
Abstract

A hyperbolic sine shear deformation theory is used for the buckling analysis of func-

tionally graded plates, accounting for through-the-thickness deformations. The lin-

earized buckling equations and boundary conditions are derived using Carrera’s Uni-

fied Formulation and further interpolated by collocation with radial basis functions.

Numerical results demonstrate the accuracy of the present approach.

Keywords: plates and shells, collocation, meshless methods, functionally graded

plates.

1 Introduction

A conventional functionally graded plate (FGM) considers a continuous variation of

material properties over the thickness direction by mixing two different materials

[1]. The material properties of the FGM plate are assumed to change continuously

throughout the thickness of the plate, according to the volume fraction of the con-

stituent materials. Analysis of vibrations of FGM plates can be found in Batra and

Jin [2], Ferreira et al. [3], Vel and Batra [4], Zenkour [5], and Cheng and Batra [6].

The analysis of mechanical buckling of FGM structures is less common in the liter-

ature. It can be found in Najafizadeh and Eslami [7], Zenkour [5], Cheng and Batra

[6], Birman [8], Javaheri and Eslami [9].

Typically, the analysis of FGM plates is performed using the clasical plate the-

ory (CPT) [10, 11], the first-order shear deformation theory (FSDT) [12, 2, 3, 13]

or higher-order shear deformation theories (HSDT) [14, 15, 3, 16, 13]. The FSDT

gives acceptable results but depends on the shear correction factor which is hard to

find as it depends on many parameters. There is no need of a shear correction fac-

tor when using a HSDT but linearized buckling equations are more complicated than
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those of the FSDT. The Unified Formulation proposed by Carrera [17, 18] made the

implementation of such theories easier.

The use of alternative-to-Finite element methods for the analysis of plates, such as

the meshless methods based on collocation with radial basis functions is atractive due

to the absence of a mesh and the ease of collocation methods. In recent years, radial

basis functions (RBFs) showed excellent accuracy in the interpolation of data and

functions. Kansa [19] introduced the concept of solving partial differential equations

by an unsymmetric RBF collocation method based upon the multiquadric interpolation

functions. The authors have applied successfully the RBF collocation technique to the

static and dynamic analysis of composite structures [20, 21, 22, 23, 24, 25, 26, 27,

28, 29]. The present paper considers the thickness stretching issue on the buckling

analysis of FGM plates, by a meshless technique based on collocation with radial

basis functions.

2 Problem formulation

The problem consists of a rectangular sandwich plate of plan-form dimensions a and

b and uniform thickness h. The co-ordinate system is taken such that the x-y plane

coincides with the midplane of the plate (z ∈ [−h/2, h/2]). The sandwich core is

a ceramic material and skins are composed of a functionally graded material across

the thickness direction. The bottom skin varies from a metal-rich surface (z = h0 =
−h/2) to a ceramic-rich surface while the top skin face varies from a ceramic-rich

surface to a metal-rich surface (z = h3 = h/2) as illustrated in figure 1. The volume

fraction of the ceramic phase is obtained from a simple rule of mixtures as:

Vc =

(

z − h0

h1 − h0

)p

, z ∈ [h0, h1]

Vc = 1, z ∈ [h1, h2] (1)

Vc =

(

z − h3

h2 − h3

)p

, z ∈ [h2, h3]

where p is a scalar parameter that allows the user to define the gradation of material

properties across the thickness direction of the skins. With this formulation the inter-

faces between core and skins disappear. Note that the core of the present sandwich and

any isotropic material can be obtained as a particular case of the power-law function

by setting p = 0. The volume fraction for the metal phase is given as Vm = 1−Vc. The

sandwich may be symmetric or non-symmetric about the mid-plane as we may vary

the thickness of each face. Figure 2 shows a non-symmetric sandwich with volume

fraction defined by the power-law (1) for various exponents p, in which top skin thick-

ness is the same as the core thickness and the bottom skin thickness is twice the core

thickness. Such thickness relation is denoted as 2-1-1. A bottom-core-top notation is

used. 1-1-1 means that skins and core have the same thickness.

The sandwich plate is subjected to compressive in-plane forces acting on the mid-

plane of the plate. N̄xx and N̄yy denote the in-plane loads perpendicular to the edges
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Figure 1: Sandwich with isotropic core and FGM skins.
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Figure 2: Illustration of a 2-1-1 sandwich with FGM skins for several volume frac-

tions.
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Figure 3: Rectangular plate subjected to in-plane forces.

x = 0 and y = 0 respectively, and N̄xy denotes the distributed shear force parallel to

the edges x = 0 and y = 0 respectively (see fig. 3).

