
Abstract

This paper presents an open computational framework for reliability based. The

framework has been designed to provide the maximum flexibility allowing the state

of the art in reliability analysis (e.g. adopting advanced Monte Carlo methods) to be

combined in the direct approach as well as in the construction of the different type

of meta-models (e.g. response surface, artificial neural networks, kriging model and

polynomial chaos, etc.). A set of widely used gradient-based and gradient-free opti-

mization algorithms are also available for performing the optimization step as well as

high performance computing capability. Numerical applications show the applicabil-

ity and flexibility of the proposed framework for solving real-life problems.

Keywords: reliability based optimization, matlab, open source, high performing com-

puting, meta modelling, numerical methods.

1 Introduction

In nowadays engineering practice, optimization is almost an indispensable step of the

design cycle for any product/component. Optimize means design a better product or

system that can reach significant reductions in terms of the manufacturing and oper-

ating costs, as well as the improvement in the performance. However, these products

are affected by uncertainties, caused by lack of sufficient knowledge and/or by natural

unpredictable external events. Ignoring the effects of the uncertainties the “optimized”

products can perform unsatisfactory in realistic conditions, for instance they can show

a very low reliability, high reparation and maintenance costs etc.

In order to cope with this problem and to guarantee that the components or sys-

tems will continue to perform satisfactory despite fluctuations and changes of model

(e.g. due to production processes) and environmental conditions (e.g. due to climate
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change), the design has to be “robust”. Consequently, the field of optimization has

been coupled with reliability analysis (see e.g. [18]) forming the so-called reliability

based optimization analysis (see e.g. [12, 21, 5]).

Here, an open computational framework for reliability based optimization is pre-

sented. Developed in a object oriented fashion in Matlab environment, this framework

provides the necessary flexibility, modularity and usability to be adopted in different

contexts. Thanks to the terms of the LGPL license [1] adopted, anybody are allowed

to use, verify and modify the proposed framework or derived code from it. This frame-

work is used by the general purpose software COSSAN-X [16].

This framework allows to perform reliability based optimization adopting the di-

rect approach, global and local surrogate models. It allows to combine the state of

the art in reliability analysis (e.g. adopting importance sampling, line sampling [13])

in the direct approach as well in the construction of the meta-models (e.g. response

surface, artificial neural networks, kriging model and polynomial chaos [7]). A set

of widely used gradient-based and gradient-free optimization algorithms (e.g. SQP,

Cobyla, genetic algorithms, simulated annealing etc. [3]) are also available. Further-

more, adopting the high performance computing capability (grid and cloud comput-

ing), the proposed approach allows the analysis of realistic problems. The applicabil-

ity and the flexibility of the proposed framework for solving real-life problems will be

demonstrated by means two applications considering static and dynamic load.

The outline of the present paper is as follows: Section 2 reports a brief overview

of the computationally challenging in the reliability based optimization problems. In

Section 3, the computational framework for solving efficiently a large range of reliabil-

ity based optimization problems is described. In Section 4, application examples are

presented to demonstrate the applicability of the computational framework for solving

problems of practical interest. Finally, some final remarks are listed in Section 5.

2 Reliability Based Optimization

The reliability based optimization approach is an attractive and most useful design

tool: it allows to determine the best design according to some predefined criteria. The

main aim of the reliability based optimization is to consider explicitly the effect of

the uncertainties in the optimization problem. In fact, in any practical situation there

are a number of model parameters which are not known at the design stage and that

might affect the performance of the products or systems. These parameters that might

be affected by uncertainty can be characterized as random variables θ. The rational

quantification of the effects of these uncertainties on the product/system performance

requires an appropriate model to measure the plausibility of a given realization of θ.

The performance space of the component/system under investigation can be split in

two parts by means of the so-called performance function g. The performance function

define a safe (admissible) performance and a failure (inadmissible) performance based

on certain performance requirements, e.g. the demand exceeds the capacity of the
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system. It should be noted that, in this context, failure does not necessarily imply

collapse but rather an undesirable performance.

