_1 (\dot{u}_1 \delta \dot{u}_1 + \dot{v}_1 \delta \dot{v}_1 + \dot{w}_0 \delta \dot{w}_1 + \dot{w}_1 \delta \dot{w}_0) \\
+ I_2 (\dot{u}_1 \delta \dot{u}_1 + \dot{v}_1 \delta \dot{v}_1 + \dot{w}_0 \delta \dot{w}_2 + \dot{w}_2 \delta \dot{w}_0) \\
+ I_3 (\dot{u}_1 \delta \dot{u}_1 + \dot{v}_1 \delta \dot{v}_1 + \dot{w}_1 \delta \dot{w}_1 + \dot{w}_2 \delta \dot{w}_2) \\
+ I_5 (\dot{u}_z \delta \dot{u}_z + \dot{v}_z \delta \dot{v}_z + \dot{v}_0 \delta \dot{v}_z + \dot{v}_z \delta \dot{v}_0) \\
+ I_6 (\dot{u}_z \delta \dot{u}_z + \dot{v}_z \delta \dot{v}_z) \\
+ I_7 (\dot{u}_1 \delta \dot{u}_1 + \dot{v}_z \delta \dot{v}_1 + \dot{v}_1 \delta \dot{v}_z) \right] dx dy
$$

(24)

where the dots denote the derivative with respect to time $t$ and the inertia terms are defined as

$$
I_i = \int_{-h/2}^{h/2} \rho z^i dz \quad i = 0, 1, 2, 3, 4
$$

(25)

$$
I_5 = \int_{-h/2}^{h/2} \rho \sinh \left( \frac{\pi z}{h} \right) dz; \quad I_6 = \int_{-h/2}^{h/2} \rho \sinh^2 \left( \frac{\pi z}{h} \right) dz; \quad I_7 = \int_{-h/2}^{h/2} \rho z \sinh \left( \frac{\pi z}{h} \right) dz
$$

(26)

Substituting $\delta U$, $\delta V$, and $\delta K$ in the virtual work statement, integrating by parts with respect to $x$, $y$, and $t$ and collecting the coefficients of $\delta u_0$, $\delta u_1$, $\delta u_z$, $\delta v_0$, $\delta v_1$, $\delta v_z$, ...
The mechanical boundary conditions are:

\[ (27) \]
Table 1: Convergence study for the uni-axial buckling load of a simply supported 2-2-1 sandwich square plate with FGM skins and $p = 5$ case using the higher-order theory.

<table>
<thead>
<tr>
<th>grid</th>
<th>$13^2$</th>
<th>$17^2$</th>
<th>$21^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P$</td>
<td>4.05112</td>
<td>4.05070</td>
<td>4.05065</td>
</tr>
</tbody>
</table>

where $(n_x, n_y)$ denotes the unit normal-to-boundary vector.

\[
\begin{align*}
\delta u_0 : n_x N_{xx} + n_y N_{xy} &= n_x \bar{N}_{xx} + n_y \bar{N}_{xy} \\
\delta v_0 : n_x N_{xy} + n_y N_{yy} &= n_x \bar{N}_{xy} + n_y \bar{N}_{yy} \\
\delta w_0 : n_x Q_{xz} + n_y Q_{yz} &= n_x \bar{Q}_{xz} + n_y \bar{Q}_{yz} \\
\delta u_1 : n_x M_{xx} + n_y M_{xy} &= n_x \bar{M}_{xx} + n_y \bar{M}_{xy} \\
\delta v_1 : n_x M_{xy} + n_y M_{yy} &= n_x \bar{M}_{xy} + n_y \bar{M}_{yy} \\
\delta w_1 : n_x M_{xz} + n_y M_{yz} &= n_x \bar{M}_{xz} + n_y \bar{M}_{yz} \\
\delta u_Z : n_x R_{xz}^Z + n_y R_{xy}^Z &= n_x \bar{R}_{xz}^Z + n_y \bar{R}_{xy}^Z \\
\delta v_Z : n_x R_{xy}^Z + n_y R_{yy}^Z &= n_x \bar{R}_{xy}^Z + n_y \bar{R}_{yy}^Z \\
\delta w_2 : n_x R_{xz}^2 + n_y R_{yz}^2 &= n_x \bar{R}_{xz}^2 + n_y \bar{R}_{yz}^2
\end{align*}
\]

(28)

4 Numerical examples

The higher-order plate theory and collocation with RBFs are considered for the uni-axial and bi-axial buckling analysis of simply supported functionally graded sandwich square plates ($a = b$) of type $C$ with side-to-thickness ratio $a/h = 10$.

