
Abstract

Lateral-torsional buckling and postbuckling of beams can be analysed using finite ele-

ment methods. In formulating a finite beam element, a rotation matrix is used to derive

nonlinear strain-displacement relationships. Because of couplings between displace-

ments and twist rotations, components of the rotation matrix are lengthy and compli-

cated. To facilitate the formulation, approximations are usually made to simplify the

rotation matrix. A simplified small rotation matrix is often used in the lateral-torsional

buckling analysis and a simplified second order rotation matrix is used for the lateral-

torsional postbuckling analysis. However, the small rotation and second order rotation

matrices do not describe rotations accurately and introduce some approximations to

the coupling between displacements and rotations. This paper investigates the effects

of the approximations on the lateral-torsional buckling and postbuckling analysis of

beams. It is shown that a analytical model based on the small rotation matrix predicts

incorrect buckling loads. A finite element model based on the second order rotation

matrix may lead to poor predictions of the postbuckling behaviour.

Keywords: approximations, lateral-torsional buckling, postbuckling, rotation, second

order.

1 Introduction

In development of a finite beam element for the lateral-torsional buckling analysis of

structures (Fig. 1), a rotation matrix is usually used to derive the nonlinear strain-

displacement relationship. Because of couplings between displacements, twist rota-

tions and their derivatives, the components of the rotation matrix are both lengthy and

complicated. To facilitate the formulation, approximations have been used to simplify
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the rotation matrix [1]-[7]. A simplified small rotation matrix given by [1, 2]

[R] =





1 −φ u′

1

φ 1 u′

2

−u′

1
−v′

2
1



 (1)

is often used to derive the displacements of an arbitrary point P of the beam as







uP1

uP2

uP3







=
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−ωφ′







−
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0







, (2)

where u1, u2, and u3 are the lateral, transverse, and axial displacements of the shear

centre of a cross-section, φ is the twist rotation of the cross-section, uP1, uP2, and

uP3 are the lateral, transverse, and axial displacements of the point P , x and y are the

coordinates of the point P in the principal axis of the cross-section, ω is the normalized

section warping displacement, and ( )′ = d( )/dz. The displacements uP1, uP2, and

uP3 are then used to derive the strains at the point P , which are then used to formulate

the total potential energy of a beam and load system for its lateral-torsional buckling

and postbuckling analyses.

Figure 1: Lateral-torsional buckling.

A second order rotation matrix is conventionally used in the formulation for the

buckling and postbuckling analysis of beams and beam-columns [3]-[7], which is

given by

[R] =





1 − 1

2
u′

1

2 − 1

2
φ2 −φ − 1

2
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u′
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u′
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2

2 − 1

2
φ2 u′
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−u′

1
− u′

2
φ −u′

2
+ u′

1
φ 1



 . (3)

Because of approximations, these rotation matrices do not satisfy the orthogonal-

ity and unimodular conditions. As a result, the approximations may lead to a loss

of some significant terms in the nonlinear strain-displacement relationship. Without
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these terms, the rigid-space body motion cannot be separated from the real deforma-

tions. The superimposed rigid body motions may lead to the development of self-

straining, which may in turn affect significantly the prediction of the lateral-torsional

buckling loads and the postbuckling behaviour of beams and beam-columns [4, 7].

The aims of this paper are to investigate the effects of approximations on the elastic

lateral-torsional buckling and postbuckling analyses of beams and beam-columns and

to derive an accurate formulation for the elastic lateral-torsional buckling and post-

buckling analyses. Vlasove’s theory of torsion [11] and the Euler-Bernoulli theory of

bending are used in this paper, i.e. the cross-section of the member maintains its shape

during deformation. Another assumption used is that the strains are small.