3 A quasi-3D hyperbolic sine plate shear deformation

theory

3.1 Displacement field

The present theory is based on the following displacement field:

u(x, y, z, t) = u0(x, y, t) + zu1(x, y, t) + sinh
(πz

h

)

uZ(x, y, t) (2)

v(x, y, z, t) = v0(x, y, t) + zv1(x, y, t) + sinh
(πz

h

)

vZ(x, y, t) (3)

w(x, y, z, t) = w0(x, y, t) + zw1(x, y, t) + z2w2(x, y, t) (4)

where u, v, and w are the displacements in the x−, y−, and z− directions, respec-

tively. u0, u1, uZ , v0, v1, vZ , w0, w1, and w2 are the unknowns to be determined. A

constant term is assumed for the transverse displacement component instead of (4)

(w = w0) to investigate the effect of the thickness stretching on the buckling load.
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3.2 Strains

The strains can be related to the displacement field as:







ǫxx

ǫyy

γxy







=















∂u
∂x

+ 1
2

(

∂w0

∂x

)2

∂v
∂y

+ 1
2

(

∂w0

∂y

)2

∂u
∂y

+ ∂v
∂x

+ ∂w0

∂x
∂w0

∂y















,







γxz

γyz

ǫzz







=







∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y

∂w
∂z







(5)

By substitution of the displacement field in (5), the strains are obtained:







ǫxx

ǫyy

γxy







=











ǫ
(0)
xx

ǫ
(0)
yy

γ
(0)
xy











+











ǫ
(nl)
xx

ǫ
(nl)
yy

γ
(nl)
xy











+ z











ǫ
(1)
xx

ǫ
(1)
yy

γ
(1)
xy











+ sinh
(πz

h

)











ǫ
(Z)
xx

ǫ
(Z)
yy

γ
(Z)
xy











(6)







γxz

γyz

ǫzz







=











γ
(0)
xz

γ
(0)
yz

ǫ
(0)
zz











+z











γ
(1)
xz

γ
(1)
yz

ǫ
(1)
zz











+z2











γ
(2)
xz

γ
(2)
yz

ǫ
(2)
zz











+
π

h
cosh

(πz

h

)











γ
(Z)
xz

γ
(Z)
yz

ǫ
(Z)
zz











(7)

being the strain components obtained as











ǫ
(0)
xx

ǫ
(0)
yy

γ
(0)
xy











=







∂u0

∂x
∂v0

∂y
∂u0

∂y
+ ∂v0

∂x







;











ǫ
(nl)
xx

ǫ
(nl)
yy

γ
(nl)
xy











=















1
2

(

∂w0

∂x

)2

1
2

(

∂w0

∂y

)2

∂w0

∂x
∂w0

∂y















(8)











ǫ
(1)
xx

ǫ
(1)
yy

γ
(1)
xy











=







∂u1

∂x
∂v1

∂y
∂u1

∂y
+ ∂v1

∂x







;











ǫ
(Z)
xx

ǫ
(Z)
yy

γ
(Z)
xy











=







∂uZ

∂x
∂vZ

∂y
∂uZ

∂y
+ ∂vZ

∂x







(9)











γ
(0)
xz

γ
(0)
yz

ǫ
(0)
zz











=







u1 + ∂w0

∂x

v1 + ∂w0

∂y

w1







;











γ
(1)
xz

γ
(1)
yz

ǫ
(1)
zz











=







∂w1

∂x
∂w1

∂y

2w2







(10)











γ
(2)
xz

γ
(2)
yz

ǫ
(2)
zz











=







∂w2

∂x
∂w2

∂y

0







;











γ
(Z)
xz

γ
(Z)
yz

ǫ
(Z)
zz











=







uZ

vZ

0







(11)

where ǫ
(nl)
αβ are the non-linear terms that will originate the linearized buckling equa-

tions.
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3.3 Elastic stress-strain relations

In the case of isotropic functionally graded materials, the 3D constitutive equations

can be written as:







