
Abstract

We study a Reissner-Mindlin shell formulation for NURBS-based isogeometric anal-
ysis. The formulation is based on a shell model which utilizes curvilinear coordinates
and analytic integration thorough the thickness. We examine the accuracy of the ap-
proach in the pinched cylinder benchmark problem and present comparisons against
the h-version of FEM with bilinear elements. The analysis is performed with the
PetIGA and igakit software packages.

Keywords: isogeometric analysis, shells, NURBS, benchmark study.

1 Introduction

Isogeometric analysis is a generalization of standard finite element analysis and was
introduced by Hughes and collaborators in [1]. It aims at the integration of engineer-
ing design and analysis processes by using the functions commonly used for geometry
representation in computer aided design (CAD) as a basis for finite element analysis.
These functions include non-uniform rational B-splines (NURBS) and their recent
generalization, T-splines, see [2]. Isogeometric analysis fits like a glove to shell struc-
tures since representation of surfaces is well established in computer graphics and
shell geometries are often described in terms of the middle surface and its normal
vector.

The present study constitutes the first steps in our work concerning isogeometric
shell analysis. We introduce an isogeometric shell model of Reissner-Mindlin type
and study its accuracy in the classical pinched cylinder benchmark problem. Our for-
mulation is based on shell model where the displacement, strain and stress fields are
defined in terms of a curvilinear coordinate system arising from the NURBS descrip-
tion of the shell middle surface. It should be noted that splines have been employed
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earlier in shell analysis in the works [1, 2, 3, 4, 5] but also other techniques such as
subdivision surfaces have been used to fuse geometry with analysis, see [6, 7].

Our isogeometric shell formulation is implemented using the PetIGA and igakit
software packages developed by Collier and Dalcin. The igakit package is a Python
package used to generate NURBS representations of geometries that can be utilized by
the PetIGA finite element framework. The latter utilises data structures and routines
of the Portable, Extensible Toolkit for Scientific Computation (PETSc), see [8, 9].
Our current shell implementation is valid for static, linear problems only, but the soft-
ware package is well suited for future extensions to geometrically and materially non-
linear regime as well as to dynamic problems.

The paper is structured as follows. We outline the fundamentals of NURBS-based
isogeometric analysis in Section 2. The Reissner-Mindlin shell formulation is pre-
sented in Section 3. In Section 4 we use the formulation to solve the popular pinched
cylinder benchmark problem and compare the results with the ones obtained by using
the h-version of FEM and bilinear elements. Conclusions and future research direc-
tions are presented in Section 5.

2 Isogeometric Analysis using NURBS

In this section we present a summary of representation of surfaces using NURBS
and the related finite element analysis. For more detailed discussion, see for instance
[10, 11, 12].

2.1 B-spline curves

B-splines are piecewise polynomial curves defined in terms of B-spline basis func-
tions. The basis functions of degree p, denoted by Ni,p(ξ), associated to a non-
decreasing set of coordinates called the knot vector X = {ξ1, ξ2, . . . , ξn+p+1} are
defined recursively as

Ni,0(ξ) =

{
1, ξi ≤ ξ < ξi+1

0, otherwise

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ), p > 0

(1)

for i = 1, . . . , n and p ≥ 1. A B-spline basis function is C∞ between two distinct
knots andCp−1 at a single knot. If a knot is repeated in the knot vector k times then the
continuity isCp−k at that knot. Consequently, the basis becomes interpolatory at knots
with multiplicity p whereas knot multiplicity of p + 1 makes the basis discontinuous
and is used at the end points to make the knot vector open.

The B-spline curve of degree p with control points P1, . . . ,Pn is defined on the
interval [a, b] = [ξp+1, ξn+1] as the linear combination of the control points and basis
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functions

C(ξ) =
n∑

i=1

Ni,p(ξ)Pi

We recall that the piecewise linear interpolation of the control points is called the
control polygon. For open knot vectors, the B-spline curve interpolates the first and
last control points and is tangential to the control polygon at these points.