2 Deformation and Strains

In the formulation of a finite element program for the lateral-torsional buckling and

postbuckling analysis of beams and beam-columns, an accurate rotation matrix is re-

quired. To derive the rotation matrix, two axis systems are used to describe the motion

of a thin-walled member. The first axis system OX1X2X3 is fixed in space as shown

in Fig. 2. The origin O of the system is located on the centroid of an end of the mem-

ber. The axis OX3 coincides with the undeformed centroidal axis of the member. The

axes OX1 and OX2 coincide with the principal axes ox, oy of the undeformed cross-

section. The basis vectors of the axis system OX1X2X3 are ~P1, ~P2, ~P3. The second

axis system is a body attached axis system. Before deformation, the origin o of the

system is at the centroid of a cross-section through (0, 0, x3) where 0, 0, x3 are the

coordinates of the origin o in the axis system OX1X2X3. The axis ox3 of the system

coincides with the axis OX3 and the axes ox1 and ox2 coincide with the principal axes

ox and oy of the cross-section. The basis vectors of the system are ~p1, ~p2, ~p3. After

deformation, the centroid of the cross-section displace u1, u2, u3 in the direction OX1,

OX2, OX3 from the point o to the point o∗ and at the same time the cross-section

rotates angle φ, so that the body-attached axis system moves to o∗x∗

1
x∗

2
x∗

3
. The axis

o∗x∗

3
is in the tangential direction of the deformed centroidal line o∗s∗. The axes o∗x∗

1

and o∗x∗

2
coincide with the principal axes ox, oy of the cross-section at the deformed

position. The basis vectors of the axes system o∗x∗

1
x∗

2
x∗

3
are ~q1, ~q2, ~q3.

The rotation from the vectors ~p1, ~p2, ~p3 to the vectors ~q1, ~q2, ~q3 can be described by

an orthogonal rotation matrix [R]

~pj = [R]~qi (i, j = 1, 2, 3). (4)

An accurate rotation matrix was derived by Pi and Trahiar [8] and Pi et al. [9] can

be used. The components of of the rotation matrix [R] are given by [8, 9]

[R] =





R11 R12 R13

R21 R22 R23

R31 R32 R33



 , (5)

3



o
XO

X

X

P

x

o

P

R

Ro

ro

u

P

p
P

P
p

p

q
1

q

q

3

2

1

1
2

3

x

x3
x3

x3

33

3

2

2

2

x2

x2

x2

1

x1

x1

x1

1

*
*

*

*

*

Figure 2: Rotation during deformation.

with

R11 = [1 − λu′

1

2
(1 + ǫ)−2]C − u′

1
u′

2
λ(1 + ǫ)−2S, (6)

R12 = −[1 − λu′

1

2
(1 + ǫ)−2]S − u′

1
u′

2
λ(1 + ǫ)−2C, (7)

R13 = u′

1
(1 + ǫ)−1, (8)

R21 = [1 − λu′

2

2
(1 + ǫ)−2]S − u′

1
u′

2
λ(1 + ǫ)−2C, (9)

R22 = [1 − λu′

2

2
(1 + ǫ)−2]C + u′

1
u′

2
λ(1 + ǫ)−2S, (10)

R23 = u′

2
(1 + ǫ)−1, (11)

R31 = −u′

1
(1 + ǫ)−1C − u′

2
(1 + ǫ)−1S, (12)

R32 = u′

1
(1 + ǫ)−1S − u′

2
(1 + ǫ)−1C, (13)

R33 = (1 + u′

3
)(1 + ǫ)−1, (14)

where C = cos φ, S = sin φ, φ is the twist rotation of the cross-section, (1 + ǫ)2 =
(u′

1
)2 + (u′

2
)2 + (1 + u′

3
)2, and λ = (1− cos α)/ sin2 α with cos α = (1 + u′

3
)/(1 + ǫ).

The rotation matrix in Eq. (5) satisfies the orthogonal conditions [R][R]T = [I] and

det[R] = 1 and so it can accurately describe the rotation. An accurate nonlinear finite

element model for the 3-D elastic large deformation analysis of beams and beam-

columns can be derived based on this rotation matrix.