The performance depends generally on the values of the design variables (x) and

the uncertain parameters (θ), i.e. g = g(x,θ). The performance function is defined

such that g(x+,θ∗) is smaller or equal to zero when a specific realization of θ
∗, in

combination with a specific set of design variables x
+, causes failure (i.e. an unac-

ceptable performance of the system); in case of an acceptable performance, g(x+,θ∗)

is larger than zero. It is important to note that a realistic reliability model of a sys-

tem may involve the definition of several failure events. The probability of failure

computed solving the following integral:

pF (x) =

∫
g(x,θ)≤0

f(θ) dθ (1)

where f(θ) represents the joint probability density function of the uncertain factors.

In practical situations, several different design solutions can satisfy prescribed per-

formance objectives. The design variables are those parameters that can be adjusted

and tune in order to improve the performance of a component or system. Typical ex-

amples of design variables are the cross sections of structural members, interval of

inspection and repair, topology parameters, set of components, etc. The design vari-

ables can also represent a characterized (moment) of an uncertain parameter, some

examples are the mean time to failure of a component, the admissible tolerance for

the specific components (i.e. the variance), etc. Hence, the final solution must be

chosen using appropriate criteria. The spectrum of possible goals is rather wide and

it is problem dependent, such as minimization of costs, i.e. the chosen solution min-

imizes construction, maintenance and eventual collapse costs during the life time of

the facility. The objective function, denoted by F (·), depends on the design variables

and, eventually, on the uncertain parameters, i.e. F (x) and F (x,θ), respectively. The

optimization step requires the repeated evaluation of the objective function, F (·), and

constraints, C(·), for different values of the design variables, x, in order to identify

the optimal design. In mathematical terms, an optimization problem is formulated as

follows:

min F (x), x
T = 〈x1, x2, . . . , xn〉 (2)

subject to:

x ∈ Ωx: Cj(x) = 0, j = 1, . . . ,me and Cj(x) ≤ 0, j = me + 1, . . . ,m (3)

In an unconstrained optimization problem, all the design space Ω is feasible. One

example of unconstrained problem is the optimization of a component/system in order

to achieve a prescribed reliability level. In this case the objective function can be

defined as the square difference between the prescribed reliability level and the actual

reliability level of the component/system, e.g.:

F (x,θ) = (p∗F − ˆpF (x))2 (4)
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where p̂f represents the estimated failure probability of the component and the p∗F
prescribed failure probability.

More often, not all the possible solutions are feasible (e.g., the component might

fulfil certain specific design requirements or the total costs are to be below a prescribed

threshold). The admissible regions are defined by the so-called constraint functions

(C(·)). The constraints can be of deterministic nature when they refer exclusively to

the design variables x. Deterministic constraints are formulated as a mathematical

function, C(x); usually, a deterministic constraint is defined such that C(x) ≤ 0
implies the satisfaction of a constraint. The constraints may also include both design

variables and uncertain parameters. In such cases, the constraint is probabilistic and

its fulfilment will be associated with one (or more) of the failure events defined above

C(x,θ). For instance, a probabilistic constraint is satisfied when the probability of

occurrence of the failure event (pF (x)) is equal or smaller than a prescribed probability

level (p∗F ), i.e. the constraint is satisfied if pF (x) − p∗F ≤ 0 as shown in Section 4.1.

Direct approaches The reliability based optimization analysis can be carried out

adopting a so-called direct approach. This means that at each iteration of the opti-

mization loop a full reliability analysis is performed (i.e. estimating the integral of

Eq. 1). Nevertheless, different strategies and efficient methods can be adopted to per-

form efficiently the reliability analysis. For instance, the reliability analysis can be

based on approximate method (e.g. FORM [9]), plain Monte Carlo method or per-

formed adopting advanced and efficient Monte Carlo methods such as Line Sampling

[20] or Subset [4] simulation.