σxx

σyy

τxy







=





C11 C12 0
C12 C11 0
0 0 C44











ǫxx

ǫyy

γxy







+





0 0 C12

0 0 C12

0 0 0











γxz

γyz

ǫzz













τxz

τyz

σzz







=





0 0 0
0 0 0

C12 C12 0











ǫxx

ǫyy

γxy







+





C44 0 0
0 C44 0
0 0 C33











γxz

γyz

ǫzz







(12)

The computation of the elastic constants Cij depends on which assumption of ǫzz

we consider. If ǫzz = 0, then Cij are the plane-stress reduced elastic constants:

C11 =
E

1 − ν2
; C12 = ν

E

1 − ν2
; C44 = G; C33 = 0 (13)

where E is the modulus of elasticity, ν is the Poisson’s ratio, and G is the shear

modulus G = E
2(1+ν)

.

If ǫzz 6= 0 (thickness stretching), then the elastic coefficients Cij are those of the

three-dimensional stress state, given by

C11 =
E(1 − ν2)

1 − 3ν2 − 2ν3
, C12 =

E(ν + ν2)

1 − 3ν2 − 2ν3
(14)

C44 = G, C33 =
E(1 − ν2)

1 − 3ν2 − 2ν3
(15)

3.4 Governing equations and boundary conditions

The governing equations of present theory are derived from the dynamic version of

the Principle of Virtual Displacements. The internal virtual work is

δU =

∫

Ω0

{

h/2
∫

−h/2

[

σxx

(

δǫ(0)xx + zδǫ(1)xx + sinh

(πz

h

)

δǫ(Z)
xx

)

+ σyy

(

δǫ(0)yy + zδǫ(1)yy + sinh

(πz

h

)

δǫ(Z)
yy

)

+ σxy

(

δγ(0)
xy + zδγ(1)

xy + sinh

(πz

h

)

δγ(Z)
xy

)

+ σxz

(

δγ(0)
xz + zδγ(1)

xz + z2δγ(2)
xz +

π

h
cosh

(πz

h

)

δγ(Z)
xz

)

+ σyz

(

δγ(0)
yz + zδγ(1)

yz + z2δγ(2)
yz +

π

h
cosh

(πz

h

)

δγ(Z)
yz

)

+ σzz

(

δǫ(0)zz + zδǫ(1)zz

)

]

dz

}

dx dy

(16)
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δU =

∫

Ω0

(

Nxxδǫ
(0)
xx + Mxxδǫ

(1)
xx + RZ

xxδǫ
(Z)
xx + Nyyδǫ

(0)
yy + Myyδǫ

(1)
yy + RZ

yyδǫ
(Z)
yy

+ Nxyδγ
(0)
xy + Mxyδγ

(1)
xy + RZ

xyδγ
(Z)
xy + Qxzδγ

(0)
xz + Mxzδγ

(1)
xz + R2

xzδγ
(2)
xz + RZ

xzδγ
(Z)
xz

+ Qyzδγ
(0)
yz + Myzδγ

(1)
yz + R2

yzδγ
(2)
yz + RZ

yzδγ
(Z)
yz + Qzzδǫ

(0)
zz + Mzzδǫ

(1)
zz

)

dx dy

(17)

where Ω0 is the integration domain on plane (x, y) and







Nxx

Nyy

Nxy







=

h/2
∫

−h/2







σxx

σyy

σxy







dz,







Qxz

Qyz

Qzz







=

h/2
∫

−h/2







σxz

σyz

σzz







dz (18)







Mxx

Myy

Mxy







=

h/2
∫

−h/2

z







σxx

σyy

σxy







dz,







Mxz

Myz

Mzz







=

h/2
∫

−h/2

z







σxz

σyz

σzz







dz (19)







RZ
xx

RZ
yy

RZ
xy







=

h/2
∫

−h/2

sinh
(πz

h

)







σxx

σyy

σxy







dz,

{

RZ
xz

RZ
yz

}

=

h/2
∫

−h/2

π

h
cosh

(πz

h

)

{

σxz

σyz

}

dz

(20)

{

R2
xz

R2
yz

}

=

h/2
∫

−h/2

z2

{

σxz

σyz

}

dz. (21)

The external virtual work due to external loads applied to the plate is given as:

δV = −

∫

Ω0

(pxδu + pyδv + pzδw) dx dy

= −

∫

Ω0

(

px

(

δu0 + zδu1 + sinh
(πz

h

)

δuZ

)

+ py

(

δv0 + zδv1 + sinh
(πz

h

)

