
Abstract

Using a series expansion technique together with recursion relations the dynamic

equations for an elastic spherical shell are derived. The starting point is an expansion

of the displacement components into power series in the thickness direction relative

the mid-surface of the shell. The three-dimensional elastodynamic equations yield re-

cursion relations among these that can be used to eliminate all but the six of lowest

order. The boundary conditions on the surfaces of the shell then give the shell equa-

tions as a power series in the thickness that can in principle be truncated to any order.

The method is believed to asymptotically exact to any order. Comparisons are made

with correct three-dimensional theory and other shell theories.

Keywords: spherical shell, shell equations, dynamic, eigenfrequency, power series.

1 Introduction

Shells are important structures in many branches of engineering and have therefore

been investigated for a number of different types of shells. Spherical shells appear in

some applications, and some dynamic shell theories have thus been developed for this

case. All these theories seem to depend on more or less ad hoc kinematical assump-

tions and/or other approximations. Here the dynamic equations for a spherical shell

are derived by using a method developed during the last decade for bars, plates, and

beams. It has, in particular, been developed for a number of different plate structures,

like anisotropic, layered, and piezoelectric plates, see e.g. [1, 2, 3]. The main advan-

tage with the method is that it is very systematic and can be developed to any order.

It also seems that the resulting structural equations are asymptotically correct to any

order [1]. The method has also been applied to a cylindrical shell [4].

The literature on shells is significant. For the present purposes the most relevant

references seem to be those of Shah et al. [5, 6] and Niordson [7]. Shah et al. [5] seem
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to be the first to give the exact three-dimensional solution for the eigenfrequencies of

a spherical shell (of arbitrary thickness), drawing on earlier work by Morse and Fes-

hbach [8]. They also give a higher-order bending theory including a shear correction

factor and relevant references to the older literature. Niordson [7] uses an asymp-

totic method that has similarities (but also differences) to the present approach. This

method also has the benefits of not using any ad hoc assumptions and the possibility

to go to, in principle, any order in the thickness.

The plan of the present paper is as follows. In the next section the problem is stated

and the three-dimensional equations of elasticity are given. Next, the expansion of the

displacement components in series in the thickness coordinate is performed, leading

to the recursion relations for the expansion functions, this being the key ingredient

in the present approach. Applying the boundary conditions at the inner and outer

surfaces of the spherical shell and using the recursion relation to eliminate all but

the six lowest-order expansion functions give the six shell equations. These can in

principle be given to any order and are believed to be asymptotically correct to any

order. A few numerical results for eigenfrequencies comparing with the exact three-

dimensional solution concludes the paper.

2 Problem formulation

Consider a spherical shell with mean radius R and thickness 2h. The material is

assumed to be isotropic and linearly elastic with Lamé constants λ and µ and density

ρ. Introduce spherical coordinates r, θ, and φ, where r is the radial coordinate, θ the

polar coordinate, and φ the azimuthal coordinate. The main goal is to derive a set of

dynamic shell equations for this case, i.e. a set of differential equations that depend

on the two angular spherical coordinates and time, but where the radial dependence

has disappeared.

The starting point is the three-dimensional dynamic equations of elasticity for the

displacement field u

(λ + 2µ)∇(∇ · u) − µ∇× (∇× u) = ρ
∂2

u

∂2t
. (1)

This equation is written in a way that clearly shows the decoupling into compression

and shear waves. In spherical coordinates this equation is written for the radial com-

ponent u, the polar component v, and the azimuthal component w. The equations then

become more lengthy

µ

[

∂2

θu + cot θ ∂θu +
∂2

ϕu

sin2 θ

]

+ (λ + µ)

[

r∂r∂θv + r cot θ ∂rv +
r∂r∂ϕw

sin θ

]

+ (λ + 2µ)
[

r2∂2

ru + 2r∂ru − 2u
]

− (λ + 3µ)

[

∂θv + cot θ v +
∂ϕw

sin θ

]