The second order rotation matrix given by Eq. (3) can also be obtained by intro-

ducing approximations (1 + ǫ) ≈ 1, sin φ ≈ φ, and cos φ ≈ 1 − φ2/2 in the accurate

rotation matrix given by Eq. (5) and ignoring the third and higher order terms, while

the small rotation matrix given by Eq. (1) can also be obtained by introducing approx-

imations (1 + ǫ) ≈ 1, sin φ ≈ φ, and cos φ ≈ 1 in the accurate rotation matrix given

by Eq. (5) and ignoring the second and higher order terms.
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With the expressions of the displacements of an arbitrary point P given by Eq. (2),

the Lagrangian strain components ǫik at the point P can be derived as [10]

ǫii =
∂uPi

∂xi

+
1

2

3
∑

j=1

(
∂uPj

∂xi

)2 (i = 1, 2, 3) (15)

for normal strains, and

ǫik =
∂uPk

∂xi

+
∂uPi

∂xk

+
3

∑

j=1

∂uPj

∂xi

∂uPj

∂xk

(i = 1, 2, 3; k = 2, 3, 1) (16)

for shear strains.

Substituting the small rotation matrix given by Eq. (1) into Eqs. (2), (15) and (16)

leads to the normal strains as [1, 2]

ǫ11 = ǫ22 = 0, (17)

and

ǫ33 = u′

3
+

1

2
(u′

1

2
+u′

2

2
+u′

3

2
)−x1(u

′′

1
−u′

2
φ′)−x2(u

′′

2
+u′

1
φ′)−ωφ′′+

1

2
(x2

1
+x2

2
)φ′2;

(18)

and the shear strains as

ǫ12 = 0, ǫ23 = (x1 −
∂ω

∂x2

)φ′, and ǫ13 = −(x2 +
∂ω

∂x1

)φ′. (19)

Substituting the second rotation matrix given by Eq. (3) into Eqs. (2), (15) and (16)

leads to the normal strains as [5]-[6]

ǫ11 = ǫ22 = 0, (20)

and

ǫ33 = u′

3
+

1

2
(u′

1

2
+u′

2

2
+u′

3

2
)−x1(u

′′

1
+u′′

2
φ)−x2(u

′′

2
−u′′

1
φ)−ωφ′′ +

1

2
(x2

1
+x2

2
)φ′2;

(21)

and the shear strains as

ǫ12 = 0, ǫ23 = (x1 −
∂ω

∂x2

)φ′, and ǫ13 = −(x2 +
∂ω

∂x1

)φ′. (22)

Substituting the accurate rotation matrix given by Eq. (5) into Eqs. (2), (15) and

(16), and ignoring the higher order terms lead to the normal strains as [8]

ǫ11 = ǫ22 = 0, (23)
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ǫ33 = {u′

3
+

1

2
(u′

1

2
+ u′

2

2
+ u′

3

2
)} − x1{[u

′′

1
ū3 − u′

1
u′′

3
]C + [u′′

2
ū3 − u′

2
u′′

3
]S}

+ x2{[u
′′

1
ū3 − u′u′′

3
]S − [u′′

2
ū3 − u′

2
u′′

3
]C} − ω{φ′ −

1

2
(u′′

1
u′

2
− u′

1
u′′

2
)}′

+
1

2
(x1

2 + x2
2)φ′2; (24)

and the shear strains as

ǫ12 = 0, (25)

ǫ23 = (x1 −
∂ω

∂x2

)[φ′ +
1

2
(u′′

1
u′

2
+ u′

1
u′′

2
)], (26)

and

ǫ13 = −(x2 +
∂ω

∂x1

)[φ′ +
1

2
(u′′

1
u′

2
+ u′

1
u′′

2
)] (27)

with ū3 = 1 + u′

3
.

The Vlasov’s hypothesis [11] that the shear deformations in the mid-surface of the

thin-walled plate are extremely small and can be neglected is used for open thin-walled

members. According to this hypothesis, the warping function ω(x1, x2) have different

expressions for the different thin-walled plates of the cross-section. For example, for

I-section,

ω(x1, x2) =







x1(x2 + h) for top flange

−x1x2 for web

x1(x2 − h) for bottom flange

(28)

where h is the distance between the centroids of top and bottom flanges.

