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Abstract

Lateral-torsional buckling and postbuckling of beams can be analysed using finite ele-
ment methods. In formulating a finite beam element, a rotation matrix is used to derive
nonlinear strain-displacement relationships. Because of couplings between displace-
ments and twist rotations, components of the rotation matrix are lengthy and compli-
cated. To facilitate the formulation, approximations are usually made to simplify the
rotation matrix. A simplified small rotation matrix is often used in the lateral-torsional
buckling analysis and a simplified second order rotation matrix is used for the lateral-
torsional postbuckling analysis. However, the small rotation and second order rotation
matrices do not describe rotations accurately and introduce some approximations to
the coupling between displacements and rotations. This paper investigates the effects
of the approximations on the lateral-torsional buckling and postbuckling analysis of
beams. It is shown that a analytical model based on the small rotation matrix predicts
incorrect buckling loads. A finite element model based on the second order rotation
matrix may lead to poor predictions of the postbuckling behaviour.

Keywords: approximations, lateral-torsional buckling, postbuckling, rotation, second
order.

1 Introduction

In development of a finite beam element for the lateral-torsional buckling analysis of
structures (Fig. 1), a rotation matrix is usually used to derive the nonlinear strain-
displacement relationship. Because of couplings between displacements, twist rota-
tions and their derivatives, the components of the rotation matrix are both lengthy and
complicated. To facilitate the formulation, approximations have been used to simplify



the rotation matrix [1]-[7]. A simplified small rotation matrix given by [1, 2]

1L —¢
Rl=] ¢ 1 u (D)

/ !/

is often used to derive the displacements of an arbitrary point P of the beam as

upi1 Uy x T
upy p =14 Uy p+[R]S y -3 Y ¢ (2)
Ups Us —wq' 0

where w1, us, and ug are the lateral, transverse, and axial displacements of the shear
centre of a cross-section, ¢ is the twist rotation of the cross-section, upy, ups, and
upg are the lateral, transverse, and axial displacements of the point P, x and y are the
coordinates of the point P in the principal axis of the cross-section, w is the normalized
section warping displacement, and ( )’ = d( )/dz. The displacements up;, up2, and
ups are then used to derive the strains at the point P, which are then used to formulate
the total potential energy of a beam and load system for its lateral-torsional buckling
and postbuckling analyses.

(a) Beam (b) Lateral-torsional buckling

Figure 1: Lateral-torsional buckling.

A second order rotation matrix is conventionally used in the formulation for the
buckling and postbuckling analysis of beams and beam-columns [3]-[7], which is
given by

L= ju’ =~ 36" —¢- ;wlug u
[R] = d) - %USU’z ~3 307 Uy |- 3)
— ubp u2 —|— ulgb 1

Because of approximations, these rotation matrices do not satisfy the orthogonal-
ity and unimodular conditions. As a result, the approximations may lead to a loss
of some significant terms in the nonlinear strain-displacement relationship. Without



these terms, the rigid-space body motion cannot be separated from the real deforma-
tions. The superimposed rigid body motions may lead to the development of self-
straining, which may in turn affect significantly the prediction of the lateral-torsional
buckling loads and the postbuckling behaviour of beams and beam-columns [4, 7].
The aims of this paper are to investigate the effects of approximations on the elastic
lateral-torsional buckling and postbuckling analyses of beams and beam-columns and
to derive an accurate formulation for the elastic lateral-torsional buckling and post-
buckling analyses. Vlasove’s theory of torsion [11] and the Euler-Bernoulli theory of
bending are used in this paper, i.e. the cross-section of the member maintains its shape
during deformation. Another assumption used is that the strains are small.