= ρr2∂2

t u,

(2)
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(λ + 2µ)
[

∂2

θv + cot θ ∂θv −
v

sin2 θ
+ 2∂θu

]

+ µ

[

r2∂2

rv + 2r∂rv +
∂2

ϕv

sin2 θ

]

+ (λ + µ)

[

r∂r∂θu +
∂θ∂ϕw

sin θ

]

− (λ + 3µ)
cos θ ∂ϕw

sin2 θ
= ρr2∂2

t v,

(3)

(λ + 2µ)

[

∂2
ϕw

sin2 θ
+

2∂ϕu

sin θ

]

+ µ
[

r2∂2

rw + 2r∂rw + ∂2

θw + cot θ ∂θw −
w

sin2 θ

]

+ (λ + µ)

[

r∂r∂ϕu

sin θ
+

∂θ∂ϕv

sin θ

]

+ (λ + 3µ)
cos θ ∂ϕv

sin2 θ
= ρr2∂2

t w,

(4)

where ∂r, ∂θ, and ∂ϕ denote partial derivatives with respect to r, θ, and ϕ, respectively.

These equations are to be supplemented with boundary conditions on the inner and

outer surfaces of the shell. These are for simplicity taken as vanishing traction on both

surfaces, although, e.g., an applied pressure would also be possible.

3 The shell equations

To derive shell equations the first step is to substitute r = R + ξ, where the variable

ξ is located in the shell, i.e. −h < ξ < h. It is assumed that h is small both relative

to the radius R and to relevant wavelengths. The displacement components are then

expanded as

u(r, θ, ϕ, t) =
∑

k=0

uk(θ, ϕ, t)ξk, (5)

v(r, θ, ϕ, t) =
∑

k=0

vk(θ, ϕ, t)ξk, (6)

w(r, θ, ϕ, t) =
∑

k=0

wk(θ, ϕ, t)ξk. (7)

Formally the sums are infinite but in practice only a few terms are used. But as com-

pared to most other methods no truncation is performed at this stage, the truncation

scheme is discussed later on.

The displacement expansions are inserted into the governing equations and equal

powers of ξ are identified. Solving for the highest orders this gives

uk+2 =
1

(k + 1)(k + 2)(λ + 2µ)R2

[

ρ
(

R2∂2

t uk + 2R∂2

t uk−1 + ∂2

t uk−2

)

− (λ + 2µ)
(

2R(k + 1)2uk+1 + (k + 2)(k − 1)uk

)

− µ
(

∂2

θuk + cot θ ∂θuk

)

−
µ∂2

ϕuk

sin2 θ
− R(k + 1)(λ + µ)

(

∂θvk+1 + cot θ vk+1 +
∂ϕwk+1

sin θ

)

−((k − 1)λ + (k − 3)µ)

(

∂θvk + cot θ vk +
∂ϕwk

sin θ

)]

,

(8)
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vk+2 =
1

(k + 1)(k + 2)µR2

[

ρ
(

R2∂2

t vk + 2R∂2

t vk−1 + ∂2

t vk−2

)

− (λ + 2µ)
(

∂2

θvk + cot θ ∂θvk −
vk

sin2 θ
+ 2∂θuk

)

− µ

(

2R(k + 1)2vk+1 + k(k + 1)vk +
∂2

ϕvk

sin2 θ

)

− (λ + 3µ)
cos θ

sin2 θ
∂ϕwk

−(λ + µ)

(

R(k + 1)∂θuk+1 + k∂θuk +
∂ϕ∂θwk

sin θ

)]

,

(9)

wk+2 =
1

(k + 1)(k + 2)µR2

[

ρ
(

R2∂2

t wk + 2R∂2

t wk−1 + ∂2

t wk−2

)

− µ
(

2R(k + 1)2wk+1 + k(k + 1)wk + ∂2

θwk + cot θ ∂θwk

)

+
1

sin2 θ

(

µwk − (λ + 2µ)∂2

ϕwk

)

−
2(λ + 2µ)

sin θ
∂ϕuk

−
λ + µ

sin θ
(R(k + 1)∂ϕuk+1 + k∂ϕuk + ∂ϕ∂θvk) − (λ + 3µ)

cos θ

sin2 θ
∂ϕvk

]

.

