
Abstract

Genetic algorithms lack a general methodology to handle constraints and several ap-
proaches have been tried. The best method is certainly to generate by proper encoding
of legal individuals only, that is, individuals obeying all the constraints. This may
be possible for simple constraints on the upper and lower bounds of design variables
but becomes increasingly more difficult or ‘next to impossible’ for more complicated
constraints. Two remedies can be attempted: development of repair mechanisms that
modify infeasible individuals into feasible ones, an approach that tends to disrupt the
normal performance of the genetic operators; or the design of suitable genetic oper-
ators (crossover and mutation) that maintain feasibility. The ‘next to best’ method
relies on the transformation of the constrained problem into an unconstrained one by
modifying the fitness function to include terms penalizing the violation of constraints;
in this case the presence of illegal individuals can “pollute” the population and thereby
slow the convergence process.

Equality constraints pose additional and specific difficulties. As they effectively
reduce the dimensionality of the problem, the penalization approach is inefficient since
working in the full search space leads to much more fitness function evaluations then
otherwise required. Therefore the best technique is to split the problem variables in
two sets; the free or independent variables and the dependent variables. These are
then expressed in terms of the free variables which are the ones exclusively “seen”
by the genetic algorithm, that is, they are effectively “eliminated” from the genetic
algorithm.

In the present paper we focus on the problem of proper handling of equality con-
straints adopting the elimination approach bearing in mind that in many real life appli-
cations the linear set of constraints is generated automatically by some user program
and one is not sure a priori if this set is linearly independent a fact that has to be
checked and dealt with. Additionally, it may happen that the set of constraints is
‘almost’ linearly dependent thus making the problem ill-conditioned a difficulty that
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must be addressed in order to obtain meaningful results. We assess three elimination
methods: the Gauss-Jordan elimination method, the orthogonal factorization method
and the singular value decomposition as tools to identify the independent and depen-
dent variables, examining both the well-conditioned (linear independence) and the
ill-conditioned (‘almost’ linear dependence) cases. Some representative examples are
presented and discussed.

Keywords: genetic algorithms, linear constraints, elimination methods, ill-conditioning.

1 Introduction

Genetic Algorithms lack a general methodology to handle constraints and several ap-
proaches have been tried (see [11], [3], [2] and [4] and references therein).

1. The best method is certainly to generate by proper encoding only legal individ-
uals, that is, individuals obeying all the constraints. This may be possible for
simple upper and lower bounds type constraints but becomes increasingly more
difficult or next to impossible for more complicated constraints. Two remedies
can be attempted:

• Development of repair mechanisms that modify infeasible individuals into
feasible ones, an approach that tends to disrupt the normal performance of
the genetic operators;

• Designing suitable genetic operators (crossover and mutation) that main-
tain feasibility;

2. Transformation of the constrained problem into an unconstrained one by modi-
fying the fitness function to include terms penalizing the violation of constraints;
in this case the presence of illegal individuals can “pollute” the population and
thereby slow the convergence process.

Equality constraints pose additional and specific difficulties. As they reduce the di-
mensionality of the problem, approach 2 above is inefficient since working in the full
search space leads to much more fitness function evaluations then otherwise needed.
Therefore the best technique is to eliminate the constrained variables by expressing
them in terms of the free variables which are the ones exclusively “seen” by the Ge-
netic Algorithm.

In the present paper we focus on the problem of proper handling of equality con-
straints adopting the elimination approach bearing in mind that in many real life ap-
plications the linear set of constraints is generated automatically by some user pro-
gram and one is not sure a priori if this set is linearly independent a fact that has to
be checked and dealt with. Additionally, it may happen that the set of constraints
is “almost” linearly dependent thus making the problem ill-conditioned a difficulty
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that provided some motivation for the present work and must be addressed in order
to obtain meaningful results. We study the use of three methods of elimination of
variables through the set of linear constraints and address both the well-conditioned
(linear independence) and the ill-conditioned (“almost” linearly dependency) cases.