δvZ

)

+ pz

(

δw0 + zδw1 + z2δw2

)

)

dx dy

(22)

The external virtual work due to in-plane forces and shear forces applied to the

plate is given as:

δV = −

∫

Ω0

[

N̄xx
∂w0

∂x

δ∂w0

∂x
+ N̄xy

∂w0

∂y

δ∂w0

∂x
+ N̄yx

∂w0

∂x

δ∂w0

∂y
+ N̄yy

∂w0

∂y

δ∂w0

∂y

]

dx dy

(23)
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being N̄xx and N̄yy the in-plane loads perpendicular to the edges x = 0 and y = 0
respectively, and N̄xy and N̄yx the distributed shear forces parallel to the edges x = 0
and y = 0 respectively.

The virtual kinetic energy is given as:

δK =

∫

Ω0











h/2
∫

−h/2

ρ (u̇δu̇ + v̇δv̇ + ẇδẇ) dz











dx dy

=

∫

Ω0

[

I0 (u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0)

+ I1 (u̇0δu̇1 + u̇1δu̇0 + v̇0δv̇1 + v̇1δv̇0 + ẇ0δẇ1 + ẇ1δẇ0)

+ I2 (u̇1δu̇1 + v̇1δv̇1 + ẇ0δẇ2 + ẇ1δẇ1 + ẇ2δẇ0)

+ I3 (ẇ1δẇ2 + ẇ2δẇ1) + I4ẇ2δẇ2

+ I5 (u̇0δu̇Z + u̇Zδu̇0 + v̇0δv̇Z + v̇Zδv̇0)

+ I6 (u̇Zδu̇Z + v̇Zδv̇Z)

+ I7 (u̇1δu̇Z + u̇Zδu̇1 + v̇Zδv̇1 + v̇1δv̇Z)
]

dx dy

(24)

where the dots denote the derivative with respect to time t and the inertia terms are

defined as

Ii =

h/2
∫

−h/2

ρzidz i = 0, 1, 2, 3, 4 (25)

I5 =

h/2
∫

−h/2

ρ sinh
(πz

h

)

dz; I6 =

h/2
∫

−h/2

ρ sinh2
(πz

h

)

dz; I7 =

h/2
∫

−h/2

ρz sinh
(πz

h

)

dz

(26)

Substituting δU , δV , and δK in the virtual work statement, integrating by parts with

respect to x, y, and t and collecting the coefficients of δu0, δu1, δuZ , δv0, δv1, δvZ ,
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δw0, δw1, δw2, the following governing equations are obtained:

δu0 : −
∂Nxx

∂x
−

∂Nxy

∂y
=

h/2
∫

−h/2

{

ρ
(

ü0 + zü1 + sinh
(πz

h

)

üZ

)

+ px

}

dz

δv0 : −
∂Nxy

∂x
−

∂Nyy

∂y
=

h/2
∫

−h/2

{

ρ
(

v̈0 + zv̈1 + sinh
(πz

h

)

v̈Z

)

+ py

}

dz

δw0 : −
∂Qxz

∂x
−

∂Qyz

∂y
+ N̄xx

∂2w0

∂x2
+ N̄xy

∂2w0

∂y∂x
+ N̄yx

∂2w0

∂x∂y

+ N̄yy
∂2w0

∂y2
=

h/2
∫

−h/2

{

ρ
(

ẅ0 + zẅ1 + z2ẅ2

)

+ pz

}

dz

δu1 : −
∂Mxx

∂x
−

∂Mxy

∂y
+ Qxz =

h/2
∫

−h/2

{

ρz
(

ü0 + zü1 + sinh
(πz

h

)

üZ

)

+ zpx

}

dz

δv1 : −
∂Mxy

∂x
−

∂Myy

∂y
+ Qyz =

h/2
∫

−h/2

{

ρz
(

v̈0 + zv̈1 + sinh
(πz

h

)

v̈Z

)

+ zpy

}

dz

δw1 : −
∂Mxz

∂x
−

∂Myz

∂y
+ Qzz =

h/2
∫

−h/2

{

ρz
(

ẅ0 + zẅ1 + z2ẅ2

)

+ zpz

}

dz

δuZ : −
∂RZ

xx

∂x
−

∂RZ
xy

∂y
+ RZ

xz =

h/2
∫

−h/2

{

ρ sinh
(πz

h

) (

ü0 + zü1 + sinh
(πz

h

)

