
Abstract

Directional distortion hardening is manifested by the distortion of the shape of the

yield surface such that a region of high curvature develops roughly in the direction of

loading while a region of lower curvature develops in the opposite direction. Recently,

several models were proposed. The simplest one studied, makes use of the Armstrong-

Frederick rule, having five independent parameters. The analytical solution for uni-

axial cyclic test is derived together with that for the stabilized cyclic response. The

evolving shapes of the yield surfaces and their sensitivity to inputs parameters are

analysed. An algorithm for material constants fitting is proposed.

Keywords: directional distortional hardening, metal plasticity, yield surface.

1 Introduction

Distortion of yield surfaces due to strain hardening was observed in numerous ex-

periments with various types of metals [1, 2]. In stress space, the subsequent yield

surfaces assume egg shape contours, being highly curved in the direction of load-

ing and flattened in the opposite direction. Following several attempts at modelling

such behaviour in the past, three promising approaches have been proposed recently.

Feigenbaum and Dafalias developed the celebrated Armstrong-Frederick idea [3] into

constructing directional terms involving the inner product of the backstress with local

normal tensors, giving rise to two model concepts: i) one [4] utilizing fourth order

evolution tensor and ii) the other [5] with fixed directional support (discussed in this

paper). One may add to that even more general proposition by Shutov et al. [6], when

iii) a sixth order anisotropy tensor was used to the same end.

The usual problem arises with the identification of all the necessary parameters for

evolving internal tensorial variables. Apart from thermodynamic constraints derived
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in the original papers by Feigenbaum and Dafalias [4, 5], conditions on maintaining

convexity of distorted surfaces should be met, as noted by Plesek et al. [7], so that

the convergence of return mapping numerical integrators was guaranteed [8]. Despite

the undisputable potential of simple trial and error fitting methods introduced in ref-

erence [9] to systematically analyze essential features of the proposed models, there

has still been a call for lucid material constants calibration. Indeed, in practice, the

availability of such procedures is often a decisive factor in engineering preferences

regarding the choice of a constitutive model.

It turns out that even for the simplest loading modes, such as the uniaxial stress

state or pure shear, the reduced algebro-differential systems corresponding to major-

ity of distortional hardening models are excessively complex not permitting analytical

solutions. This, of course, hinders finding a proper way to identify material parame-

ters from tensile or torsion tests. The present paper, nevertheless, shows that at least

for one of the models mentioned a close form solution exists and may be used for cal-

ibration purposes. The knowledge of such solution may also lend some help in more

complex cases, supplying first approximation as well as general guidlines.

This text is organized as follows. The next section overviews the so called c-model,

the simplest of the family, including examples of evolving yield surfaces and harden-

ing curves. In Section 3, analytical solutions for fundamental loading cases are pro-

vided, followed by the proposal of the set of algebraic equations suitable for constants

identification. Before concluding, sensitivity of the model’s response to variation of

input parameters is studied.

2 Constitutive model overview

Initially, the yield function f takes on a character of the J2-invariant, which is subse-

quently modified by evolving multiplier as

f(σ) =
3

2
[1 − c(nr :α)] ‖s − α)‖2 − k2 ≤ 0 (1)

Here σ is the stress tensor; s deviatoric stress; α is the backstress; c is a positive

material constant; k is a scalar internal variable; the double dot symbol represents the

inner product of two tensors as in s :α = sijαij and ‖ · ‖ denotes the Euclidean norm

of a second order tensor. Finally,

nr :=
s − α

‖s − α‖
(2)

is the unit tensor pointing in the direction of loading relative to the centroid of the

yield surface. Hence, it is the inner product nr :α which forms the shape of the yield

surface.

The model’s internal variables are governed by the standard evolution equations.

Plastic strain obeys the associated flow rule

ǫ̇
p = λ

∂f

∂σ

(3)
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the kinematic hardening rule of Armstrong-Frederick’s type retains the evanescent

memory member so that

α̇ = a1(ǫ̇
p − a2‖ǫ̇

p‖α) (4)

and similarly for the kinematic part

k̇ = λκ1k(1 − κ2k) (5)

The initial values at time t = 0 are defined as ǫ
p = 0, α = 0 and k = k0, that is, k0 is

the initial yield stress. Details of this constitutive model, which features six positive

constants, a1, a2, κ1, κ2, k0, and c are explained in reference [5].