It is important to notice that the computational cost of the reliability analysis plays

a fundamental role in the feasibility and applicability of the direct approach. More-

over, the estimation of the failure probability is usually quite noisy, therefore robust

optimization methods such as Cobyla, simplex [3] are needed.

Surrogate models A possible means for reducing the numerical costs associated

with the solution of reliability based problems is to replace the computationally expen-

sive part of the reliability based optimization analysis by a surrogate-model. Surrogate-

models mimic the behaviour of the original model, by means of an analytical ex-

pression with negligible computational cost making the efficiency of the optimization

methods almost irrelevant. The approximation is constructed by selecting some pre-

defined interpolation points in the design space, at which the failure probability is

estimated; then, a surrogate model is adjusted to the data collected in a least square

sense. As the construction of this approximation over the entire domain can be de-

manding, it may be easier to generate an approximation of the failure probabilities

over a sub-domain (see e.g. [14]), i.e. to generate a local surrogate model. Local

surrogate model might require generally less evaluation points to be constructed al-

though they have to be continuously updated in order to following the current values

of the design variables. The surrogate model can be introduced at two different levels:

to replace the model (i.e. the estimation of the performance function) or directly to
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replace the reliability analysis (i.e. the failure probability).

The most used surrogate model in the reliability based optimization analysis is

the response surface methodology introduced by [6] and used a number of times in

the literature of reliability based optimization (see e.g. [19]). The advantage of this

approach is that the reliability assessment step is decoupled from the optimization

problem, i.e. the response surface is inexpensive to evaluate and thus, any appropriate

algorithm can be used to solve the optimization problem. Other surrogate models

include Artificial Neural Networks, Polynomial Chaos, Polyharmonic Splines [11].

As the construction of this approximation over the entire domain of the design

variables can be demanding, it may be easier to generate an approximation of the

failure probabilities over a local domain, i.e. to generate a local surrogate-model, see

e.g. [23].

3 OpenCossan

OpenCossan is a collections of methods and tools under continuous development car-

ried on at the Institute for Risk and Uncertainty at the University of Liverpool (UK)

based on the originally development by the group of Prof. Schuëller at the University

of Innsbruck (Austria) [16]. The OpenCossan is open source software released under

the LGPL licence [1]; this means that the program can be used for free, redistribute

and/or modify under the terms of the GNU General Public License.

These components are developed on Matlab R© environment, known for its highly

optimized matrix and vector calculations and high level programming environment.

These components include several predefined solution sequences to solve a number

of different problems. Typical applications include UQ and management, reliability

based optimization and robust optimization, life-cycle management, model validation

and verification.

It is important to mention that the proposed framework gives the maximum of the

flexibility to the users. Thanks to the modular nature of OpenCossan, coded exploiting

the object-oriented Matlab programming environment, it is possible to define special-

ized solution sequences including any reliability method, optimization strategy and

surrogate model or parallel computing strategy to reduce the overall cost of the compu-

tation without loss of accuracy. Additionally, new reliability methods or optimization

algorithm can also be easily added.

The computational framework is organized in classes, i.e. data structures consisting

of data fields and methods together with their interactions and interfaces. Objects, that

are instances of classes, can be aggregated forming more complex objects and proving

methods (i.e. solutions) for practical problem in a compact, organized and manage-

able format. For instance, to perform the reliability analysis is necessary to define

an object of type ”Probabilistic Model” that defined the problem under investigation

by combining Parameters, Random Variables, Performance Function and a Physical

Model (e.g. a FE model) objects. Then, the reliability analysis (i.e. the estimation
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Figure 1: Scheme of the open framework for reliability based optimization. The ar-

rows A and B indicate the dependencies between the reliability toolbox and the opti-

mization toolbox.

of the failure probability) can be performed combining this object with a reliability

solver object that defines the reliability methods (e.g. Monte Carlo, Line Sampling

etc.): Probabilistic Model Object + Reliability solver object → Failure probability.