2 Deformation and Strains

In the formulation of a finite element program for the lateral-torsional buckling and
postbuckling analysis of beams and beam-columns, an accurate rotation matrix is re-
quired. To derive the rotation matrix, two axis systems are used to describe the motion
of a thin-walled member. The first axis system OX; X5 X35 is fixed in space as shown
in Fig. 2. The origin O of the system is located on the centroid of an end of the mem-
ber. The axis O X3 coincides with the undeformed centroidal axis of the member. The
axes OX; and O X, coincide with the principal axes oz, oy of the undeformed cross-
section. The basis vectors of the axis system OX; X, X3 are ]51, ]32, ]33 The second
axis system is a body attached axis system. Before deformation, the origin o of the
system is at the centroid of a cross-section through (0,0, z3) where 0,0, z3 are the
coordinates of the origin o in the axis system OX; X, X3. The axis ozs of the system
coincides with the axis O X3 and the axes oz, and oz coincide with the principal axes
ox and oy of the cross-section. The basis vectors of the system are pj, ps, p3. After
deformation, the centroid of the cross-section displace w1, uy, ug in the direction O X7,
0X,, OX3 from the point o to the point 0o* and at the same time the cross-section
rotates angle ¢, so that the body-attached axis system moves to o*xjx5z5. The axis
o*z3 1s in the tangential direction of the deformed centroidal line 0*s*. The axes o*z7]
and o*z% coincide with the principal axes oz, oy of the cross-section at the deformed

k) kK K kK

position. The basis vectors of the axes system o*zjz5x; are 1, ¢, 5.

The rotation from the vectors p7, pa, p3 to the vectors qi, g2, g3 can be described by
an orthogonal rotation matrix |R]

py=I[Rlg  (i,j=1,23). 4)

An accurate rotation matrix was derived by Pi and Trahiar [8] and Pi et al. [9] can
be used. The components of of the rotation matrix [R] are given by [8, 9]

Riy Rz Ris
Rl = | Ran Raa Res |, (5)
Rs1 Rsy Rss
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Figure 2: Rotation during deformation.

with
Ry = [1 = M4 (1+ €)72)C — wjub\(1 + €) 728, (6)
Rip = —[1 = M2 (1 4 €)74S — dhubA\(1 4 €)72C, (7)
Rz =u}(1+e)7 !, )
Ry = [1 = Mib*(1+ €)72)S — wiub\(1 + €)2C, 9)
Ryy = [1 — Mub>(1 + €)72)C + whuhA(1 + €) 728, (10)
Roz = up(1+¢) 7", (11)
Rz = —uj(1+¢)7'C —up(1+¢)7'9, (12)
Ry = uf(1+ )71 —uy(1 +6)71C, (13)
Rss = (14 u})(1+¢)", (14)

where C' = cos ¢, S = sin ¢, ¢ is the twist rotation of the cross-section, (1 + €)? =
(u))? + (uh)? + (1 +up)?, and A = (1 —cosa)/sin? a with cos a = (1 +uj) /(1 +e).

The rotation matrix in Eq. (5) satisfies the orthogonal conditions [R][R]" = [I] and
det[R] = 1 and so it can accurately describe the rotation. An accurate nonlinear finite
element model for the 3-D elastic large deformation analysis of beams and beam-
columns can be derived based on this rotation matrix.

The second order rotation matrix given by Eq. (3) can also be obtained by intro-
ducing approximations (1 + €) ~ 1, sin¢ &~ ¢, and cos ¢ ~ 1 — ¢*/2 in the accurate
rotation matrix given by Eq. (5) and ignoring the third and higher order terms, while
the small rotation matrix given by Eq. (1) can also be obtained by introducing approx-
imations (1 + €) &~ 1, sin¢ ~ ¢, and cos ¢ ~ 1 in the accurate rotation matrix given
by Eq. (5) and ignoring the second and higher order terms.



With the expressions of the displacements of an arbitrary point P given by Eq. (2),
the Lagrangian strain components €;;, at the point P can be derived as [10]

8UP1. 1 aUpj 9 .
€ = o +§Z( 2 (i=1,2,3) (15)

for normal strains, and

3
8tu 8tu

J=1

Oup,  Oup,
k= ———+—+
il 8xz 8xk

(i=1,2,3 k=231 (16

for shear strains.