3 Lateral-Torsional Buckling Analysis

The potential energy of the system in the infinitesimal lateral-torsional buckling con-

figuration can be expressed as

Π =

∫

V

{

1

2
[Eǫ2

33
+ G(ǫ2

13
+ ǫ2

23
)] + σ33ǫ33

}

dV, (29)

where the first term is the strain energy due to lateral-torsional buckling deformations

and the second term is the energy due to the constant prebuckling stress σ33 = Eǫ33

associated with the strain ǫ33 produced by the lateral-torsional buckling deformations.

For a beam with a uniform doubly symmetric I-section, by substituting Eqs. (18)-

(19) into Eq. (29), and ignoring the higher order terms, the potential energy based on

the small rotation model given by Eq. (29) can be rewritten as a functional by

Π =
1

2

∫ L

0

(EI2u
′′

1

2
+ GJφ′2 + EIwφ′′2 − 2Mu′

1
φ′)dz (30)
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where I2 =
∫ ∫

y2dA, J =
∫ ∫

[(x1 − ∂ω/∂x2)
2 + (x2 + ∂ω/∂x1)

2]dA, Iw =
∫ ∫

ω2dA, and M =
∫ ∫

σ33x2dA.

Substituting Eqs. (21) and (22) into Eq. (29) leads to the total potential energy

based on the second rotation matrix as

Π =
1

2

∫ L

0

(EI2u
′′

1

2
+ GJφ′2 + EIwφ′′2 − 2Mu′′

1
φ)dz. (31)

The term
∫ L

0
2Mu′

1
φ′dz of the small rotation model in Eq. (30) for the work done

by the stress resultant during the buckling is quite different from the corresponding

term
∫ L

0
2Mu′′

1
φdz of the second order model in Eq. (31). This difference will affect

the predictions of the lateral-torsional buckling load of a beam. To illustrate this, the

lateral-torsional buckling of a simply supported beam of doubly symmetric I-section

under a moment gradient is investigated (Fig. 3). The moment in the beam can be

expressed as

M(z) = M
[

1 − (1 + β)
z

L

]

. (32)

Figure 3: Simply supported beam under moment gradient.

The buckling shapes of the beam may be approximated as

φ = θ sin
πz

L
and u1 = δ1 sin

πz

L
+ δ2 sin

2πz

L
. (33)

By substituting Eq. (33) into Eq. (30), the potential energy can be expressed as a

function of δ1, δ2 and θ by

Π =
π2

L3

{

N2

4
δ2

1
+ 4N2δ

2

2
+

r2

0
N3

4
θ2 −

20M

9π2
(β − 1)δ2θ +

M

4
(β − 1)δ1θ

}

, (34)

in which N2 and N3 are the flexural buckling load and the torsional buckling load of

the pin-ended column with the same length under uniform axial compression, respec-

tively; and they are given by

N2 =
EI2π

2

L2
and N3 =

1

r2

0

(

GJ +
EIwπ2

L2

)

= 0. (35)

Minimization of the function Π given by Eq. (34) is equivalent to minimization of

the potential energy given by Eq. (30). The values of δ1, δ2, θ minimizing the function
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Π should therefore satisfy the algebraic equations

∂Π

∂δ1

= 0,
∂Π

∂δ2

= 0, and
∂Π

∂θ
= 0 (36)

which leads to the matrix eigenvalue problem as

1

2

π2

L3





N2 0 Ma

0 16N2 Mb

Ma Mb r2

0
N3











δ1

δ2

θ







=







0
0
0







(37)

where Ma = −M [1 − (1 + β)/2] and Mb = −0.36025M(1 + β).

Non-trivial solution for {δ1, δ2, θ}
T requires that the determinant of the coefficient

matrix of Eq. (37) vanishes, which leads to the solution for the lateral-torsional buck-

ling of the beam as

Mcr

M23

√

1

[1 − (1 + β)/2]2 + [0.09005(1 + β)]2
, (38)

where M23 =
√

r2

0
N2n3 is the lateral-torsional buckling moment of a simply sup-

ported beam under uniform bending.