(10)

These equations can be used recursively to express all higher order expansion func-

tions in the six lowest-order ones u0, u1, v0, v1, w0, and w1. It is noticed that the

procedure so far does not depend on any assumption about the thickness of the shell.

The recursion relations can be used also to get a good representation of the displace-

ments in the shell for other purposes.

To obtain the shell equations the boundary conditions on the shell are now applied.

The relevant stress components in spherical coordinates are

σrr = (λ + 2µ)∂ru + λ

(

2u

r
+

∂θv

r
+

cot θv

r
+

∂ϕw

r sin θ

)

, (11)

σrθ = µ

(

∂rv −
v

r
+

∂θu

r

)

, (12)

σrϕ = µ

(

∂rw −
w

r
+

∂ϕu

r sin θ

)

. (13)

Insertion of the field expansion gives

σrr =
1

R + ξ

∑

k=0

[(λ + 2µ) ((k + 1)Ruk+1 + kuk)

+λ

(

2uk + ∂θvk + cot θvk +
∂ϕwk

sin θ

)]

ξk,

(14)

σrθ =
µ

R + ξ

∑

k=0

[(k + 1)Rvk+1 + (k − 1)vk + ∂θuk] ξ
k, (15)
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σrϕ =
µ

R + ξ

∑

k=0

[

(k + 1)Rwk+1 + (k − 1)wk +
∂ϕuk

sin θ

]

ξk. (16)

The boundary conditions at ξ = ±h are then applied, usually this means that all three

stress components are zero. By using the recursion relations all but the six lowest

order expansion functions can be eliminated. It is also convenient to take the sum and

difference between the equations at the two boundaries, and this results in the six shell

equations. These are given as an expansion in h, which can, in principle, be given to

any order. With increasing orders the equations become extremely complex, so here

only the lowest, h-independent, terms are given. Assuming homogeneous boundary

conditions the six equations then become

R2ρ∂2

t u0 + (λ + 2µ)u0 − µ

(

∂2

θ + cot θ ∂θ +
∂2

ϕ

sin2 θ

)

u0 +
2µ

sin θ
∂ϕw0

+ (λ + 3µ) (cot θ + ∂θ) v0 + R(λ − 2µ)u1 −
Rµ

sin2 θ
∂ϕw1 = 0,

(17)

4λu0 + (λ + 2µ)Ru1 + 2λ cot θ v0 +
2λ

sin θ
∂ϕw0 + 2λ∂θv0 = 0, (18)

R2ρ∂2

t v0 +
λ + 2µ

sin2 θ
v0 −

µ

sin2 θ
∂2

ϕv0 − (λ + 2µ) (cot θ + ∂θ) ∂θv0 − 2µRv1

− 2(λ + 2µ)∂θu0 − λR∂θu1 + (λ + 3µ)
cot θ

sin θ
∂ϕw0 −

λ + µ

sin θ
∂θ∂ϕw0 = 0,

(19)

∂θu0 − v0 + Rv1 = 0, (20)

R2ρ∂2

t w0 +
µ

sin2 θ
w0 −

λ + 2µ

sin2 θ
∂2

ϕw0 − µ (cot θ + ∂θ) ∂θw0 − 2µRw1

−
2(λ + 2µ)

sin θ
∂ϕu0 −

λ + 2µ

sin θ
R∂θu1 + (λ + 3µ)

cot θ

sin θ
∂ϕv0 −

λ + µ

sin θ
∂θ∂ϕv0 = 0,

(21)

1

sin θ
∂ϕu0 − w0 + Rw1 = 0. (22)

From the second, fourth, and sixth equation it is of course straightforward to eliminate

u1, v1, and w1 and this leads to the classical membrane equations. Including also the

quadratic terms, a type of bending theory is obtained, and it is noted this theory do not

include any shear correction factor and that it is believed to be asymptotically correct.