Substituting the small rotation matrix given by Eq. (1) into Egs. (2), (15) and (16)
leads to the normal strains as [1, 2]

€11 = €9 = 0, (17)

and

1 1
€ = 5 (05 %)y (] — ) — () — 0+ (0 +03)
(18)

and the shear strains as

ow ., ow |
€12 =0, €3= (11— (9_;)2)¢’ and €3 = —(z2 + 8—;1)(25 (19)

Substituting the second rotation matrix given by Eq. (3) into Egs. (2), (15) and (16)
leads to the normal strains as [5]-[6]

€11 = €22 = 07 (20)
and
o 1 12 12 12 " " " " 11 1 2 2\ 112,
€33 = u3—|—§(u1 +uy” Fug”) —xy (uf Fun) —xo(uy —uid) —wed” + = (7 +235)9";
(21)
and the shear strains as
0 0
€12 =0, €= (21— 8—;;)¢/, and €3 = —(22 + G_ZM)/' (22)

Substituting the accurate rotation matrix given by Eq. (5) into Egs. (2), (15) and
(16), and ignoring the higher order terms lead to the normal strains as [8]

€11 = €99 = 0, (23)



1
€33 = {uy + §(u’12 + u’22 + u§2)} — x{[ufus — wjuy)C + [uhis — ujuy|S}H

1
+za{[ufy — w'us] S — [uytly —uyus]C} — wid’ — S(ujuy —wyuy)Y

1
+ 5@+ 22%)¢%; (24)
and the shear strains as
€12 = 0, (25)
ow 1
€23 = (11 — 8_@)[¢/ + 5(”’1’”’2 + uhuy)], (26)
and 5 .
w
€13 = —(22 + 5—)[¢ + - (ufuy + ujuy)] (27)
aiﬁl 2

with ug = 1 + uj.

The Vlasov’s hypothesis [11] that the shear deformations in the mid-surface of the
thin-walled plate are extremely small and can be neglected is used for open thin-walled
members. According to this hypothesis, the warping function w(z, x2) have different
expressions for the different thin-walled plates of the cross-section. For example, for
I-section,

x1(zg + h) for top flange
W(Il,xg) = —I1X2 for web (28)
x1(xg — h) for bottom flange

where £ is the distance between the centroids of top and bottom flanges.

3 Lateral-Torsional Buckling Analysis

The potential energy of the system in the infinitesimal lateral-torsional buckling con-
figuration can be expressed as

1
II= /V {§[E€§3 + G(ely + e33)] + 033633} dv; (29)
where the first term is the strain energy due to lateral-torsional buckling deformations
and the second term is the energy due to the constant prebuckling stress o33 = Fess
associated with the strain €33 produced by the lateral-torsional buckling deformations.

For a beam with a uniform doubly symmetric I-section, by substituting Eqs. (18)-
(19) into Eq. (29), and ignoring the higher order terms, the potential energy based on
the small rotation model given by Eq. (29) can be rewritten as a functional by

1 L
- /0 (EL!” + GJ& + ElL¢" — 2Mu,d)dz (30)



where I, = [ [y?dA, J = [ [[(z1 — Ow/Ox2)* + (22 + Ow/0x1)?|dA, I, =
ffu)2dA, and M = ffO'gg.IQdA.

Substituting Eqgs. (21) and (22) into Eq. (29) leads to the total potential energy
based on the second rotation matrix as

1 L
=3 /0 (EL” + GJ¢” + EL,¢"™ — 2Mul¢)dz. (3D

The term fOL 2Mu¢'dz of the small rotation model in Eq. (30) for the work done
by the stress resultant during the buckling is quite different from the corresponding
term fOL 2Mu¢dz of the second order model in Eq. (31). This difference will affect
the predictions of the lateral-torsional buckling load of a beam. To illustrate this, the
lateral-torsional buckling of a simply supported beam of doubly symmetric I-section
under a moment gradient is investigated (Fig. 3). The moment in the beam can be
expressed as :

M(z) =M [1 —(1+ ﬂ)%] . (32)

= =
| L |

Figure 3: Simply supported beam under moment gradient.