Before proceeding further on, it is useful to have some formulas ready. One may

explicitly calculate the gradient

∂f

∂σ

=
3

2
‖s − α‖[2nr − c(nr :α)nr − cα] (6)

and its magnitude as
∥

∥

∥

∥

∂f

∂σ

∥

∥

∥

∥

=
3

2
‖s − α‖

√

[2 − c(nr :α)][2 − 3c(nr :α)] + c2
α :α (7)

Moreover
∂f

∂σ

=

∥

∥

∥

∥

∂f

∂σ

∥

∥

∥

∥

n (8)

where n is the outward unit normal to the yield surface.

It was proved by these authors in references [5, 7] that the necessary and sufficient

condition, which renders dissipation positive and, simultaneously, preserves strict con-

vexity for all times, reads

‖cα‖ < 1 (9)

Working on that condition, one may insert Equation (8) into the flow rule and then

into Equation (4) to obtain

α̇ = a1λ

∥

∥

∥

∥

∂f

∂σ

∥

∥

∥

∥

(n − a2α) (10)

For monotonic loading and as t → ∞ the saturated state is reached when

n − a2α = 0 (11)

Since α starts from zero and the magnitude of the limit backstress, 1/a2, is indepen-

dent of the loading direction, we may write

‖α‖ ≤ 1/a2 (12)

Hence the left-hand side of Inequality (9) may be bounded by c/a2, which yields

c < a2 (13)

This is the only constraint to be observed in constitutive modelling.
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2.1 Sample illustration

To illustrate the behaviour of the discussed model let us employ the same values of

material parameters as in reference [5]. Thus, a1 = 10500 MPa, a2 = 0.02 MPa−1,

κ1 = 6000 MPa, κ2 = 0.012 MPa−1, c = 0.019 MPa−1, k0 = 128 MPa. Note, that the

condition stipulated by Inequality (13) is fulfilled.

Material is first loaded by uniaxial tension until the limit state has been reached.

Figure 1 shows the evolution of subsequent yield surfaces as perceived in two sub-

spaces. Likewise, the material may be loaded by prescribed strain. Evolution of the

strain driven loci is similar and is not shown.
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Figure 1: Yield loci evolution for stress driven loading

It is also worth studying stress-strain curves and the distribution of other internal

variables. This is plotted in Figure 2 both for stress and strain driven loadings.
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Figure 2: Variables distribution for stress (left) and strain driven (right) loadings

3 Simple loading modes

Before any attempt at the determination of material constant can be made, analytical

solutions to typical loading cases, which occur in experimental arrangements, must
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be found. In this section the uniaxial state of stress is discussed, which is impor-

tant for tension-compression tests. Unfortunately, neither pure shear nor any other

proportional load brings about new information since the ensuing equations are mere

multiples of one another.

For those reasons, we turn our attention to stabilized cyclic deformation curves,

which may be extracted from the model’s governing equations. One disadvantage of

this approach is that the two problems, i.e. evolution versus cyclicly stabilized re-

sponse, are not fully compatible, the latter containing only certain material constants.

Nevertheless, a suitable combination of both may provide a sufficient number of equa-

tions to calibrate our model.

3.1 Uniaxial stress

In the tensile test all components of the stress tensor, except σ11, are zero. The yield

condition, Equation (1), then becomes

f(σ) =
9

4
(s11 − α11)

2(1 −

√

3

2
sgn cα11) − k2 ≤ 0 (14)

where the symbol ‘ sgn ’ stands for the sign of (s11 − α11), that is

sgn :=
s11 − α11

|s11 − α11|
(15)

Note, that ‖α‖ =
√

3/2|α11|, which together with Inequalities (12) and (13) implies

1 −

√

3

2
sgn cα11 ≥ 1 −

c

a2

> 0 (16)

This, very important relation, not only renders f meaningful but also applies to other

expressions that will follow. Using the previous results, Equation (6) and (7) one

obtains
∂f

∂σ11

= 3(s11 − α11)(1 −

√

3

2
sgn cα11) (17)

and
∥

∥

∥

∥

∂f

∂σ11

∥

∥

∥

∥

= 3

√

3

2
|s11 − α11|(1 −

√

3

2
sgn cα11) (18)

Because of property (16), absolute value does not need to be used for the bracketed

term.