The reliability solver allows to estimate the failure probability by means of approx-

imate methods (see e.g. [10]) or advanced simulation-based methods (see e.g. [20]).

First and second order reliability method and estimation of bounds can be mentioned

within the first category. The family of the advanced simulation-based methods in-

cludes importance sampling [17], line sampling [20] and subset simulation [4].

In the case of an optimization analysis, it is necessary to define an object of class

“Optimization Model” (that contains other objects used to define the Design Vari-

ables, Objective Function and Constraints) plus a solver, i.e. an instance of a class

“Optimizer” such as Cobyla, Simplex, Genetic Algorithms, etc. Then the optimiza-

tion is performed combining these objects: Optimization Model Object + Optimiza-

tion solver object → Optimum solution. The optimization toolbox provides a set of

widely used algorithms to solve constrained and unconstrained, continuous and dis-

crete, standard and large-scale optimization problems. The optimization toolbox in-

cludes gradient-based, gradient-free, deterministic and stochastic optimization meth-

ods (see Table 1).

Performing a reliability based optimization analysis requires 4 objects: Optimiza-

tion Model, Optimization solver, Probabilistic Model, Reliability solver as shown in

Figure 1. In addition, it is necessary to provide the mapping between the design vari-

ables (defined in the Optimization model) and the parameters of the model defined in

the Probabilistic Model (see arrow A in Figure 1). An example of a script used in

OpenCossan for performing reliability based optimization analysis is shown in Figure

2.

In the reliability based optimization, the computational efforts might become infea-

sible. One way to reduce the analysis time is to use meta-models, which approximate
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Figure 2: Example of a script used for the reliability based optimization.
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the quantity of interest at low computational cost. Meta-models mimic the behaviour

of the original model, by creating input-output relations that approximate the real one

by means of basic mathematical operations. Different surrogate models exist to ap-

proximate generic input-output relations, such as response surfaces [15] and Artificial

Neural Networks (ANN) [2]. An important indicator of the goodness of a meta-model

after the training (i.e. the calibration of the meta-model) is the coefficient of determi-

nation R2, defined as [8]:

R2 = 1 −

∑
i (yi − ŷi)

2

∑
i (yi − yi)

2 (5)

where yi are the outputs of the full model, yi = 1
Ndata

∑Ndata

i=1 yi and ŷi are the outputs

predicted by the meta-model. The accuracy of the output prediction of the meta-

model can be judged by the closeness of the value R2 to the target value of 1.0, which

expresses an exact match of the surrogate model prediction and the output of the full

model.

Adding an object of type “meta-model” to the “RBO object”, the analysis is per-

formed adopting the meta-model instead the reliability analysis block to estimate the

failure probability. In order to address these problems efficiently, the software in-

cludes the state-of-the-art of the algorithms and numerical procedures for simulation,

reliability and optimization analysis, respectively. Table 1 shows the main algorithms

and procedures implemented in OpenCossan.

Table 1: Main classes available for the reliability based optimization available in the

OpenCossan. In italic the classes that have shown to be more efficient for solving

reliability based optimization problems.

Toolbox Main algorithms and procedures

Reliability Monte Carlo, LatinHyperCube Sampling, Sobol’ Sampling,

Halton Sampling, Line Sampling, Subset simulation and ap-

proximate methods (FORM, bounds)

Optimization BFGS, COBYLA, Cross Entropy, Evolution Strategies, Genetic

Algorithms, MiniMax, Simplex, Simulated Annealing, SQP,

Stochastic Ranking

Meta-modelling Artificial Neural Networks, Response Surface, Polyharmonic

Splines, polynomial-chaos

4 Application examples

4.1 Steel Roof Truss

Description of the problem In this numerical example, the linear static behaviour

of a steel roof truss is herein analysed. The aim is to optimize the total volume of

the structure, i.e. the quantity of material required for constructing the steel roof truss
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Figure 3: Scheme of the steel roof truss and the load applied.

taking into account the effect of the uncertainties. It is imposed as a constraint of

the optimization problem that the failure probability has to be lower than 10−4. Sys-

tem failure is defined as the exceedance of the maximum allowed nodal displacement

defining the performance function.