The buckling shapes of the beam may be approximated as

2
¢z€sin% and :(518111%—1—528111%. (33)
By substituting Eq. (33) into Eq. (30), the potential energy can be expressed as a

function of 9y, 95 and 6 by

’7T2 N2 2 2

2N. 20M M
"0 p2 B —1)40 + Z(ﬁ — 1)516} , (34
in which N, and Nj are the flexural buckling load and the torsional buckling load of
the pin-ended column with the same length under uniform axial compression, respec-
tively; and they are given by
. E[QT{'Q 1

El,x?
5 and Ny = (GJ+ - ) — 0. (35)
0

Ny

Minimization of the function II given by Eq. (34) is equivalent to minimization of
the potential energy given by Eq. (30). The values of d;, d2, # minimizing the function



IT should therefore satisfy the algebraic equations

oIl oIl oIl
=0 = =0 d — =0 36
26, a5, M ag (50)
which leads to the matrix eigenvalue problem as
172 Ny 0 M, 01 0
573 | 0 16N M, b p=40 (37)
M, M, 7riN; 0 0

where M, = —M|[1 — (1 + 3)/2] and M, = —0.36025M (1 + (3).

Non-trivial solution for {41, d2, 6} requires that the determinant of the coefficient
matrix of Eq. (37) vanishes, which leads to the solution for the lateral-torsional buck-
ling of the beam as

Me, 1
My \/[1 ~ (11 5)/2F + [0.09005(1 1 ) 8

where Msz = /12 Nans is the lateral-torsional buckling moment of a simply sup-
ported beam under uniform bending.

When the second order rotation matrix is used, the matrix eigenvalue problem be-
comes

1.2 M 0 M, o1 0
Ma Mc T(%Ng 9 0

where M. = —0.7205M (1 + (3).

Accordingly, the solution for the lateral-torsional buckling of the beam becomes

M., 1 0
My \| 1 = (1+ 3)/2]2 + [0.1801(1 + B)]2 (40)

The solution based on the small rotation matrix given by Eq. (38) is compared with
that based on the second order rotation matrix given by Eq. (40) in Fig. 4. The FE
results of of the finite beam element developed in this paper and ABAQUS [12] are
also shown in Fig. 4. In the FE analysis, the Australian steel 250UB37 I-section [13]
was chosen as the cross-section of these arches and its dimensions are: the overall
depth D = 256 mm, the flange width B = 146 mm, the flange thickness ¢t; = 10.9
mm, the web thickness ?,, = 6.4 mm, and the radius of gyration of the cross-section
about its major principal axis (z axis) r, = 108 mm. The Young’s and shear moduli
were assume as £ = 200,000 MPa and G = 80,000 MPa. The FE results of the
present finite beam element are indentical to those of ABAQUS [12]. It can be seen
that the solution given by Eq. (40) agrees with the FE results extremely well while the
solution given by Eq. (38) over-estimates the buckling moments when the moment
gradient coefficient 3 > —0.4.
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Figure 4: Lateral-torsional buckling of simply supported beam.
4 Lateral-Torsional Postbuckling Analysis

4.1 Nonlinear equilibrium

To predict the lateral-torsional postbuckling behaviour of beams and beam-columns,
a finite element for the nonlinear elastic large deformation needs to be developed. For
this, the nonlinear equilibrium equations of a beam or beam-column can be derived
from the principle of virtual work that requires that

dur = / / / (de}T {o}dV — {dr}T{Q} = 0 1)

for all sets of virtual displacements {dr} and corresponding virtual strains {de}, where
{r} is the nodal displacement vector given by

{7“} = {Un, U/117 U2, U,127 13, O1, ¢37U21,U§1,U22,U§27U23, O, ¢/2}T7 (42)

and {Q} are the corresponding nodal forces which are equivalent to the applied ac-
tions.

The variations of finite strains {de} can be obtained from Eqs. (24), (26) and (27)
as

{dé} = {d633, dEQg, délg}T = [S] [B]{d@}, (43)

where

{d0} = {dul, duf, dut’, duy, duy, duy, duy, duy, d, de', d¢"}7T, (44)



1 x1 29 w (z7+23) 0
S]=10 0 0 O 0 (1 — 0w/0xs) |, (45)
0 0 0 O 0 — (29 + Ow/0xy)

and the components of matrix [B] are dependent on the rotation matrix used.