üZ

)

+ sinh
(πz

h

)

px

}

dz

δvZ : −
∂RZ

xy

∂x
−

∂RZ
yy

∂y
+ RZ

yz =

h/2
∫

−h/2

{

ρ sinh
(πz

h

)(

v̈0 + zv̈1 + sinh
(πz

h

)

v̈Z

)

+ sinh
(πz

h

)

py

}

dz

δw2 : −
∂R2

xz

∂x
−

∂R2
yz

∂y
+ 2Mzz =

h/2
∫

−h/2

{

ρz2
(

ẅ0 + zẅ1 + z2ẅ2

)

+ z2pz

}

dz

(27)

The mechanical boundary conditions are:
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grid 132 172 212

P̄ 4.05112 4.05070 4.05065

Table 1: Convergence study for the uni-axial buckling load of a simply supported 2-

2-1 sandwich square plate with FGM skins and p = 5 case using the higher-order

theory.

δu0 : nxNxx + nyNxy = nxN̄xx + nyN̄xy

δv0 : nxNxy + nyNyy = nxN̄xy + nyN̄yy

δw0 : nxQxz + nyQyz = nxQ̄xz + nyQ̄yz

δu1 : nxMxx + nyMxy = nxM̄xx + nyM̄xy

δv1 : nxMxy + nyMyy = nxM̄xy + nyM̄yy

δw1 : nxMxz + nyMyz = nxM̄xz + nyM̄yz

δuZ : nxR
Z
xx + nyR

Z
xy = nxR̄

Z
xx + nyR̄

Z
xy

δvZ : nxR
Z
xy + nyR

Z
yy = nxR̄

Z
xy + nyR̄

Z
yy

δw2 : nxR
2
xz + nyR

2
yz = nxR̄

2
xz + nyR̄

2
yz

(28)

where (nx, ny) denotes the unit normal-to-boundary vector.

4 Numerical examples

The higher-order plate theory and collocation with RBFs are considered for the uni-

axial and bi-axial buckling analysis of simply supported functionally graded sandwich

square plates (a = b) of type C with side-to-thickness ratio a/h = 10.

The material properties considered are Em = 70E0 (aluminum) for the metal and

Ec = 380E0 (alumina) for the ceramic being E0 = 1GPa. The non-dimensional

parameter used is

P̄ =
Pa2

100h3E0

.

An initial convergence study with the higher-order theory was conducted for each

buckling load type using 132, 172, and 212 grids. In table 1 the uniaxial case is shown

for the 2-2-1 sandwich with p = 5 and in table 2 the bi-axial case is presented for the

1-2-1 sandwich with p = 1. In the following, results are obtained by considering a

grid of 172 points, which seems acceptable by the convergence study.

In tables 3 and 4 the critical buckling loads obtained from the present approach with

ǫzz 6= 0 and ǫzz = 0 are tabulated for various power-law exponents p and thickness

ratios. Both tables include results obtained from classical plate theory (CLPT), first-

order shear deformation plate theory (FSDPT, K = 5/6 as shear correction factor),

Reddy’s higher-order shear deformation plate theory (TSDPT) [16], and Zenkour’s

10



grid 132 172 212

P̄ 3.66028 3.65998 3.65994

Table 2: Convergence study for the bi-axial buckling load of a simply supported 1-2-1

sandwich square plate with FGM skins and p = 1 case using the higher-order theory.

sinusoidal shear deformation plate theory (SSDPT) [5]. Table 3 refers to the uni-axial

buckling load and table 4 refers to the bi-axial buckling load.

A good agreement between the present solution and references considered, spe-

cially [16] and [5] is obtained. This allow us to conclude that the present higher-order

plate theory is good for the modeling of simply supported sandwich FGM plates and

that collocation with RBFs is a good formulation. Present results with ǫzz = 0 ap-

proximates better references [16] and [5] than ǫzz 6= 0 as the authors use the ǫzz = 0
approach. This study also lead us to conclude that the thickness stretching effect has

a strong influence on the buckling analysis of sandwich FGM plates as ǫzz = 0 gives

higher fundamental buckling loads than ǫzz 6= 0.