When the second order rotation matrix is used, the matrix eigenvalue problem be-

comes

1

2

π2

L3





N2 0 Ma

0 16N2 Mc

Ma Mc r2

0
N3











δ1

δ2

θ







=







0
0
0







(39)

where Mc = −0.7205M(1 + β).

Accordingly, the solution for the lateral-torsional buckling of the beam becomes

Mcr

M23

√

1

[1 − (1 + β)/2]2 + [0.1801(1 + β)]2
. (40)

The solution based on the small rotation matrix given by Eq. (38) is compared with

that based on the second order rotation matrix given by Eq. (40) in Fig. 4. The FE

results of of the finite beam element developed in this paper and ABAQUS [12] are

also shown in Fig. 4. In the FE analysis, the Australian steel 250UB37 I-section [13]

was chosen as the cross-section of these arches and its dimensions are: the overall

depth D = 256 mm, the flange width B = 146 mm, the flange thickness tf = 10.9
mm, the web thickness tw = 6.4 mm, and the radius of gyration of the cross-section

about its major principal axis (x axis) rx = 108 mm. The Young’s and shear moduli

were assume as E = 200, 000 MPa and G = 80, 000 MPa. The FE results of the

present finite beam element are indentical to those of ABAQUS [12]. It can be seen

that the solution given by Eq. (40) agrees with the FE results extremely well while the

solution given by Eq. (38) over-estimates the buckling moments when the moment

gradient coefficient β ≥ −0.4.
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Figure 4: Lateral-torsional buckling of simply supported beam.

4 Lateral-Torsional Postbuckling Analysis

4.1 Nonlinear equilibrium

To predict the lateral-torsional postbuckling behaviour of beams and beam-columns,

a finite element for the nonlinear elastic large deformation needs to be developed. For

this, the nonlinear equilibrium equations of a beam or beam-column can be derived

from the principle of virtual work that requires that

dU =

∫ ∫ ∫

{dǫ}T{σ}dV − {dr}T{Q} = 0 (41)

for all sets of virtual displacements {dr} and corresponding virtual strains {dǫ}, where

{r} is the nodal displacement vector given by

{r} = {u11, u
′

11
, u12, u

′

12
, u13, φ1, φ

′

1
, u21, u

′

21
, u22, u

′

22
, u23, φ2, φ

′

2
}T , (42)

and {Q} are the corresponding nodal forces which are equivalent to the applied ac-

tions.

The variations of finite strains {dǫ} can be obtained from Eqs. (24), (26) and (27)

as

{dǫ} = {dǫ33, dǫ23, dǫ13}
T = [S][B]{dθ}, (43)

where

{dθ} = {du′

1
, du′′

1
, du′′′

1
, du′

2
, du′′

2
, du′′′

2
, du′

3
, du′′

3
, dφ, dφ′, dφ′′}T , (44)
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[S] =





1 x1 x2 ω (x2

1
+ x2

2
) 0

0 0 0 0 0 (x1 − ∂ω/∂x2)
0 0 0 0 0 −(x2 + ∂ω/∂x1)



 , (45)

and the components of matrix [B] are dependent on the rotation matrix used.

Substituting Eq. (43) into (41) and introducing

{θ} = [N ]{r} (46)

leads to the nonlinear equilibrium equations

{Q}int − {Q} = {0} with {Q}int

∫ L

0

[N ]T [B]T{R}dx3, (47)

where [N ] is the shape function matrix whose elements are the functions of z, and

{R} is the stress resultant vector defined by

{R} =

∫ ∫

[S]T{σ}dA. (48)

Taking variations of Eq. (47) leads to the nonlinear incremental equilibrium equa-

tions

[kT ]{∆r} = {∆Q} (49)

where the tangent stiffness matrix [k]T is given by

[k]T = [k] + [k]G, (50)

in which [k] is the displacement stiffness matrix given by

[k] =

∫ L

0

[N ]T [B]T [D][B][N ]dx3 with [D] =

∫ ∫

[S]T [E]ep[S]dA, (51)

and [k]G is the geometric stiffness matrix given by

[k]G =

∫ L

0

[N ]T [M ]σ[N ]dx3, (52)

with the following identity

[dB]T{R} = [M ]σ{dθ} = [M ]σ[N ]{dr} (53)

being used.