The steel roof truss, as shown in Figure 4, is composed by 200 rod beams with

different cross section areas. A total number of 3 design variables are used to define

the cross section area of the structural beams according to type and location as shown

in Table 3. The grouping is carried out in order to make the optimization feasible,

since an optimization of each single beam might not have been feasible.

The uncertainties considered in the numerical example are summarized in Table 2.

Nodal loads are modelled as normal independently distributed variables. Each load

corresponds to different physical actions applied to the structure, which are in order of

increasing uncertainty respectively permanent, variable and natural actions (see Figure

4). The density of the material is also modelled as a random variable.

Table 2: Design variables and parameters of the steel Roof Truss.

Parameter Description

Design Variable (A1) 60 beams forming the top of the structure

Design Variable (A2) 100 beams connecting the top and the bottom of the structure

Design Variable (A3) 40 beams forming the bottom of the structure

maxDisp Capacity of the system (10−3 [m])

Parameter Distribution(µ,σ)

Load (L1) normal (12000,120) [N]

Load (L2) normal (16000,800) [N]

Load (L3) normal (50000, 20000) [N]

Young’s module (E) lognormal(2.0e11, 1.0500e+10) [Pa]

Density (ρ) normal (7500,150) [kg/m3]
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Figure 5: Evolution of the Design Variables (A1, A2 and A3) during the reliability

based optimization analysis.

Analysis The strategy adopted for the reliability based optimization of the steel roof

truss is the following. The reliability based optimization analysis is performed adopt-

ing the so-called direct approach. The advanced Monte Carlo method namely Line

Sampling is used to perform the reliability analysis at each iteration step of the opti-

mization procedure. The line sampling allows to estimate the failure probability with

only 60 model evaluations. The COBYLA algorithm is used to drive the optimization

procedure.

The evolution of the design variables, objective function and the constraint during

the optimization are shown in Figures 5,6 and 7, respectively.

The results of the analysis shows that a the total volume is decreased from the initial

value of 6.3 to 5.7 [m3]. The evolution of the design variables shows that the beam

section A3 is larger than the starting design while the design variables A1 and A2 was

reduced. The failure probability of the system has been successfully reduced from an
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based optimization analysis.
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initial value of 1.3 · 10−2 to the prescribed value 10−4.

It is important to notice that the total computational efforts required by the reliabil-

ity based optimization analysis adopting the Line sampling and Cobyla (1200 model

evaluations) represents only a small fraction of a single direct reliability analysis based

on Monte Carlo simulation (≈ 105 model evaluations).

4.2 Truss Tower

Description of the problem In this second example a truss tower, subjected to dy-

namic random excitation, is analysed (see Figure 8). The purpose of the example is

to minimize the total cost associate to the truss tower considering the effects of uncer-

tainties. The costs associated to the truss tower are defined as the costs required by

the material plus the costs associated to the unavailability of the service. More specif-

ically, the material costs have been assumed to be proportional to the total volume of

the beams multiplied by a unit cost, U1. The costs associated to the unavailability of

the service have been assumed to be proportional to the probability of failure of the

tower by a unit cost U2. Please note that in this numerical example the failure is related

to the serviceability and not to the ultimate limit state.

Hence the object function has been defined as follow:

F (·) = pf ∗ U1 + Vtot ∗ U2 (6)

In this numerical example no constraint functions are taken into account.

The truss tower is composed by twenty-five rod structural elements. These ele-

ments are assigned to three different groups (i.e. A1, A2 and A3) that define dif-

ferent cross section areas. System failure occurs when the nodal displacements are

beyond the allowed displacement, as shown in Figure 8. Structural response depends

on ground acceleration, which is herein represented as a Gaussian stochastic process.