2 Problem Formulation

Let x = (x1, . . . , xn) ∈ Rn be the vector of design variables and f : x 7→ R be the
fitness or objective function. The optimization problem we intend to study is given by

x∗ = argmin f(x) (1)

subject to the following set of constraints

Ax = b, A ∈ Rm×n, b ∈ Rm (2)

xL ≤ x ≤ xU (3)

Thus we have a set of m < n linear equality constraints (2) together with with lower
and upper bounds constraints (3) indicated by the superscripts L and U , respectively.

The constraints (2) and (3) define the domain of feasibility of the problem and we
must insure by proper specification of these constraints that it is not empty.

Remark 1 It is acceptable for the vectors xL and xU to have components equal to
−∞ and +∞, respectively.

Remark 2 If there are other inequality constraints other than the bounds (3) we as-
sume that they have been incorporated in the fitness function f by adequate penalty
terms so we will not refer to them explicitly in the sequel.

3 Methodology

As we pointed out we deal with linear constraints by expressing dependent or con-
strained variables in terms of independent or free variables which are the ones to be
codified in the genome in the Genetic Algorithm.

To this end we will consider three approaches: (i) the Gauss-Jordan elimination
method (ii) the orthogonal factorization and (iii) the singular value decomposition.

3.1 Gauss-Jordan Elimination Method (GJE)

Gauss-Jordan elimination method with partial pivoting applied to the linear constraints
(2) yields the system (see [10] or [12]):(

Ir −C
0 0

) (
xr

xs

)
=

(
dr

ds

)
(4)
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where Ir ∈ Rr×r is the identity matrix of order r with r = rankA and C ∈ Rr×s,
where s = n− r, xr ∈ Rr, xs ∈ Rs, dr ∈ Rr, ds ∈ Rs.

Remark 3 For consistency we should have ds = 0.

Therefore the constrained variables xr can be expressed in terms of the free vari-
ables xs by the relation

xr = dr + Cxs (5)

The fitness function thus becomes a function of xs only.

Remark 4 Relation (5) entails that the bounds (3) on the xr variables have to be
enforced by penalization of the fitness function.

There are some possible drawbacks with this approach that can be better perceived
with the following example. Let the extended matrix of the linear constraints (2) be
(n = 3, m = 2) (

A b
)

=

(
1 1 1 1
1 1 + ε 1 + 2ε 1 + ε

)
(6)

where ε 6= 0 is a “small” number. As we see the two constraints are “almost” (contin-
gent on ε) linear dependent. Performing the Gaussian elimination we obtain

(
A b

)
→

(
1 1 1 1
0 ε 2ε ε

)
(7)

Examining this system it seems reasonable that we should drop the second constraint
and retain the first. However had we presented the constraints in reverse order the
same reasoning would lead us to make a different choice. Summing up, the Gauss-
Jordan elimination method is contingent to the order the constraints are presented,
eliminating some constraints while keeping others despite the fact that all constraints
might be equally contaminated by noise (either experimental or roundoff errors).

As an advantage of the e Gauss-Jordan method we point out to the fact that the
optimization remains in a subspace of the original design variables x space.

3.2 Rectangular Orthogonal Factorization (QRF)

An alternative to the GJE is the QR decomposition of matrix A ∈ Rm×n (see [10]
or [12]): there exists an orthogonal matrix Q ∈ Rm×m, an upper triangular matrix
R ∈ Rm×n and a permutation matrix P ∈ Rn×n such that

AP = QR (8)

with diag R = (ρ1, . . . , ρr, 0, . . . , 0), ρ1 ≥ · · · ≥ ρr > 0 and thus rank A = r. The
permutation matrix P corresponds to a column pivoting of A.
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In this case system (2) can be written as

Ry = c (9)

y = PTx (10)

c = QTb (11)

Equation (9) can be partitioned as follows(
Rrr Rrs

0 0

) (
yr

ys

)
=

(
cr

cs

)
(12)

where, putting s = n− r, Rrm ∈ Rr×m, Rrs ∈ Rr×s, yr, cr ∈ Rr and ys, cs ∈ Rs.