The isotropic fully ceramic plate (first line on tables 3 and 4) has the higher funda-

mental buckling loads. As the core thickness to the total thickness of the plate ratio

((h2 − h1)/h) increases the buckling loads increase as well. We may conclude that the

critical buckling loads decrease as the power-law exponent p increases. By comparing

tables 3 and 4 we also conclude that the bi-axial buckling load of simply supported

sandwich square plate with FGM skins is half the uni-axial one for the same plate.

In figure 4 the first four buckling modes of a simply supported 2-1-2 sandwich

square plate with FGM skins, p = 0.5, subjected to a uni-axial in-plane compressive

load, using the higher-order plate theory and 172 grid is presented. Figure 5 presents

the first four buckling modes of a simply supported 2-1-1 sandwich square plate with

FGM skins, p = 10, subjected to a bi-axial in-plane compressive load.

5 Conclusions

An application of a Unified formulation by a meshless discretization is proposed,

based on a thickness-stretching hyperbolic sine shear deformation theory that was

implemented for the buckling analysis of functionally graded sandwich plates.

The present formulation was compared with analytical, meshless or finite element

methods and showed very accurate results. The effect of ǫzz 6= 0 showed to be signif-

icant in such sandwich problems.

Acknowledgments

Ana M. A. Neves acknowledges support from FCT grant SFRH/BD/45554/2008.

11



P̄
p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791

FSDPT 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449

TSDPT [16] 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495

SSDPT [5] 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606

present ǫzz 6= 0 12.95287 12.95287 12.95287 12.95287 12.95287 12.95287

present ǫzz = 0 13.00508 13.00508 13.00508 13.00508 13.00508 13.00508

0.5 CLPT 7.65398 8.25597 8.56223 8.78063 9.18254 9.61525

FSDPT 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517

TSDPT [16] 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681

SSDPT [5] 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670

present ǫzz 6= 0 7.16207 7.71627 7.98956 8.19278 8.55172 8.94190

present ǫzz = 0 7.18728 7.74326 8.01701 8.22133 8.58129 8.97310

1 CLPT 5.33248 6.02733 6.40391 6.68150 7.19663 7.78406

FSDPT 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365

TSDPT [16] 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656

SSDPT [5] 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629

present ǫzz 6= 0 5.06137 5.71135 6.05467 6.31500 6.78405 7.31995

present ǫzz = 0 5.07848 5.73022 6.07358 6.33556 6.80547 7.34367

5 CLPT 2.73080 3.10704 3.48418 3.65732 4.21238 4.85717

FSDPT 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475

TSDPT [16] 2.65821 3.04257 3.40351 3.57956 4.11209 4.73469

SSDPT [5] 2.66006 3.04406 3.40449 3.58063 4.11288 4.73488

present ǫzz 6= 0 2.63652 3.00791 3.36255 3.53005 4.05070 4.64701

present ǫzz = 0 2.64681 3.01865 3.37196 3.54148 4.06163 4.66059

10 CLPT 2.56985 2.80340 3.16427 3.25924 3.79238 4.38221

FSDPT 2.46904 2.72626 3.07428 3.17521 3.68890 4.26040

TSDPT [16] 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991

SSDPT [5] 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175

present ǫzz 6= 0 2.47216 2.72046 3.06067 3.15761 3.66166 4.20550

present ǫzz = 0 2.48219 2.73080 3.06943 3.16837 3.67153 4.21792

Table 3: Uni-axial buckling load of simply supported plate of C-type using the higher-

order theory and a grid with 172 points.
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P̄
p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0 CLPT 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896