2.2 B-spline surfaces

A B-spline surface is defined using tensor products of B-spline basis functions writ-
ten in two parametric coordinates ξ, η. If Ni,p and Mj,q denote basis functions of
degree p and q associated to the knot vectors X = {ξ1, ξ2, . . . , ξn+p+1} and Y =
{η1, η2, . . . , ηm+q+1} and Pij , i = 1, . . . , n, j = 1, . . . ,m is a net of control points in
3-space, the B-spline surface is defined as

S(ξ, η) =
n∑

i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Pij

For open knot vectors, the surface interpolates the control net at the vertices.

2.3 NURBS

Non-uniform Rational B-Splines (NURBS) are obtained from integral B-splines by
supplementing each control point with a scalar weight. The NURBS curve of degree
p with control points Pi is defined as

C(ξ) =

∑n
i=1Ni,p(ξ)wiPi∑n

i=1Ni,p(ξ)wi

where Ni,p(ξ) are the B-spline basis functions defined by (1). The curve can also be
written in the form

C(ξ) =
n∑

i=1

Ri,p(ξ)Pi

where

Ri,p(ξ) =
wiNi,p(ξ)∑n

j=1wjNj,p(ξ)

stand for the rational B-spline basis functions.
It should be noted that the weights define the control points in homogeneous coor-

dinates as P̂i = (wixi, wiyi, wizi, wi) and that in homogeneous coordinates a NURBS
curve has the form

C(ξ) =
n∑

i=1

Ni,p(ξ)P̂i
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and allow the representation of hyberbolas and ellipses.
Similarly a NURBS surface has the representation

S(ξ, η) =

∑n
i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wijPij∑n

i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wij

where the control point net Pij is augmented with the weights wij for i = 1, . . . , n
and j = 1, . . . ,m.

2.4 Finite Element Analysis using NURBS

The isogeometric finite element method is obtained from the exact geometry represen-
tation by invoking the isoparametric concept, that is, by using the same basis functions
used to represent the geometry to approximate the unknown function. The two basic
mechanisms for controlling the accuracy of the approximation in isogeometric anal-
ysis are knot insertion and degree elevation. The idea is to enrich the NURBS basis
without changing the surface geometrically or parametrically. This can be achieved by
changing the number and location of the control points in a suitable way, see [12] for
more details. Both refinement techniques are implemented in the igakit package.

3 Isogeometric Shell Formulation

3.1 The Principle of Virtual Work

The starting point of our formulation is the principle of virtual work written in the
abstract form as

Find u ∈ U s.t. A(w,u) = L(w) ∀w ∈ U0 (2)

where u is the displacement field, A is a bilinear form representing the virtual work
associated to the virtual displacement field w and L is a linear functional returning the
potential energy of the external loads. The energy space U consists of kinematically
admissible displacement fields for which the strain energy A(u,u) is finite and U0

is the same energy space where the possible kinematic constraints are taken to be
homogeneous.

For an elastic body occupying a three-dimensional domain Ω the virtual work can
be expressed in terms of the stress tensor σ and the strain tensor ε as

A(w,u) =

∫
Ω

ε(w) : σ(u) dΩ (3)

When the domain Ω is thin, that is, one of its dimensions is small as compared with the
other two, it is possible to simplify (2) by making assumptions concerning the form
of the displacement and stress fields in the thin direction. The formal procedure for
linearly elastic shells is outlined next.
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3.2 Dimensionally Reduced Shell Model

A shell domain is defined as Ω = Φ(Ω̂×(−t/2, t/2)), where the map Φ is of the form

Φ(ξ, η, ζ) = S(ξ, η) + ζn(ξ, η)

Here S(ξ, η) refers to the NURBS description of the middle surface and n(ξ, η) stands
for the unit normal vector to the middle surface. Without losing any generality we may
set Ω̂ = (0, 1)× (0, 1).