Remark 5 For consistency we should have cs = 0.

The constrained variables yr can be expressed in terms of the free variables ys

yr = d + Cys (13)

with
d = R−1

rr cr, C = −R−1
rr Rrs (14)

The original variables x can be retrieved using (10) and the property that PT = P−1

holds for permutation matrices
x = Py (15)

Remark 6 The optimization has now been switched to the ys variables which through
(15) are but reshuffled versions of the original xs design variables. The previous
remark about bound constraints applies here as well.

3.3 Singular Value Decomposition (SVD)

As we pointed out above the aim is to express the dependent variables in terms of
the independent ones. Due to its robustness, we assess the singular value decompo-
sition (SVD) of matrix A ∈ Rm×n (see [10] or [12] for the proofs): there exists an
orthogonal matrix U ∈ Rm×m, an orthogonal matrix V ∈ Rn×n and a diagonal matrix
S ∈ Rm×n with S = diag(s1, . . . , sr, 0, . . . , 0) whose elements are the the singular
values s1 ≥ s2 ≥ · · · ≥ sr > 0 in such a way that

A = USVT (16)

Remark 7 We observe (see [12]) that rank A = r and r ≤ m, the first r columns of
U are a basis for the column space of A and the last n− r columns of V are a basis
for the nullspace of A.
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Invoking (16), equation (2) can be written as

Sy = c (17)

y = VTx ⇐⇒ x = Vy (18)

c = UTb (19)

For the purpose we have in mind, (17) is partitioned as follows:(
Sr 0

) (
yr

ys

)
=

(
cr

cs

)
(20)

where, putting s = n− r,

Sr ∈ Rr×r, Sr = diag(s1, . . . , sr)

yr, cr ∈ Rr, ys, cs ∈ Rs (21)

Under these conditions, we get

yr = S−1
r cr

0ys = cs

(22)

Remark 8 We find out that, to have a consistent set of constraints, we must have
cs = 0.

Returning to relation (18) and partitioning V we can write(
xr

xs

)
=

(
Vrr Vrs

Vsr Vss

) (
yr

ys

)
(23)

From here we conclude that
xr = dr + Cys (24)

where
dr = Vrryr, C = Vrs (25)

Relation (23) allows one to express the constrained variables xr in terms of the
free parameters ys which are the ones going to be codified in the Genetic Algorithm
chromosome.

Remark 9 Now the ys variables are related variables to the x through (18). Bound
constraints (3) have still to be enforced by penalization of the fitness function.

If we insist in employing the original variables, we can proceed as follows. From
(23) we obtain

xs = Vsryr + Vssys (26)

As matrix Vss being a principal submatrix of the invertible matrix V is itself invertible
we get upon substitution in (23)

xr = er + Exs, er = dr −VrsV
−1
ss ds, E = VrsV

−1
ss (27)
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Remark 10 Matrix Vss albeit invertible may be ill conditioned so the procedure
above is not recommended in general and it is preferable to stick to the y variables.

Now we recover the example in subsection 3.1 and redo it applying the above SVD
based procedure. Taking, for the sake of definiteness, ε = 10−6 we get that

S = diag(2.449490967528560, 9.99999499693279310−7) (28)

If we set the second singular value to zero and apply equation (27) we find that the
effective linear constraint that is retained is

x1 = 1.000000500000250− 1.000000500000251x2 − 1.000001000000501x3 (29)

The same result (apart from roundoff errors) would be obtained had rows 1 and 2 be
swapped in (7). Thus the robustness of the SVD as compared to Gaussian elimination
seems to justify its extra cost.

4 Examples

The examples below were run using the Genetic Algorithms Toolbox of MATLABr

([1]) frontended with a routine to perform the computations required to express the
constrained variables in terms of the free variables as described above.