Substituting Eq. (43) into (41) and introducing
{0} = [IN{r} (46)
leads to the nonlinear equilibrium equations

{Qhins — {Q} = {0} with {Q}in / N7 [B]{ R}das, 7

where [N] is the shape function matrix whose elements are the functions of z, and
{R} is the stress resultant vector defined by

()= [ [1s7{oan (48)

Taking variations of Eq. (47) leads to the nonlinear incremental equilibrium equa-
tions

[kr[{Ar} = {AQ} (49)
where the tangent stiffness matrix [k is given by
[k]r = [k] + [Kla, (50)

in which [k] is the displacement stiffness matrix given by

K = / NI (B [DI[B][Ndzs with [D] = / / STESIdA, (1)

and [k|q is the geometric stiffness matrix given by

Mo = [ NV (b1l [Nl e
with the following identity
[dB]"{R} = [M],{d0} = [M],[N]{dr} (53)

being used.

Equations (49) can be used for both the conventional second order finite beam el-
ement and the present accurate finite element models. However, the matrix [B] in the
displacement stiffness matrix [k] and the matrix [M], in the geometric stiffness ma-
trix [k]g are different and these differences may have significant effects of the elastic
lateral-torsional postbuckling analysis of beams and beam-columns. The details of
thses differences are given in the next section.
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4.2 Effects of approximations on the stiffness matrix

To illustrate further how some significant terms are lost in the conventional second
order rotation model, a term —xq[ul (1 + u}) — ubuf] cos ¢ of the longitudinal normal
strains €33 of the accurate rotation model given in Eq. (24) and the corresponding term
—xouf of the second order rotation model given in Eq. (21) are herein used.

The first variation of these terms contributes to the displacement stiffness matrix
[k] can be written as

Koz = / NIZ(BIZ, [D)[Bl,, [Ny ds. (54)

The first variation of the term —xo[uf (1 +u}) — uluf] cos ¢ of the accurate rotation

model is
0 {—a2[uy (1 + ug) — wug] cos ¢} =
—zo[uydusy+ (1+us)duy —usduy —usduy] cos g+ xousy (1+us) —uyus] sin pdgp, (55)

and its contribution to the matrix [B] is

[0 00 O 0 0 0 0 0 0 0]
000 O 0 0 0 0 0 00
100 0 uiC —(1+u5)C 0 —usC uyC uyS 0 0
[Be; = 000 O 0 0 0 0 0 00 (56)
000 O 0 0 0 0 0 00
000 0 0 0 0 0 0 0 0|
where C' = cos ¢, S = sin ¢, and third and higher order terms are omitted.
The first variation of the term —x,uj of the second order rotation model is
§(—wouy) = —xadul, (57)
and its contribution to the matrix [B] is
0000 0 00O0O0O0 O]
0000 -10000°0F0
0000 O O0O0O0OOO0OO
[Ble; = 0000 0 0O0OOGOO (58)
0000 0 O0O0OOOGOO
0000 0 0O0O0O0O0 O

Comparison Eq. (56) with Eq. (58) indicates that all the nonlinear terms of the
matrix [B],2 given by Eq. (56) are lost in the second order rotation model.

11



The second variation of the terms —zo[uf (1 + u}) — uhufj| cos ¢ and —x9uf con-

tributes to the geometric stiffness matrix [k]s as

Moo = | N (M] [N]odas. (59

The second variation of the term —xs[uf(1 + uj) — uhuf] cos ¢ of the accurate

rotation model is equal to
0 —xafusy (1+uy) —uhusy| cos ¢} = 2w uyduy+ (14 uy)ouy — uhduy — usdus] sin g
— 225 (dulyduly — dubdus) cos ¢ + xofuly (1 + uh) — ubuy] cos d(dp)?,  (60)

and its contribution to matrix [M] is

000O0O0O O 0 0 0 00
00000 0 0 0 00
0000 0 0 0 00
000 0 R3cos ¢ 0 0 0
0 0 —Rzcos¢ 0 R3sing 0 0

[M],,, = 0 0 0 0 00 (61)
0 0 0 00
0 0 00
0 0 0
Sym. 00
- O_

where the effects of third and higher order terms are omitted, and
R3 = / / I’QJggdA. (62)

The second variation of the term —z,u? of the second order rotation model is equal
to zero so that it has no contribution to the matrix [/] and

(M., = [0], (63)
which shows that all the significant terms of the geometric stiffness matrix [k|g due to
Eq. (61) are completely lost in the second order rotation model.