We make the following simplifying assumptions regarding the deformation of a
shell body:

1. Normal fibres to the middle surface remain straight

2. Normal fibres do not stretch

3. The transverse normal stress is negligible

Denoting the tangential displacements along the coordinate lines ξ, η by U1, U2, and
the normal displacement by U3, the above kinematic assumptions can be imposed by
writing

U1(ξ, η, ζ) = u(ξ, η)− ζθ(ξ, η)

U2(ξ, η, ζ) = v(ξ, η)− ζψ(ξ, η)

U3(ξ, η, ζ) = w(ξ, η)

(4)

The generalized displacement field u = (u, v, w, θ, ψ) in (4) consists of the tangential
displacements (u, v) and the transverse deflection (w) of the middle surface, and of
the rotations (θ, ψ) of the normal. The deformation can be described in terms of the
membrane strains βij , transverse shear strains ρi, and bending strains κij defined along
the shell middle surface such that

εij = βij − zκij, i, j = 1, 2

2εi3 = ρi, i = 1, 2

Assuming that ξ, η are the (orthogonal) principal curvature coordinates associated
with the principal curvatures b1, b2 and the metric parameters A1, A2, the strain fields
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take the form

β11 =
1

A1

∂u

∂ξ
+

1

A1A2

∂A1

∂η
v + b1w,

β22 =
1

A2

∂v

∂η
+

1

A1A2

∂A2

∂ξ
u+ b2w,

β12 =
1

2

(
1

A2

∂u

∂η
+

1

A1

∂v

∂ξ
− 1

A1A2

∂A1

∂η
u− 1

A1A2

∂A2

∂ξ
v

)
,

ρ1 = θ − 1

A1

∂w

∂ξ
+ b1u,

ρ2 = ψ − 1

A2

∂w

∂η
+ b2v,

κ11 =
1

A1

∂θ

∂ξ
+

1

A1A2

∂A1

∂η
ψ,

κ22 =
1

A2

∂ψ

∂η
+

1

A1A2

∂A2

∂ξ
θ,

κ12 =
1

2

[
1

A2

∂θ

∂η
+

1

A1

∂ψ

∂ξ
− 1

A1A2

∂A1

∂η
θ − 1

A1A2

∂A2

∂ξ
ψ

−b1
(

1

A2

∂u

∂η
− 1

A1A2

∂A2

∂ξ
v

)
− b2

(
1

A1

∂v

∂ξ
− 1

A1A2

∂A1

∂η
u

)]
.

(5)

The above strain expressions agree with the expressions derived by Novozhilov
in [13] under the assumptions

θ =
1

A1

∂w

∂x
− b1u, ψ =

1

A2

∂w

∂y
− b2v.

The strain expressions (5) were also used in [14] to study effect of mesh distortion to
the accuracy of isoparametric FEM discretizations. Notice that in shell theory, differ-
ent definitions of the bending strains are encountered. However, these differences are
usually insignificant as compared with the initial assumptions of the theory.

The geometric parameters needed to evaluate (5) can be computed from the spline
representation of the middle surface as

A1 =

∣∣∣∣∂S∂ξ
∣∣∣∣ , A2 =

∣∣∣∣∂S∂η
∣∣∣∣

b1 = − 1

A2
1

n · ∂
2S

∂ξ2
, b2 = − 1

A2
2

n · ∂
2S

∂η2

(6)

and the unit normal can be computed as

n =

∂S

∂ξ
× ∂S

∂η∣∣∣∣∂S∂ξ × ∂S

∂η

∣∣∣∣ (7)
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For homogeneous, isotropic linearly elastic material, the bilinear form (3) can be
written approximatively as