FSDPT 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224

TSDPT [16] 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248

SSDPT [5] 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303

present ǫzz 6= 0 6.47643 6.47643 6.47643 6.47643 6.47643 6.47643

present ǫzz = 0 6.50254 6.50254 6.50254 6.50254 6.50254 6.50254

0.5 CLPT 3.82699 4.12798 4.28112 4.39032 4.59127 4.80762

FSDPT 3.66866 3.95660 4.10007 4.20517 4.39336 4.59758

TSDPT [16] 3.68219 3.97042 4.11235 4.21823 4.40499 4.60841

SSDPT [5] 3.68284 3.97097 4.11269 4.21856 4.40519 4.60835

present ǫzz 6= 0 3.58104 3.85813 3.99478 4.09639 4.27586 4.47095

present ǫzz = 0 3.59364 3.87163 4.00851 4.11067 4.29064 4.48655

1 CLPT 2.66624 3.01366 3.20195 3.34075 3.59831 3.89203

FSDPT 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182

TSDPT [16] 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328

SSDPT [5] 2.58423 2.92060 3.09731 3.23270 3.47490 3.75314

present ǫzz 6= 0 2.53069 2.85568 3.02733 3.15750 3.39202 3.65998

present ǫzz = 0 2.53924 2.86511 3.03679 3.16778 3.40274 3.67183

5 CLPT 1.36540 1.55352 1.74209 1.82866 2.10619 2.42859

FSDPT 1.31921 1.51126 1.69269 1.77979 2.04642 2.35737

TSDPT [16] 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734

SSDPT [5] 1.33003 1.52203 1.70224 1.79032 2.05644 2.36744

present ǫzz 6= 0 1.31826 1.50395 1.68128 1.76502 2.02535 2.32351

present ǫzz = 0 1.32340 1.50933 1.68598 1.77074 2.03081 2.33029

10 CLPT 1.28493 1.40170 1.58214 1.62962 1.89619 2.19111

FSDPT 1.23452 1.36313 1.53714 1.58760 1.84445 2.13020

TSDPT [16] 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995

SSDPT [5] 1.24475 1.37422 1.56721 1.59728 1.57287 2.19087

present ǫzz 6= 0 1.23608 1.36023 1.53034 1.57880 1.83083 2.10275

present ǫzz = 0 1.24109 1.36540 1.53472 1.58419 1.83576 2.10896

Table 4: Bi-axial buckling load of simply supported plate of C-type using the higher-

order theory and a grid with 172 points.
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Figure 4: First four buckling modes. Uni-axial buckling load of a simply supported

2-1-2 plate C-type, p = 0.5, a 172 points grid, and using the higher-order theory.
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Figure 5: First four buckling modes. Bi-axial buckling load of a simply supported

2-1-1 plate C-type, p = 10, a 172 points grid, and using the higher-order theory.

14



References

[1] Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, and R.G. Ford. Func-

tionally Graded Materials: Design, Processing and Applications. Kluwer Aca-

demic Publishers, 1999.

[2] R.C. Batra and J. Jin. Natural frequencies of a functionally graded anisotropic

rectangular plate. Journal of Sound and Vibration, 282(1-2):509 – 516, 2005.

[3] A. J. M. Ferreira, R. C. Batra, C. M. C. Roque, L. F. Qian, and R. M. N. Jorge.

Natural frequencies of functionally graded plates by a meshless method. Com-

posite Structures, 75(1-4):593–600, September 2006.

[4] S. S. Vel and R. C. Batra. Three-dimensional exact solution for the vibra-

tion of functionally graded rectangular plates. Journal of Sound and Vibration,

272:703–730, 2004.

[5] A.M. Zenkour. A comprehensive analysis of functionally graded sandwich

plates: Part 2–buckling and free vibration. International Journal of Solids and

Structures, 42(18-19):5243 – 5258, 2005.

[6] Z. Q. Cheng and R. C. Batra. Exact correspondence between eigenvalues of

membranes and functionally graded simply supported polygonal plates. Journal

of Sound and Vibration, 229:879–895, 2000.

[7] M. M. Najafizadeh and M. R. Eslami. Buckling analysis of circular plates of

functionally graded materials under uniform radial compression. International

Journal of Mechanical Sciences, 44(12):2479 – 2493, 2002.

[8] V. Birman. Buckling of functionally graded hybrid composite plates. Proceed-

ings of the 10th Conference on Engineering Mechanics, pages 1199–1202, 1995.

[9] R. Javaheri and M.R. Eslami. Buckling of functionally graded plates under in-

plane compressive loading. ZAMM - Journal of Applied Mathematics and Me-

chanics / Zeitschrift fr Angewandte Mathematik und Mechanik, 82(4):277–283,

2002.

[10] Shyang-Ho Chi and Yen-Ling Chung. Mechanical behavior of functionally

graded material plates under transverse load–part i: Analysis. International Jour-

nal of Solids and Structures, 43(13):3657 – 3674, 2006.

[11] Shyang-Ho Chi and Yen-Ling Chung. Mechanical behavior of functionally

graded material plates under transverse load–part ii: Numerical results. Inter-

national Journal of Solids and Structures, 43(13):3675 – 3691, 2006.

[12] A. M. Zenkour. Generalized shear deformation theory for bending analysis of

functionally graded plates. Appl Math Modell, 30:67–84, 2006.