4.3 Incremental-iterative analysis

A Newton-Raphson method is used in conjunction with the incremental equilibrium
equation given by Eq. (49) to solve the nonlinear equilibrium equations (Eq. (47)). In
the incremental-iterative implementation, each load step consists of the application of

12



an increment of the external loads and subsequent iterations to correct the errors until
the nonlinear equilibrium is restored within a specified admissible tolerance. Before
the restoration, the internal and external forces are not in equilibrium and hence the
incremental-iterative equilibrium equations can be written from Eq. (49) as

Kl {Ary] = {AQ): + {AQY ™, (64)

where ¢ and j denote the load step and the iteration within the load step, respectively,
and {AQ}J " is the unbalanced force in the last iteration (j — 1) that can be calculated
using Eq. (47) as

{AQN " =[Qwn - Q. (65)

The arc-length method is used as the iterative strategy, with an automatic increment
of the arc-length being used as the incremental strategy [8, 9, 14]. The sign of the de-
terminant of the tangent stiffness matrix is used for the sign of the load increment. The
maximum norm of the incremental displacements is used for testing the convergence,

so that
A?"k

| <¢ (66)

€] = max|
k,ref
where Ary, is the change in the displacement component % during the current iteration
cycle, 74 ¢ 5 1s the largest displacement component of the corresponding type, and ¢ is
in the range 1072 to 1075, depending on the desired accuracy.

4.3.1 Buckling and postbuckling analysis of an elastic continuous beam

The flexural-torsional buckling and postbuckling behaviours of an elastic aluminium
I-section two span continuous beam subjected to concentrated loads ()1 and (), at mid-
spans D and E of each span shown in Figs. 5 and 6 were investigated. The loads (),
and (), are applied at x5, = —41.1 mm and the load ratio is Q1/Q2 = 0.5. The self-
weight of the beam is ¢,, = 77.874 N/m. To induce flexural-torsional buckling, small
initial out-of-plane crookedness (u;, = uy,, sinmxs/L with uy,. = L/1,000,000) is
introduced. The beam is divided into eight equal elements.

Q Q,
Ao e c Ny
o L=366m _ L=366m / e
X,
D=75.79mm ty=2.16mm
B=21.84mm E = 64,120MPa
ty= 3.10mm G = 25,500MPa
Figure 5: Two span continuous beam. Figure 6: Cross-section.
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The results of the present accurate and conventional second order models are com-
pared with the test results of Woolcock and Trahair [15] in Fig. 7 where () is the value
of (2, Q). is the test elastic buckling load of ()2, and wu,, is the lateral displacements
of the points D and E. The buckling loads predicted by both the accurate and the con-
ventional second order models are almost identical and agree well with the test result.
However, for the postbuckling behaviour, the results of the conventional second order
model are significantly different from those of the present accurate model. The results
of the present accurate model are in very good agreements with the test results, but
the results of the conventional second order model are over-stiff and their agreements
with the test results are poor.

5 14 .
g ; iddle point at the unloading span
) 1.2 B
<
g _—
ﬁ 1+ Middle point at the loading span B
2
g
2z  08f A
5]
£
A 0.6 B
0.4 B
- FE model based on the second order rotation matrix
0.2F — FE model based on the accurate rotation matrix B
o Test results of Woolcock and Trahair [15]

0 1 1 1
-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Lateral displacement uxi (m)

Figure 7: Lateral-torsional buckling of two span continuous beam.

5 Conclusions

The effects of approximations in formulating a finite element model on the nonlinear
inelastic large rotation analysis of beams and beam-columns have been investigated in
this paper. A total Lagrange nonlinear finite element model for the three-dimensional
analysis of beams and beam-columns has been developed. No approximations were
made in deriving the nonlinear strains so that some significant contributions to the tan-
gent stiffness matrix by the coupling terms and the higher order curvatures have been
retained. As a result, the over-stiff solutions have been eliminated. In a conventional
model, however, these significant contributions have been lost because of approxi-
mations in the formulation. Comparisons with available experimental and analytical
results have shown that the approximations may lead to over-estimations of the buck-
ling loads of beams, and poor postbuckling analysis of beams and beam-columns in
some cases.
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