A(w,u) =

∫
Ω̂

[β(w) : N(u) + ρ(w) ·V(u) + κ(w) : M(u)] A1A2 dξdη (8)

where the stress resultants are defined as

N =
Et

1− ν2
[ν tr(β)I + (1− ν)β]

V =
Et

2(1 + ν)
ρ

M =
Et3

12(1− ν2)
[ν tr(κ)I + (1− ν)κ]

(9)

Equations (5)–(9) complete the description of our NURBS-based shell model. Notice
that for smooth surfaces the finite strain energy condition A(u,u) < ∞ translates to
the requirement that the first order partial derivatives of all displacement components
in u are square integrable over Ω̂. This is in turn guaranteed because the NURBS basis
functions are piecewise smooth and at least continuous.

4 Numerical Results

We consider as an example a pinched cylinder with end diaphragms which is one of
the most popular benchmark problems in shell analysis. The initial geometry consists
of a circular cylinder of radius R = 100 and length 2L = 100. The cylinder is loaded
by two normal point loads of magnitude F = 1 located centrally at the opposite sides
of the cylinder. The material parameters are taken to be E = 3 · 107 and ν = 0.3.

By symmetry, it is sufficient to analyze only one eight of the cylinder. The geometry
can represented using a single quadratic rational NURBS element associated to the
knot vectors

X = {0, 0, 1, 1}
Y = {0, 0, 0, 1, 1, 1}

and the control point net (written in homogeneous coordinates)

P̂ =

[
(0,−100, 0, 1) µ · (0,−100, 100, 1) (0, 0, 100, 1)

(100,−100, 0, 1) µ · (100,−100, 100, 1) (100, 0, 100, 1)

]
where µ =

√
2/2.

Figures 2 and 3 show convergence of the displacement under the load application
point when R/t = 100 and R/t = 1000, respectively. Quadratic, cubic and quartic
NURBS discretizations are compared against the isoparametric bilinear discretiza-
tion introduced in [15]. However, this comparison is not completely fair since the
variational formulation of the bilinear MITC4S formulation uses highly tuned strain
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F

Figure 1: Initial geometry for the pinched cylinder problem.

expressions so as to avoid all parametric locking effects arising for small values of the
thickness. The formulation also takes into account the geometric curvature of the shell
inside each element which guarantees excellent coarse-mesh accuracy. In our NURBS
formulation the geometry is always represented exactly but no attempt, other than in-
creasing the approximation order, is made to avoid locking. Our results show that
the quadratic and cubic NURBS approximations exhibit notably slower convergence
under uniform knot insertion as the thickness decreases but the quartic approxima-
tion converges relatively quickly. It should be noted that in the current problem the
deformation becomes rather localized around the load application point as the thick-
ness decreases so that more h-refinement is required to achieve the same accuracy, see
Figures 4 and 5.

5 Concluding Remarks

We have presented an isogeometric shell formulation utilizing NURBS. Our formula-
tion is based on a dimensionally reduced shell model and its accuracy has been veri-
fied in the pinched cylinder benchmark problem. We have confirmed that higher-order
NURBS provide good approximations within the standard variational framework.

Our future work is concerned with building an isogeometric model for nonlinear
structural response of thin-walled shells undergoing large rigid-body motions. The
aim is to use the model in a aeroelastic framework for the simulation of flapping
wings.
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Figure 2: Strain energy convergence of the pinched cylindrical shell at R/t = 100.
NURBS-based discretizations with maximal continuity vs. bilinear h-FEM.
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Figure 3: Strain energy convergence of the pinched cylindrical shell at R/t = 1000.
NURBS-based discretizations with maximal continuity vs. bilinear h-FEM.
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Figure 4: The transverse deflection of the pinched cylindrical shell at R/t = 100.
Discretization with quartic NURBS with maximal continuity on 32× 32 mesh.

Figure 5: The transverse deflection of the pinched cylindrical shell at R/t = 1000.
Discretization with quartic NURBS with maximal continuity on 32× 32 mesh.
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