The material properties considered are $E_m = 70E_0$ (aluminum) for the metal and $E_c = 380E_0$ (alumina) for the ceramic being $E_0 = 1$GPa. The non-dimensional parameter used is

$$\bar{P} = \frac{Pa^2}{100h^3E_0}.$$  

An initial convergence study with the higher-order theory was conducted for each buckling load type using $13^2$, $17^2$, and $21^2$ grids. In table 1 the uniaxial case is shown for the 2-2-1 sandwich with $p = 5$ and in table 2 the bi-axial case is presented for the 1-2-1 sandwich with $p = 1$. In the following, results are obtained by considering a grid of $17^2$ points, which seems acceptable by the convergence study.

In tables 3 and 4 the critical buckling loads obtained from the present approach with $\epsilon_{zz} \neq 0$ and $\epsilon_{zz} = 0$ are tabulated for various power-law exponents $p$ and thickness ratios. Both tables include results obtained from classical plate theory (CLPT), first-order shear deformation plate theory (FSDPT, $K = 5/6$ as shear correction factor), Reddy’s higher-order shear deformation plate theory (TSDPT) [16], and Zenkour’s
Table 2: Convergence study for the bi-axial buckling load of a simply supported 1-2-1 sandwich square plate with FGM skins and $p = 1$ case using the higher-order theory.

<table>
<thead>
<tr>
<th>grid</th>
<th>$13^2$</th>
<th>$17^2$</th>
<th>$21^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P$</td>
<td>3.66028</td>
<td>3.65998</td>
<td>3.65994</td>
</tr>
</tbody>
</table>

Table 2: Convergence study for the bi-axial buckling load of a simply supported 1-2-1 sandwich square plate with FGM skins and $p = 1$ case using the higher-order theory.

sinusoidal shear deformation plate theory (SSDPT) [5]. Table 3 refers to the uni-axial buckling load and table 4 refers to the bi-axial buckling load.

A good agreement between the present solution and references considered, specially [16] and [5] is obtained. This allow us to conclude that the present higher-order plate theory is good for the modeling of simply supported sandwich FGM plates and that collocation with RBFs is a good formulation. Present results with $\epsilon_{zz} = 0$ approximates better references [16] and [5] than $\epsilon_{zz} \neq 0$ as the authors use the $\epsilon_{zz} = 0$ approach. This study also lead us to conclude that the thickness stretching effect has a strong influence on the buckling analysis of sandwich FGM plates as $\epsilon_{zz} = 0$ gives higher fundamental buckling loads than $\epsilon_{zz} \neq 0$.

The isotropic fully ceramic plate (first line on tables 3 and 4) has the higher fundamental buckling loads. As the core thickness to the total thickness of the plate ratio $(h_2 - h_1)/h$ increases the buckling loads increase as well. We may conclude that the critical buckling loads decrease as the power-law exponent $p$ increases. By comparing tables 3 and 4 we also conclude that the bi-axial buckling load of simply supported sandwich square plate with FGM skins is half the uni-axial one for the same plate.

In figure 4 the first four buckling modes of a simply supported 2-1-2 sandwich square plate with FGM skins, $p = 0.5$, subjected to a uni-axial in-plane compressive load, using the higher-order plate theory and $17^2$ grid is presented. Figure 5 presents the first four buckling modes of a simply supported 2-1-1 sandwich square plate with FGM skins, $p = 10$, subjected to a bi-axial in-plane compressive load.

5 Conclusions

An application of a Unified formulation by a meshless discretization is proposed, based on a thickness-stretching hyperbolic sine shear deformation theory that was implemented for the buckling analysis of functionally graded sandwich plates.