At this point, all the remaining evolution equations may be specified. The flow rule

reduces to

ǫ̇p
11

= 3λ(s11 − α11)(1 −

√

3

2
sgn cα11) (19)

the backstress

α̇11 = a1(1 −

√

3

2
sgn a2α11)ǫ̇

p
11

(20)
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and the isotropic variable

k̇ = λκ1k(1 − κ2k) (21)

which completes an ordinary differential system.

It is easy to integrate the stand alone Equation (20) even for cyclic loading with

possible stress reversals. This results in

α11 =

√

2

3

sgn

a2

[

1 − (1 −

√

3

2
sgn a2α

0

11
) exp

(

−

√

2

3
sgn a1a2∆ǫp

11

)]

(22)

where α0

11
denotes the value, which the backstress component attained at the end of

the previous loading cycle, and ∆ǫp
11

is the increment of plastic strain in the current

cycle. For example, in the first tensile quarter-cycle one has

α11 =

√

2

3

1

a2

[

1 − exp

(

−

√

2

3
a1a2∆ǫp

11

)]

(23)

etc.

Next, we eliminate λ from Equation (19), substitute into Equation (21) and with

the aid of Equation (14) arrive at

2k̇

κ1(1 − κ2k)
=

sgn ǫ̇p
11

√

1 − c
√

3

2
sgn α11

(24)

This differential equation may look chalenging at first glance but even in this case a

series of substitutions leads to a desirable, though rather complex result

k =
1

κ2

[1 − (1 − κ2k0) exp(ξ)] (25)

where

ξ = −

√

2

3

κ1κ2

a1

√

a2(a2 − c)
(tanh−1(p) − tanh−1(p0)) (26)

and

p(∆ǫp
11

) =

√

√

√

√1 +
c

a2 − c

(

1 −

√

3

2
sgn a2α0

11

)

exp

(

−

√

3

2
sgn a1a2∆ǫp

11

)

(27)

with p0 = p(0). Assuming plastic yielding, Equation (14) must be satisfied with the

‘=’ sign, which gives

σ11 =
sgn k

√

1 −
√

3

2
sgn cα11

+
3

2
α11 (28)

Substituting for α11 and k, the closed form solution is obtained.

As was already mentioned in the introduction to this section, equivalent systems

hold for other proportional loading paths so that no extra information can be gained in

this fashion and alternatives should be sought.
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3.2 Stabilized hysteresis loop

Suppose that the material is cyclicaly loaded with constant plastic deformation ±ǫ̂p.

Once the saturated state has been reached, the isotropic part of hardening ceases to

evolve. Basically, the state of saturation may be modelled as a combination of kine-

matic and distortional portions of hardening—see Figure 3—with k fixed to its limit

value 1/κ2. Moreover, one may safely assume that stress oscillations will also stabi-

lize to ±σ̂. The curve connecting the apices of limit hysteresis loops, corresponding

to different amplitudes, defines the cyclic deformation curve.
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Figure 3: Stabilized backstress response

According to Lemaitre and Chaboche [10], possibly the simplest way to obtain a

formula for the cyclic curve is to make an assumption that the backstress hysteresis

given by Equation (22) has to create a closed loop. Hence

α̂ =

√

2

3

1

a2

[

1 − (1 +

√

3

2
a2α̂) exp

(

−2

√

2

3
a1a2ǫ̂

p

)]

(29)

where we have substituted α11 = ±α̂. From Equation (29) one immediately gets

α̂ =

√

2

3

1

a2

tanh

(

√

3

2
a1a2ǫ̂

p

)

(30)

Making use of Equation (14), the stress-strain curve takes the form

σ̂(ǫ̂p) =
1

κ2

√

√

√

√1 −
c

a2

tanh

(

√

3

2
a1a2ǫ̂

p

)

+

√

3

2

1

a2

tanh

(

√

3

2
a1a2ǫ̂

p

)

(31)
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It should be pointed out that the cyclic yield stress defined in the limit as ǫ̂p → 0
amounts to k̂0 = 1/κ2, which differs from k0. Incidentally, 1/κ2 is the limit value of k.

