
Abstract

In this work, we focus on error estimation for the assembly problem. We develop an

estimator dedicated to industrial structures where the cost is of primary importance.

The method is based on the constitutive relation error and associated admissible field

construction.

Keywords: assemblies, error estimation, quantity of interest.

1 Introduction

In the framework of industrial design, a common practice is to use finite element codes

to model assemblies. We focus in this work on the quality of such simulations [2].

Some works have been developed in the past for controlling finite element simulations

with contact [10, 4], but the measure introduced was global. As far as mechanical

criteria are often local, a global measure is not sufficient. We propose here to focus on

a quantity of interest which is interesting for dimensioning : the stress. The path we

follow to obtain an error in a quantity of interest is to extend previous works developed

for linear analysis [7]. The final objective is to control the meshes in the framework

of assemblies, starting from the local error measure defined in this work.

For more than thirty years the global discretization error (see [1, 9] for an overview)

has been extensively developed. More recently, research has focused on goal-oriented

error estimation, i.e. the estimation of the error on specific outputs of interest which

may be relevant for design purposes. Several techniques have been proposed for goal-

oriented error estimation, and particularly for linear problems [11, 3, 12, 13, 5] based

on the resolution of a dual problem. Extensions of this method have also been pro-

posed for different non-linear problems. We propose here an alternative approach

that conduce to a lower cost. Results are not proved mathematically but remains very
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sharp, which is interesting from a practical point of view.

We use here the constitutive error concept to estimate the finite element errror [9].

This method relies on construction of the so-called admissible fields. The first point

of this work is to revisit the construction of the admissible stresses. A particular

attention is paid to the construction at the boundary of the domain ; especially for

boundaries that makes part of the contact zone. From a practical point of view, some

information can be missing due to files’ transfer between codes and are not available

for a posteriori error estimation. The second point is to derivate a practical tool for

estimating error on the stress.

2 Reference model and constitutive relation error

We focus on the quality of such 3D finite element simulations. The error on the results

obtained by simulation can be split in two parts. The first part is due to the discretiza-

tion of the finite element method. The second part is due to the numerical method

used for solving the contact problem.

After introducing the reference problem in section 2.1, we introduce an error esti-

mator section 2.2. The estimator introduced allows one to estimate both part of error

(classical F.E. discretisation and contact problem).

2.1 Reference problem

We consider the problem of an elastic domain Ω. The structure has been divided into

sub-domains ΩE and interfaces ΦEE′ (fig 1). The structure is submited to body forces

f
d

defined on Ω. Prescribed displacements ud and forces F d on the dirichlet ∂1Ω and

Neumann ∂2Ω = ∂Ω−∂1Ω boundary limits. The unknowns of the equations are u the

displacement in the subdomains, W the displacement on the interfaces, σ the stress

field in the subdomains and F the tractions on the interfaces.

We designate the material’s Hooke’s operator by K,and b the bi-potential intro-

ducted by De Saxc on [4].

The three sets of equations are then:

• The kinematic constraints

u = ud on (∂1Ω) (1)

u = W on (ΦEE′) (2)

• The equilibrium equations

σ ∈ S, σ.n = F d on (∂2Ω) (3)

σ ∈ S, div (σ) + f
d

= 0 on (ΩE) (4)

σ.n = F on (ΦEE′) (5)
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Figure 1: reference model

• The constitutive relation

σ = Kǫ (u) on (Ω) (6)

b(F ,−W ) = F .W on (ΦEE′) (7)

2.2 Constitutive relation error

The constitutive error concept is a tool for that measure the distance between the

unknown solution of the reference problem and its finite element resolution [9]. The

approach based on the error in constitutive relation relies on a partitioning of the above

equations into two groups:

• the admissibility conditions Eqs (1) to (5)

• the constitutive relation Eqs (6) and (7)

In practice, the constitutive relation is often the least reliable of all the equations of the

reference problem. Therefore, it is natural to consider approximate solutions which

verify the admissibility conditions exactly. Then we quantify their quality by the de-

gree to which the constitutive relations are checked. This leads to the introduction of

the following definition of the constitutive error:

E2

CRE =
∑

ΩE

‖σ̂ − Kǫ(û)‖2

ΩE
+

∑

ΦEE′

‖b(F,−W ) − F.W‖2

ΦEE′
(8)

with û, σ̂ are admissible field (û is kinematically admissible and σ̂ is statically admis-

sible). And where ‖ • ‖ΩE
(resp. ‖ • ‖ΦEE′

) is the energy norm define on ΩE (resp.

ΦEE′).

We are interested here in estimate ‖σ̂ − Kǫ(û)‖2

ΩE
on one domain ΩE (discretiza-

tion part of the constitutive error) without using the data of other domains ΩE . The key
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point of the method is the construction a pair of admissible fields (û, σ̂). In fact the

finite element solution uh is always kinematically admissible, so we choose usually

û = uh.

2.3 Admissible field

2.3.1 two steps

The construction of a kinematically admissible field is straightforward. The calcula-

tion of an admissible stress field σ̂ is a crucial and technically complicated point. It is

based on the finite element solution σh and the problem’s data.

This construction is divided on two step:

• Construction of load densities F̂ h:

The load densities F̂ h are defined on the edge Γ of each element. These densi-

ties are calculated such that they are in equilibrium with the given boundaries

condition of the reference problem, they check:

F̂ h = F d sur ∂2Ω (9)

∫

E

f
d
.U∗

hdE +

∫

∂E

ηΓ

EF̂ h.U
∗

hdΓ = 0

∀U∗

h rigid body displacement field over E.