Example 1

This is Test Problem 2 in [5, Ch. 12] which arises in the design of planar rectangular
spaces, as, for instance, in minimization of the area of electronic packages or building
floors. We solve this problem for the particular data in [9] consisting of six rectangles.
The vector x ∈ Rn of n = 12 designs variables is defined as follows

xi = Xi

x6+i = Yi

, i = 1, . . . , 6 (30)

where the Xi and Yi denote the width and heights of the rectangles. The objective
function (the area) to minimize is

f(x) =
6∑

i=1

XiYi (31)

The 12 bounds constraints are

5 ≤ X1, 5 ≤ X2, 2 ≤ X3, 4 ≤ X2, 4 ≤ X5, 5 ≤ X6

5 ≤ Y1, 2 ≤ Y2, 5 ≤ Y3, 4 ≤ Y4, 5 ≤ Y5, 5 ≤ Y6

(32)
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Moreover we have a set of m = 5 linear constraints

−X4 + Y5 = 0

−X1 + X2 −X4 + X5 = 0

−X1 + X3 −X4 + X5 = 0

−Y3 + Y6 = 0

−Y1 − Y2 − Y3 + Y4 + Y5 + Y6 = 0

(33)

and a set of 8 nonlinear constraints

X2 −X3 ≥ 1

Y1 − Y4 ≥ 1

X1Y1 ≥ 30

X2Y2 ≥ 20

X3Y3 ≥ 20

X4Y4 ≥ 25

X5Y5 ≥ 15

X6Y6 ≥ 20

(34)

Since it happens that the set of linear equations is linearly independent we have
n−m = 12− 5 = 7 free variables, that is, the search space is R7 instead of R12. The
remaining of the constraints, (32) and (34), are treated through penalty terms added to
the fitness function in the standard way (see [6]).

The results for 50 independent runs of a Genetic Algorithm with a population of
500 individuals and a maximum of 500 generations per run, are presented in table 1.
We observe that the solution obtained with GJE is worst than that obtained with either
QRF or SVD.

Fitness

Best Average x∗ =

(
X∗

Y ∗

)
Time (s)

[9] 146.25 −− −− −−
GJE 165.00 173.62 6.0000, 6.0000, 5.0000, 5.0000, 5.0000, 6.0000, 635

6.0000, 4.0000, 5.0000, 5.0000, 5.0000, 5.0000
QRF 146.52 166.03 5.0004, 5.0004, 3.9999, 4.1102, 4.1102, 5.1107, 1270

7.0830, 3.9997, 5.0001, 6.0827, 5.0001, 5.0001
SVD 146.30 159.36 5.0001, 5.0001, 4.0000, 4.0187, 4.0187, 5.0188, 1012

7.2211, 4.0000, 5.0000, 6.2210, 5.0001, 5.0000

Table 1: Results for Example 1

As we can see QRF and SVD are both able to find the minimum whereas GJE falls
far behind (see Figure 1 for the actual layouts).
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Figure 1: Example 1: layouts for GJE (left) and QRF, SVD (right)

Example 2

This is the “abel” problem in the GLOBALLib collection arising in the solution of a
macroeconomic model (see [8]). It has n = 30 variables and m = 14 linear constraints
and bound constraints xL = 0 and xU = ∞.

The results for 10 independent runs of a Genetic Algorithm with a population of
1000 individuals and a maximum of 5000 generations per run, are summarized in table
2.

Fitness
Best Average x∗ Time (s)

[8] 225.19 −− 387.90, 389.59, . . . , 145.20, 143.10 −−
GJE 340.01 544.60 397.61, 396.98, . . . , 139.21, 147.60 7640
QRF 143.78 143.78 406.23, 404.72, . . . , 144.14, 142.91 1062
SVD 143.78 143.78 406.19, 404.69, . . . , 144.14, 142.92 4631

Table 2: Results for Example 2

As we can see QRF and SVD are both able to find a better the minimum then the
one reported in [8] whereas GJE falls far behind.