For example, for the material in question k̂0 = 83 MPa as opposed to k0 = 128 MPa,

indicating cyclic softening. This may also be seen in Figure 2, where the isotropic

variable indeed decreases.

4 Calibration

Assuming that the initial yield tress, k0, is known, there are five material constants to

be determined. In principle, Equation (28) by itself is sufficient since it contains all

the free parameters. One may think, for instance, of fitting it against several points

selected on the loading-unloading branches of an experimental stress-strain curve.

Such a simplistic approach, nevertheless, does not need to be necessarily expedient,

therefore, one may look for alternatives.

Sensitivity analysis, presented in the next section, suggests that the constant κ2 does

not strongly influence transient evolution, therefore, its value may be readily obtained

as the reciprocal of the cyclic yield stress k̂0. This reduces the number of unknowns

to four. Asymptotics to Equation (31) as ǫ̂p → ∞ provides us with another clue

σ̂∞ =
k̂0

√

1 −
c

a2

+

√

3

2

1

a2

(32)

Thus, combining Equations (28), (31) and (32) one can set up a nonlinear algebraic

system consisting of a sufficient number of equations to be solved for a1, a2, κ1 and c.

4.1 Sensitivity analysis

A revealing insight into the process of calibration may be gained by sensitivity anal-

ysis. In this work, such analysis was carried out numerically, varying each input

parameter, one at a time, by adding or subtracting fifty per cent of its nominal value.

The results are shown in Figures 4-8

It follows from the plots of yield loci that the constitutive model enjoys consider-

able stability with respect to input variation. It seems that apart from the yield stress

k0, the most influential constant is the parameter c that controls directional distortional

hardening.

5 Conclusions

One of the recently proposed constitutive models with directional distortional harden-

ing was studied in detail. This model, suitable for metal plasticity, represents probably
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Figure 4: Sensitivity to κ1
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Figure 6: Sensitivity to a1

the simplest conceivable form of constitutive equations that, not counting elastic con-

stants and the initial yield stress, list only five additional material parameters. Despite

of seeming simplicity, this model can capture reasonably well all the essential features

of a yield surface distortion. Four of the constants enter the Armstrong-Frederick type

evolution equations with recall memory terms for backstress and the isotropic vari-

able. The fifth parameter controls directional multiplier, which, motivated by the AF

rule, consists of the inner product of the stress tensor with backstress.

A major problem, quite common with many complex plasticity models, arises when
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Figure 7: Sensitivity to a2
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Figure 8: Sensitivity to c

a user wishes to identify material parameters for a particular application. Reduction of

constitutive equations to one variable form characteristic of uniaxial stress, as in the

tensile test, or pure shear, as in the torsion test, leads to an algebro-differential system

difficult (if not impossible) to solve. For the problem at hand, s solution is feasible

yet it gives rise to a set of nonlinear algebraic equations, which must be dealt with

numerically.

The idea of computing asymptotic states for cyclically loaded specimens may lend

some help. Indeed, the ensuing equations are much simpler, nonetheless, not fully

compatible with the ones describing transient evolution close to the initial state. For

example, the cyclic yield stress conforming to small plastic strain amplitude does not

equal the monotonic yield stress, which is usually significantly larger. Accepting some

shortcomings, monotonic and cyclic loading curves, if available, provide a sufficient

data set for the material model calibration.

The last section outlined a promising method, based on sensitivity analysis, to se-

lect the optimum loading modes, which are best suited for tuning certain model param-

eters. Although numerical by nature, this investigation unveiled low sensitivity of the

yield surface morphology to most constants except for the ones controlling directional

distortional hardening and the ultimate yield strength.
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