Equations (49) can be used for both the conventional second order finite beam el-

ement and the present accurate finite element models. However, the matrix [B] in the

displacement stiffness matrix [k] and the matrix [M ]σ in the geometric stiffness ma-

trix [k]G are different and these differences may have significant effects of the elastic

lateral-torsional postbuckling analysis of beams and beam-columns. The details of

thses differences are given in the next section.
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4.2 Effects of approximations on the stiffness matrix

To illustrate further how some significant terms are lost in the conventional second

order rotation model, a term −x2[u
′′

2
(1 + u′

3
)− u′

2
u′′

3
] cos φ of the longitudinal normal

strains ǫ33 of the accurate rotation model given in Eq. (24) and the corresponding term

−x2u
′′

2
of the second order rotation model given in Eq. (21) are herein used.

The first variation of these terms contributes to the displacement stiffness matrix

[k] can be written as

[k]x2 =

∫ L

0

[N ]Tσ [B]Tx2
[D][B]x2

[N ]σdx3. (54)

The first variation of the term −x2[u
′′

2
(1+u′

3
)−u′

2
u′′

3
] cos φ of the accurate rotation

model is

δ {−x2[u
′′

2
(1 + u′

3
) − u′

2
u′′

3
] cos φ} =

−x2[u
′′

2
δu′

3
+(1+u′

3
)δu′′

2
−u′

2
δu′′

3
−u′′

3
δu′

2
] cos φ+x2[u

′′

2
(1+u′

3
)−u′

2
u′′

3
] sin φδφ, (55)

and its contribution to the matrix [B] is

[B]x2
=

















0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 u′′

3
C −(1 + u′

3
)C 0 −u′′

2
C u′

2
C u′′

2
S 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

















(56)

where C = cos φ, S = sin φ, and third and higher order terms are omitted.

The first variation of the term −x2u
′′

2
of the second order rotation model is

δ(−x2u
′′

2
) = −x2δu

′′

2
, (57)

and its contribution to the matrix [B] is

[B]x2
=

















0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

















. (58)

Comparison Eq. (56) with Eq. (58) indicates that all the nonlinear terms of the

matrix [B]x2 given by Eq. (56) are lost in the second order rotation model.
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The second variation of the terms −x2[u
′′

2
(1 + u′

3
) − u′

2
u′′

3
] cos φ and −x2u

′′

2
con-

tributes to the geometric stiffness matrix [k]G as

[k]Gx2
=

∫ L

0

[N ]Tσ [M ]σx2
[N ]σdx3. (59)

The second variation of the term −x2[u
′′

2
(1 + u′

3
) − u′

2
u′′

3
] cos φ of the accurate

rotation model is equal to

δ{−x2[u
′′

2
(1+u′

3
)−u′

2
u′′

3
] cos φ} = 2x2[u

′′

2
δu′

3
+(1+u′

3
)δu′′

2
−u′

2
δu′′

3
−u′′

3
δu′

2
] sin φδφ

−2x2(δu
′′

2
δu′

3
− δu′

2
δu′′

3
) cos φ + x2[u

′′

2
(1 + u′

3
) − u′

2
u′′

3
] cos φ(δφ)2, (60)

and its contribution to matrix [M ] is

[M ]σx2
=





































0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 R3 cos φ 0 0 0

0 0 −R3 cos φ 0 R3 sin φ 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0
Sym. 0 0

0





































(61)

where the effects of third and higher order terms are omitted, and

R3 =

∫ ∫

x2σ33dA. (62)

The second variation of the term −x2u
′′

2
of the second order rotation model is equal

to zero so that it has no contribution to the matrix [M ] and

[M ]σx2
= [0], (63)

which shows that all the significant terms of the geometric stiffness matrix [k]G due to

Eq. (61) are completely lost in the second order rotation model.