[13] Z. Q. Cheng and R. C. Batra. Deflection relationships between the homogeneous

kirchhoff plate theory and different functionally graded plate theories. Archive

of Mechanics, 52:143–158, 2000.

[14] L. F. Qian, R. C. Batra, and L. M. Chen. Static and dynamic deformations of

thick functionally graded elastic plate by using higher-order shear and normal

deformable plate theory and meshless local petrov-galerkin method. Compos-

ites: Part B, 35:685–697, 2004.

[15] A. J. M. Ferreira, R. C. Batra, C. M. C. Roque, L. F. Qian, and P. A. L. S. Martins.

15



Static analysis of functionally graded plates using third-order shear deformation

theory and a meshless method. Composite Structures, 69(4):449–457, 2005.

[16] J. N. Reddy. Analysis of functionally graded plates. International Journal for

Numerical Methods in Engineering, 47:663–684, 2000.

[17] E. Carrera. C0 reissner-mindlin multilayered plate elements including zig-zag

and interlaminar stress continuity. International Journal of Numerical Methods

in Engineering, 39:1797–1820, 1996.

[18] E. Carrera. Developments, ideas, and evaluations based upon reissner’s mixed

variational theorem in the modelling of multilayered plates and shells. Applied

Mechanics Reviews, 54:301–329, 2001.

[19] E. J. Kansa. Multiquadrics- a scattered data approximation scheme with ap-

plications to computational fluid dynamics. i: Surface approximations and

partial derivative estimates. Computers and Mathematics with Applications,

19(8/9):127–145, 1990.

[20] A. J. M. Ferreira. A formulation of the multiquadric radial basis function method

for the analysis of laminated composite plates. Composite Structures, 59:385–

392, 2003.

[21] A. J. M. Ferreira. Thick composite beam analysis using a global meshless ap-

proximation based on radial basis functions. Mechanics of Advanced Materials

and Structures, 10:271–284, 2003.

[22] A. J. M. Ferreira, C. M. C. Roque, and P. A. L. S. Martins. Analysis of composite

plates using higher-order shear deformation theory and a finite point formulation

based on the multiquadric radial basis function method. Composites: Part B,

34:627–636, 2003.

[23] A.J.M. Ferreira, C.M.C. Roque, R.M.N. Jorge, and E.J. Kansa. Static deforma-

tions and vibration analysis of composite and sandwich plates using a layerwise

theory and multiquadrics discretizations. Engineering Analysis with Boundary

Elements, 29(12):1104 – 1114, 2005.

[24] A.J.M. Ferreira, C.M.C. Roque, and R.M.N. Jorge. Analysis of composite plates

by trigonometric shear deformation theory and multiquadrics. Computers &

Structures, 83(27):2225 – 2237, 2005.

[25] A.J.M. Ferreira, R.C. Batra, C.M.C. Roque, L.F. Qian, and R.M.N. Jorge. Natu-

ral frequencies of functionally graded plates by a meshless method. Composite

Structures, 75(1-4):593 – 600, 2006. Thirteenth International Conference on

Composite Structures - ICCS/13.

[26] A.J.M. Ferreira, C.M.C. Roque, and R.M.N. Jorge. Free vibration analysis of

symmetric laminated composite plates by fsdt and radial basis functions. Com-

puter Methods in Applied Mechanics and Engineering, 194(39-41):4265 – 4278,

2005.

[27] A. J. M. Ferreira, C. M. C. Roque, and P. A. L. S. Martins. Radial basis func-

tions and higher-order shear deformation theories in the analysis of laminated

composite beams and plates. Composite Structures, 66(1-4):287 – 293, 2004.

Twelfth International Conference on Composite Structures.

[28] A.M.A. Neves, A.J.M. Ferreira, E. Carrera, C.M.C. Roque, M. Cinefra, R. M.N.

16



Jorge, and C.M.M. Soares. Bending of fgm plates by a sinusoidal plate formula-

tion and collocation with radial basis functions. Mechanics Research Communi-

cations, In Press, Accepted Manuscript:–, 2011.

[29] A.M.A. Neves, A.J.M. Ferreira, E. Carrera, C.M.C. Roque, M. Cinefra, R. M.N.

Jorge, and C.M.M. Soares. A quasi-3d sinusoidal shear deformation theory for

the static and free vibration analysis of functionally graded plates. Composites

Part B, In Press, Accepted Manuscript:–, 2011.

17