The present formulation was compared with analytical, meshless or finite element methods and showed very accurate results. The effect of $\epsilon_{zz} \neq 0$ showed to be significant in such sandwich problems.

Acknowledgments

Ana M. A. Neves acknowledges support from FCT grant SFRH/BD/45554/2008.
Table 3: Uni-axial buckling load of simply supported plate of C-type using the higher-order theory and a grid with $17^2$ points.

<table>
<thead>
<tr>
<th>$p$</th>
<th>Theory</th>
<th>$\bar{P}$</th>
<th>1-0-1</th>
<th>2-1-2</th>
<th>2-1-1</th>
<th>1-1-1</th>
<th>2-2-1</th>
<th>1-2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>present $\epsilon_{zz} = 0$</td>
<td>7.65398</td>
<td>8.25597</td>
<td>8.56223</td>
<td>8.78063</td>
<td>9.18254</td>
<td>9.61525</td>
<td>9.61525</td>
</tr>
<tr>
<td>0.5</td>
<td>CLPT</td>
<td>7.33732</td>
<td>7.91320</td>
<td>8.20015</td>
<td>8.41034</td>
<td>8.78673</td>
<td>9.19517</td>
<td>9.19517</td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} \neq 0$</td>
<td>7.18728</td>
<td>7.74326</td>
<td>8.01701</td>
<td>8.22133</td>
<td>8.58129</td>
<td>8.97310</td>
<td>8.97310</td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} = 0$</td>
<td>5.33248</td>
<td>6.02733</td>
<td>6.40391</td>
<td>6.68150</td>
<td>7.19663</td>
<td>7.78406</td>
<td>7.78406</td>
</tr>
<tr>
<td>1</td>
<td>CLPT</td>
<td>5.14236</td>
<td>5.81379</td>
<td>6.17020</td>
<td>6.43892</td>
<td>6.92571</td>
<td>7.48365</td>
<td>7.48365</td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} \neq 0$</td>
<td>5.07848</td>
<td>5.73022</td>
<td>6.07358</td>
<td>6.33556</td>
<td>6.80547</td>
<td>7.34367</td>
<td>7.34367</td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} = 0$</td>
<td>2.73080</td>
<td>3.10704</td>
<td>3.48418</td>
<td>3.65732</td>
<td>4.21238</td>
<td>4.85717</td>
<td>4.85717</td>
</tr>
<tr>
<td>5</td>
<td>CLPT</td>
<td>2.63842</td>
<td>3.02252</td>
<td>3.38538</td>
<td>3.55958</td>
<td>4.09285</td>
<td>4.71475</td>
<td>4.71475</td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} \neq 0$</td>
<td>2.64681</td>
<td>3.01865</td>
<td>3.37196</td>
<td>3.54148</td>
<td>4.06163</td>
<td>4.66059</td>
<td>4.66059</td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} = 0$</td>
<td>2.56985</td>
<td>2.80340</td>
<td>3.16427</td>
<td>3.25924</td>
<td>3.79238</td>
<td>4.38221</td>
<td>4.38221</td>
</tr>
<tr>
<td>10</td>
<td>CLPT</td>
<td>2.46904</td>
<td>2.72626</td>
<td>3.07428</td>
<td>3.17521</td>
<td>3.68890</td>
<td>4.26040</td>
<td>4.26040</td>
</tr>
<tr>
<td></td>
<td>FSDPT</td>
<td>2.48727</td>
<td>2.74632</td>
<td>3.09190</td>
<td>3.19471</td>
<td>3.70752</td>
<td>4.27991</td>
<td>4.27991</td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} \neq 0$</td>
<td>2.48219</td>
<td>2.73080</td>
<td>3.06943</td>
<td>3.16837</td>
<td>3.67153</td>
<td>4.21792</td>
<td>4.21792</td>
</tr>
<tr>
<td>$p$</td>
<td>Theory</td>
<td>$\bar{P}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-0-1</td>
<td>2-1-2</td>
<td>2-1-1</td>
<td>1-1-1</td>
<td>2-2-1</td>
<td>1-2-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} \neq 0$</td>
<td>6.47643</td>
<td>6.47643</td>
<td>6.47643</td>
<td>6.47643</td>
<td>6.47643</td>
<td>6.47643</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} = 0$</td>
<td>6.50254</td>
<td>6.50254</td>
<td>6.50254</td>
<td>6.50254</td>
<td>6.50254</td>
<td>6.50254</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>CLPT</td>