4.3 Incremental-iterative analysis

A Newton-Raphson method is used in conjunction with the incremental equilibrium

equation given by Eq. (49) to solve the nonlinear equilibrium equations (Eq. (47)). In

the incremental-iterative implementation, each load step consists of the application of
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an increment of the external loads and subsequent iterations to correct the errors until

the nonlinear equilibrium is restored within a specified admissible tolerance. Before

the restoration, the internal and external forces are not in equilibrium and hence the

incremental-iterative equilibrium equations can be written from Eq. (49) as

[k]i{∆r}j
i = {∆Q}i + {∆Q}j−1

i , (64)

where i and j denote the load step and the iteration within the load step, respectively,

and {∆Q}j−1

i is the unbalanced force in the last iteration (j−1) that can be calculated

using Eq. (47) as

{∆Q}j−1

i = [Qin − Q]j−1

i . (65)

The arc-length method is used as the iterative strategy, with an automatic increment

of the arc-length being used as the incremental strategy [8, 9, 14]. The sign of the de-

terminant of the tangent stiffness matrix is used for the sign of the load increment. The

maximum norm of the incremental displacements is used for testing the convergence,

so that

||ǫ|| = maxk|
∆rk

rk,ref

| < ζ (66)

where ∆rk is the change in the displacement component k during the current iteration

cycle, rk,ref is the largest displacement component of the corresponding type, and ζ is

in the range 10−2 to 10−5, depending on the desired accuracy.

4.3.1 Buckling and postbuckling analysis of an elastic continuous beam

The flexural-torsional buckling and postbuckling behaviours of an elastic aluminium

I-section two span continuous beam subjected to concentrated loads Q1 and Q2 at mid-

spans D and E of each span shown in Figs. 5 and 6 were investigated. The loads Q1

and Q2 are applied at x2q = −41.1 mm and the load ratio is Q1/Q2 = 0.5. The self-

weight of the beam is qx2
= 77.874 N/m. To induce flexural-torsional buckling, small

initial out-of-plane crookedness (u1o
= u1oc

sin πx3/L with u1oc = L/1, 000, 000) is

introduced. The beam is divided into eight equal elements.

Q Q
1 2

L = 3.66m L = 3.66m

A CD E

Figure 5: Two span continuous beam.
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B=21.84mm
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2.16mm
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w

t w=

t f=
E = 64,120MPa

G = 25,500MPa

a

a

Figure 6: Cross-section.
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The results of the present accurate and conventional second order models are com-

pared with the test results of Woolcock and Trahair [15] in Fig. 7 where Q is the value

of Q2, Qcr is the test elastic buckling load of Q2, and ux1
is the lateral displacements

of the points D and E. The buckling loads predicted by both the accurate and the con-

ventional second order models are almost identical and agree well with the test result.

However, for the postbuckling behaviour, the results of the conventional second order

model are significantly different from those of the present accurate model. The results

of the present accurate model are in very good agreements with the test results, but

the results of the conventional second order model are over-stiff and their agreements

with the test results are poor.
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Figure 7: Lateral-torsional buckling of two span continuous beam.

5 Conclusions

The effects of approximations in formulating a finite element model on the nonlinear

inelastic large rotation analysis of beams and beam-columns have been investigated in

this paper. A total Lagrange nonlinear finite element model for the three-dimensional

analysis of beams and beam-columns has been developed. No approximations were

made in deriving the nonlinear strains so that some significant contributions to the tan-

gent stiffness matrix by the coupling terms and the higher order curvatures have been

retained. As a result, the over-stiff solutions have been eliminated. In a conventional

model, however, these significant contributions have been lost because of approxi-

mations in the formulation. Comparisons with available experimental and analytical

results have shown that the approximations may lead to over-estimations of the buck-

ling loads of beams, and poor postbuckling analysis of beams and beam-columns in

some cases.
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