For reasons of length these equations are not given in full. Following the procedure of

Shah et al. [5] or Niordson [7] it should be possible to introduce some sort of potentials

which should greatly reduce the length of the equations.
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Figure 1: The first two spherically symmetric eigenfrequencies as a function of shell

thickness: exact 3D theory (full-drawn), present theory (short-dashed), membrane

theory (long-dashed).

4 Results

To validate the shell equations some comparisons with other results are now given.

The simplest case is that of spherically symmetric vibrations for which there is no

angular dependence at all and only the radial component u is nonzero. For this case

the shell equations, including also terms in h2, simplify to

2(λ + 2µ)u0 + (λ − 2µ)Ru1 + ρ∂2

t u0 +
h2

6R2(λ + 2µ)
[32µ(λ + 2µ)(u0 − Ru1)

+ 2ρR2(λ + 6µ)∂2

t u0 + ρR3(λ − 2µ)∂2

t u1 + ρ2R2∂4

t u0] = 0,

(23)

2λu0 + (λ + 2µ)Ru1 +
h2

2R2(λ + 2µ)
[8µ(λ + 2µ)(Ru1 − u0)

+ ρR2λ∂2

t u0 + ρR3(λ + 2µ)∂2

t u1] = 0.

(24)

With a harmonic time dependence these equations give the lowest eigenfrequency

expanded to second order in the shell thickness

(ksR)2 =
4(1 + ν)

1 − ν
+

4h2(1 + ν)(−1 + 9ν)

3R2(1 − ν)2
, (25)

where the wave number ks = ω
√

ρ/µ. This result agrees exactly with that of Niord-

son [7].
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Figure 2: The first two torsional eigenfrequencies as a function of shell thickness:

exact 3D theory (full-drawn), present theory (short-dashed), membrane theory (long-

dashed).

To further illustrate the spherically symmetric case, Figure 1 shows the two first

eigenfrequencies as a function of shell thickness h/R. The eigenfrequency is normal-

ized so that Ω = ωh/(πcs), similarly to Shah et al. [5]. Three curves are shown for

the first eigenfrequency, namely membrane theory (long-dashed), the present second-

order theory (short-dashed), and exact three-dimensional theory (full-drawn) accord-

ing to Shah et al [5]. For this first eigenfrequency all three curves agree for surprisingly

thick shells. For the second eigenfrequency, where membrane theory does not apply,

there is some discrepancy, much larger than for the six-mode theory of Shah et al. [5].

But it must be remembered that their theory contains a shear correction factor that is

tuned to get good correspondence. It should also be remembered that for the second

eigenfrequency the shell is no longer thin (in terms of wavelengths) and that the dis-

placement fields will not be properly described by any shell theory, cf. Boström et

al. [1] for a discussion of this point for the case of a plate.

The second case that is investigated is the torsional modes for which only w is

nonzero and independent of the azimuthal coordinate (called modes of the first class

by Shah et al. [5]). Similarly to Figure 1, Figure 2 shows the first two eigenfrequencies

for this case. Exactly the same comments as for Figure 1 apply.

5 Concluding remarks

In this paper the shell equations for a spherical shell are derived using a power series

expansion for the displacement components which leads to recursion relations and

the shell equations from the boundary conditions. A few results are given showing

good agreement with earlier results and with three-dimensional solutions. The present

7



result should be extended in a number of ways. Firstly, it should be useful to introduce

potentials according to Shah et al. [5] or Niordson [7] to reduce the equations to a more

manageable format. For a shell that is not a complete sphere, the boundary conditions

along the edge of the shell should be formulated. It is also possible to extend the

present results to more complex situations like an anisotropic, piezoelectric or layered

spherical shell, or even to completely general shells (using differential geometrical

results).
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