The Youngs modulus and density of the material, attributed to each rod element, are

modelled as normal independently distributed random variables.

Table 3: Design variables and parameter of the truss tower.

Parameter Description

Design Variable (A1) [0.1 ·10−3 -2 ·10−3] [m3]

Design Variable (A2) [0.1·10−3 -4.6 ·10−3] [m3]

Design Variable (A3) [2·10−3-4.6·10−3]·10−3 [m3]

Unit Cost failure U1 1000 [cost/(unavailability)]

Unit Cost material U2 0.02 [cost/m3]

maxDisp Capacity of the system (0.024 [m])

Young’s module (E) normal(6.9 · 1010, 3.4 · 109 ) [Pa]

Ground Acceleration (ρ) Gaussian stochastic process (0,150) [m/s2]

Random dynamic excitation is applied to the structure as time history acceleration

by using stochastic process. Samples of the random excitation are generated using
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Figure 8: Truss Tower subject to random excitation.
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Figure 9: Evolution of the objective functions during the reliability based optimization

analysis analysis adopting response surface and poly-harmonic spline.

Karhunen-Loève expansion. The covariance of the stochastic process is computed

from an available set of experimental accelerograms, representing the ground acceler-

ation during an earthquake.

Analysis Because of the computational costs associate to estimation of the failure

probability of the system a direct approach is here not feasible. For this reason global

meta-models have been used to approximate the failure probability of the system.

Two different types of meta-model have been compared: response surface and poly-

harmonic spline. The training data required to calibrate the meta-model have been

computed using Monte Carlo simulation (i.e. 27 full reliability analysis have been

carried out) with 105 samples. The calibration of meta-model(s) is the most critical

and the most computational demanding phase of the reliability based optimization

analysis. In is important to mention that once the training data are available, more

meta-models can be calibrated and used at practically no additional computational

cost.

Then an unconstrained optimization, adopting the SIMPLEX algorithm, has been

performed using the calibrate meta-models. Figures 9 and 10 show the evolution of

the objective functions and the design variables during the optimization phase, respec-

tively.Thanks to the surrogate models, the optimization problem can be performed also

adopting a large number of iterations. In this example the Simplex algorithm has re-

quired up to 150 iterations in order to identify the optimum.

The results of this numerical example show that the meta-model allows to achieve a

better reduction in term of the total costs (i.e. a lower value of the objective function).

The main problem with the response surface is its inaccuracy to model extreme values

of the failure probability (i.e. zeros and ones). In fact the response surface leads to

inadmissible values of the failure probabilities while using the polyharmonic spline
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analysis adopting response surface and poly-harmonic spline.

the failure probability results correctly bounded between 0 and 1.

5 Conclusions

Combining optimization and reliability methods, it is possible to perform the so-called

reliability based optimization analysis and robust design optimization [22], which

seeks to identify optimal design solutions considering uncertainties and consequently

the risk. Such types of analyses are an integral part of the development cycle to make

the end-product, i.e. the component or system, less sensitive to factors that could

adversely affect the performance.

In this work, a general purpose and flexible computational framework for solv-

ing reliability based optimization problem has been presented. The presented toolkit,

namely OpenCossan, enables reliability based optimization analysis to be performed

by combining a number of different strategies and methods that represent the state-of-

the-art of the reliability and optimization algorithms. The computational framework

developed is open, portable, flexible and extensible. It has been designed to be in-

tuitive and user friendly allowing the users to apply very efficient tools and methods

without an extensive training. Hence, it can certainty be useful to engineers and re-

searchers, who are willing to develop in a non graphical mode, to test and develop

new strategies and solution sequences. The applicability and the flexibility of the pro-

posed framework for solving real-life problems have been demonstrated by means two

applications considering static and dynamic load.

In conclusion, it is crucial that stochastic tools and procedures are offered to users

for practical applications within easy-to-use general purpose software to strengthen

the link between industries and academic researchers.
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