(10)

Where the scalar ηΓ

E = ±1 and ηΓ

Ei
.ηΓ

Ej
= −1 for two adjacent elements Ei et

Ej on their common edge Γ [14, 15]

• Construction of σ̂ from F̂ h

Once the load densities F̂ h at hand, we calculate the admissible stress field σ̂.

Analytical method [17, 18] or numerical method can can be used for recovering

the stresses. In [19] on shows that using finite element method with higher-order

elements provides good results. We chose this solution.

2.3.2 construction of load densities

In this work we focus on the construction developed in [16, 7, 8]. The principle

consists in dividing the load densities into two parts. The first part corresponds to the

affine part R̂ of F̂ h and corresponds to the nodes which are vertices of the mesh. And

the higher-degree part Ĥ corresponds to the non-vertices nodes of the mesh.

F̂ h|Γ = R̂|Γ + Ĥ|Γ (11)

• Part Ĥ is calculated by the method described [17], we recall here the main idea.

This method is based on the prolongation condition for each non-vertex nodes. This

leads to a local equality. The idea is to construct densities whose associated admissible
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stress field has the same energy norm that the finite element stress field.

The local prolongation condition for each node i writes :

∀E ∈ Pi,

∫

E

Tr[(σ̂h − σh) ǫ (ϕi)]dE = 0 (12)

Where ϕi are the finite element basis functions associated to de node i, and Pi the set

of all element around the node i.
Introducing the load densities, this relation can be written:

∀E ∈ Pi,
∑

Γ

ηΓ

E

∫

Γ

F̂ hϕidΓ =

∫

E

(

σhgrad (ϕi) − f
d
ϕi

)

dE (13)

We obtain Ĥ|Γ by solving the systems constituted of the prolongation condition for

each node.

• Part R̂ is then calculated starting from Ĥ by minimizing the complementary energy

of the whole structure. The minimization of the complementary energy is mathemati-

cally leads to the minimization of a quadratic functional under linear constrain.

min
R̂∈R

(

Ec(R̂)
)

(14)

Where

R =

{

R/

∫

Γ∈∂E

R + Ĥ|ΓdΓ = 0

∫

Γ∈∂E

(

R + Ĥ|Γ

)

∧ OMdΓ = 0

R|∂Ω = F d − Ĥ|∂Ω on (∂2Ω) (15)

R|∂Ω = F − Ĥ|∂Ω on (ΦEE′)
}

This minimization (14) is solved exactly introducing Lagrange multipliers. When this

minimization has been solved we obtain F̂ h = R̂ + Ĥ .

3 Estimating contribution to global error on a substruc-

ture

We are interested in estimating the discretization error part of the constitutive error

e2

ΩE
without using data of the others domains ΩE .

e2

ΩE
= ‖σ̂ − Kǫ(û)‖2

ΩE
(16)

The main problem addressed here is to determine the traction locally, without using

the results on the other subdomains. The idea introduced here is to use the finite
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element on the sub-structure ΩE to build traction on the boundary of ΩE . In fact, the

domain ΩE is considered as a structure and the boundary conditions are not supposed

to be known.

Starting from the finite element solution, if the mesh is sufficiently fine, we have :

F d ≃ σh.n (17)

For a coarse mesh (17) is not satisfied. This leads to an error, but we consider this

very simple approximation in a first step. The original technique proposed here is then

replaced by an approximated construction of the loads densities. It is always based on

a minimization but the constraint are approximated :

min
R̂∈R̃

(

Ec(R̂)
)

(18)

Where

R̃ =

{

R/

∫

Γ∈∂E

R + Ĥ|ΓdΓ = 0

∫

Γ∈∂E

(

R + Ĥ|Γ

)

∧ OMdΓ = 0 (19)

R|∂Ω = σh.n − Ĥ|∂Ω on (∂2Ω) or (ΦEE′)
}

This method leads to the determination of densities in a very simple manner. The

same techniques are used for solving this minimization as for (14).

4 First results

We present in this part two types of results. The first one concern an academical

problem where an overkill solution is available. The second ones shows the very first

results on an industrial structure.

4.1 2D academic example

First we study the result of the method proposed on an academic 2D problem. This

problem is constituted of only one sub-structure, in order to have a very small test

case. The simplicity of such a problem allows one to derivate an exact solution. An

illustration of error distribution using the above presented method is given on Figure 2.

A comparison between actual error and estimated error makes it possible to estimate

the efficiency of the method.

The effectivity index η is classically defined as :

η =
‖σ̂ − Kǫ(û)‖2

ΩE

‖σex − Kǫ(uex)‖
2

ΩE

(20)
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Figure 2: 2D academic example

Figure 3: 3D industrial example

where (σex, uex) is the exact solution pair of the problem

We obtain for this test η = 1.27. This efficiency is close to 1, which give a estima-

tion a good estimate of the actual error.

4.2 3D industrial example

We are interested into the error into the substructure due to the loading that come

from the Finite Element simulation where the boundary limits are representative of a

assembly. To simplify, we are not interested into the error due to the second term of

the constitutive relation error that measure the numerical scheme employed to simu-

late the contact. Further details will be given in the conference presentation and in a

forthcoming paper. An illustration of the studied structure is given in Figure 3.

5 Conclusion

The results obtained here correspond to a first step in the verification of assembly

problems. The next step will be to estimate the error due to the numerical scheme

employed to solve the contact problem. A demonstrator is about to be implemented
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into SANCEF for contact problems. Introducing an adaptive technique also remains

an objective, it is in fact an adaptation of previous work [6] on the contact problem.
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