Example 3

This is problem 119 in the [7] collection. It has n = 16 variables and m = 8 linear
constraints plus bound constraints.

f(x) =
n∑

i,j=1

cij(x
2
i + xi + 1)(x2

j + xj + 1) (35)
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subject to the following set of constraints

Ax = b, A ∈ Rm×n, b ∈ Rm (36)
0 ≤ x ≤ 5 (37)

where the cij , A and b are given in [7].
The results for 10 independent runs of a Genetic Algorithm with a population of

1000 individuals and a maximum of 5000 generations per run, are shown in 3.

Fitness
Best Average x∗ Time (s)

[7] 244.90 −− (3.985)10−2, . . . , (6.743)10−1, 0.0 −−
GJE 244.90 244.91 (3.986)10−2, . . . , (6.743)10−1, (5.230)10−6 290
QRF 245.28 255.51 (6.166)10−2, . . . , (6.565)10−1, (1.072)10−6 1754
SVD 256.21 267.79 (1.180)10−1, . . . , (6.101)10−1, (3.820)10−6 274

Table 3: Results for Example 3

Example 4

This example is intended to assess the behavior of the different methods in the pres-
ence of highly ill-conditioned linear constraints. The problem to solve is as follows:

f(x) = ‖x‖2 (38)

subject to the following set of constraints

Ax = b, A ∈ Rm×n, b = Ae ∈ Rm (39)
−∞ ≤ x ≤ +∞ (40)

where A is the segment comprising of m rows and n columns of the Hilbert matrix,
e = (1 . . . 1)T and n = 100, m = 60. This is a highly constrained problem and given
the well known “almost” linear dependence of the rows and columns of the Hilbert
matrix the set of constraints is also ill-conditioned.

To find the effective rank re of A we set a cutoff tolerance τ for the pivots in GJE,
QRF and for the singular values in SVD, that is, all these quantities were set to zero
when below this tolerance and dealt with accordingly.

The results for 10 independent runs of a Genetic Algorithm with a population of
100 individuals and a maximum of 5000 generations per run and τ = 10−10, are as
follows:

The results summarized in tables 4 and 5 provide some evidence for QRF and
SVD superiority over GJE to detect near linear dependency and provide more realistic
results. Also, SVD is the best in terms of computer time as a result of employing
a orthonormal base for the null space of the constraint matrix A thus enhancing the
searchability of the genetic algorithm.
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Fitness
Best Average re Time (s)

GJE 1.1891 105 6.1843 106 17 393
QRF 1.0031 102 1.0170 102 14 426
SVD 1.0052 102 1.0259 102 13 228

Table 4: Results for Example 4: τ = 10−10, the Time column is the total run time.

Fitness
Best Average re Time (s)

GJE 8.4180 102 6.2243 103 26 595
QRF 1.0032 102 1.0102 102 17 419
SVD 1.0023 102 1.0058 102 17 285

Table 5: Results for Example 4: τ = 10−14, the Time column is the total run time.

5 Conclusions

We presented three methods to deal with linear constraints: the Gauss-Jordan Elimi-
nation (GJE) method, the Rectangular Orthogonal Decomposition (QRF) and the Sin-
gular Value Decomposition (SVD), all allowing the identification of the dependent
(free) variables and the dependent ones. As the free variables are the ones to be coded
in the genome this procedure entails a reduction of the dimension from n of the search
space to m entailing a substantial computational economy.

There however are some important differences to note. The SVD is more robust
whenever the set of linear constraints is linearly dependent or “almost” linearly de-
pendent a feature that can be useful if the linear constraint happen to be generated
automatically. Since it provides an orthonormal base for the null space of A it has
superior searchability as compared with QRF or GJE leading to better results but not
necessarily to less computational effort as this seems to be very problem dependent.
One disadvantage of all elimination methods (GJE, SVD and QRF) is that the bound
constraints expressed in the original x variables do not translate into bound constraints
in the y variables requiring the respective violation to be treated through a penalty
term.
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