<td>3.82699</td>
<td>4.12798</td>
<td>4.28112</td>
<td>4.39032</td>
<td>4.59127</td>
<td>4.80762</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSDPT</td>
<td>3.66866</td>
<td>3.95660</td>
<td>4.10007</td>
<td>4.20517</td>
<td>4.39336</td>
<td>4.59758</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} \neq 0$</td>
<td>3.58104</td>
<td>3.85813</td>
<td>3.99478</td>
<td>4.09639</td>
<td>4.27586</td>
<td>4.47095</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} = 0$</td>
<td>3.59364</td>
<td>3.87163</td>
<td>4.00851</td>
<td>4.11067</td>
<td>4.29064</td>
<td>4.48655</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CLPT</td>
<td>2.66624</td>
<td>3.01366</td>
<td>3.20195</td>
<td>3.34075</td>
<td>3.59831</td>
<td>3.89203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSDPT</td>
<td>2.57118</td>
<td>2.90690</td>
<td>3.08510</td>
<td>3.21946</td>
<td>3.46286</td>
<td>3.74182</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} \neq 0$</td>
<td>2.53069</td>
<td>2.85568</td>
<td>3.02733</td>
<td>3.15750</td>
<td>3.39202</td>
<td>3.65998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} = 0$</td>
<td>2.53924</td>
<td>2.86511</td>
<td>3.03679</td>
<td>3.16778</td>
<td>3.40274</td>
<td>3.67183</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CLPT</td>
<td>1.36540</td>
<td>1.55352</td>
<td>1.74209</td>
<td>1.82866</td>
<td>2.10619</td>
<td>2.42859</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSDPT</td>
<td>1.31921</td>
<td>1.51126</td>
<td>1.69269</td>
<td>1.77979</td>
<td>2.04642</td>
<td>2.35737</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TSDPT [16]</td>
<td>1.32910</td>
<td>1.52129</td>
<td>1.70176</td>
<td>1.78978</td>
<td>2.05605</td>
<td>2.36734</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} \neq 0$</td>
<td>1.31826</td>
<td>1.50395</td>
<td>1.68128</td>
<td>1.76502</td>
<td>2.02535</td>
<td>2.32351</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} = 0$</td>
<td>1.32340</td>
<td>1.50933</td>
<td>1.68598</td>
<td>1.77074</td>
<td>2.03081</td>
<td>2.33029</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CLPT</td>
<td>1.28493</td>
<td>1.40170</td>
<td>1.58214</td>
<td>1.62962</td>
<td>1.89619</td>
<td>2.19111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSDPT</td>
<td>1.23452</td>
<td>1.36313</td>
<td>1.53714</td>
<td>1.58760</td>
<td>1.84445</td>
<td>2.13020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TSDPT [16]</td>
<td>1.24363</td>
<td>1.37316</td>
<td>1.54895</td>
<td>1.59736</td>
<td>1.85376</td>
<td>2.13995</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} \neq 0$</td>
<td>1.23608</td>
<td>1.36023</td>
<td>1.53034</td>
<td>1.57880</td>
<td>1.83083</td>
<td>2.10275</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present $\epsilon_{zz} = 0$</td>
<td>1.24109</td>
<td>1.36540</td>
<td>1.53472</td>
<td>1.58419</td>
<td>1.83576</td>
<td>2.10896</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Bi-axial buckling load of simply supported plate of $C$-type using the higher-order theory and a grid with $17^2$ points.
Figure 4: First four buckling modes. Uni-axial buckling load of a simply supported 2-1-2 plate C-type, \( p = 0.5 \), a 17\(^2\) points grid, and using the higher-order theory.

Figure 5: First four buckling modes. Bi-axial buckling load of a simply supported 2-1-1 plate C-type, \( p = 10 \), a 17\(^2\) points grid, and using the higher-order theory.
References


