
Abstract

This paper describes the application of the particle swarm optimization to the shape
optimization of two-dimensional domains described by NURBS (non-uniform ratio-
nal B-splines) and analyzed using the NURBS-based isogeometric analysis. The reg-
ularization of the optimization problem, preventing undesirable clustering of control
points of the underlying geometry leading to invalid geometry or parametrization, is
achieved by controlling the magnitude of perturbation of design variables within the
PSO using a background mesh. This mesh, however, does not have to comply with re-
quirements on a standard (e.g. finite element) computational mesh, as it does not have
to follow the exact geometry. Thus construction of such a mesh (Matlab Distmesh
tool is utilized) is simple and does not introduce a bottleneck to the whole process. The
capabilities and performance of the developed optimization strategy are demonstrated
on standard benchmark problems.

Keywords: shape optimization, particle swarm optimization, NURBS, isogeometric
analysis, Distmesh tool.

1 Introduction

Isogeometric analysis (IGA) [1, 2, 3, 4, 5, 6] is a recently introduced method which
builds upon the concept of isoparametric elements and upgrades it to the geometry
level. Although the original intention was to span the gap between the computer aided
design (CAD) and the finite element method (FEM), the various advantages and range
of applicability make the IGA an interesting alternative to the widely used FEM. It has
been shown that the IGA outperforms the classical FEM in various aspects (accuracy,
robustness, system condition number, etc.). Another distinct advantage of the IGA
over the FEM consists in the conciseness of the parametrization of the design variable
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space, which makes the IGA attractive for the shape optimization problems.
The aim of this paper is to present the application of the particle swarm opti-

mization (PSO) to the shape optimization of two-dimensional domains described by
NURBS and analyzed by the NURBS-based IGA. The regularization of the optimiza-
tion problem, preventing undesirable clustering of control points of the underlying
geometry leading to invalid geometry or parametrization, is achieved by controlling
the magnitude of perturbation of design variables within PSO using a background
mesh.

The paper is organized as follows. The concept of the IGA is briefly recalled in
Section 2. A method of the Particle Swarm Optimization is introduced in Section 3 and
the Distmesh tool for mesh generating is shortly mentioned in Section 4. The final
combination of all these methods is described in Section 5 and results are presented in
Section 6.

2 Isogeometric Analysis

In the IGA, the approximation of the solution over the domain is based on the func-
tions employed for the description of the underlying geometry of the domain itself.
Therefore understanding of the NURBS based representation of the geometry (used in
CAD) gives a good insight into the isogeometric concept. A NURBS patch is defined
by a set of control points (topologically forming a regular grid of the dimension corre-
sponding to the spatial dimension of the underlying parametric space), their weights,
degree of the B-spline basis functions in each direction of the parametric space, and
a so-called knot vector represented by a nondecreasing sequence of parametric coor-
dinates for each direction defining the support for individual B-spline basis functions
(in other words parametrization) in that particular direction. Note that the number of
control points, degree of basis functions, and size of the knot vector in the particular
parametric direction are not independent and must be mutually consistent. The data
at the control points (for example the coordinates when the geometry is concerned, or
the primary unknowns when the solution space is handled) are interpolated over the
NURBS patch using the shape functions which are defined as weighted normalized
tensor product of univariate B-spline basis functions in each of the parametric direc-
tions. For example, for a two-dimensional NURBS patch of a degree p in u-direction
and degree q in v-direction, the basis function associated with a control point in the
i-th row and j-th column of the grid of N ×M control points is given by

Rp,q
i,j (u, v) =

Np
i (u)N q

j (v) wi,j∑N
n=1

∑M
m=1 Np

n(u)N q
m(v) wn,m

, (1)

where wi,j stands for the control point weight and N r
k (t) denotes the univariate B-

spline basis functions of the degree r. Starting with the piecewise constant basis func-
tions of a zero degree defined by

N0
i (t) =

{
1 if ti ≤ t < ti+1,
0 otherwise,

(2)
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Figure 1: B-spline basis functions: (a) construction of cubic basis function as lin-
ear combination of quadratic basis functions, (b) hierarchical sequence of piecewise
constant, linear, and quadratic basis functions.

the basis functions for degree p > 0 are defined recursively as

Np
i (t) =

t− ti
ti+p − ti

Np−1
i (t) +

ti+p+1 − t

ti+p+1 − ti+1

Np−1
i+1 (t), (3)

in which ti (for i = 1, 2, . . . , N + p + 1) stands for entries of the knot vector and N
denotes the number of control points (in the given direction). This is demonstrated in
Figure 1a) where the cubic basis function N3

i spanning four consecutive knot spans
is obtained as linear combination of consecutive quadratic basis functions N2

i and
N2

i+1 spanning the first three and last three from those four knot spans, respectively.
Figure 1b) then displays the hierarchical sequence for piecewise constant, linear, and
quadratic basis functions built over an infinite uniform knot vector. For details con-
cerning the definition of the B-spline basis functions and their properties the reader is
referred to [7].

An example of a quadratic NURBS curve (i.e. one-dimensional NURBS patch)
defined by six control points and their weights and parameterized over the open knot
vector1 {0, 0, 0, 1, 3, 3, 4, 4, 4} is depicted in Figure 2a). The parametric equation of
that particular curve is given by

r(t) =
6∑

i=1

Ri(t)P i, (4)

where r is the positional vector of a point on the curve corresponding to parameters
t ∈

〈
0, 4

〉
and P i represents the individual control points. The colors of individual

parts of the curve correspond to the individual non-zero knot spans (red: 0− 1, green:
1 − 3, blue: 3 − 4). The NURBS basis functions R2

i (t) as well as the B-spline basis

1Knot vector is called open if its first and last entry is repeated (degree + 1) times, which implies
that the curve is passing through the first and last control point (see [7] for details).
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Figure 2: Quadratic NURBS curve: (a) control polygon in black; numbers of in-
dividual control points and their weights (in parenthesis) in color corresponding to
associated basis function; segments of the curve in red/green/blue corresponding to
non-zero knot spans 0-1/1-3/3-4, (b) B-spline basis functions Ni and NURBS basis
functions Ri corresponding to individual control points plotted over the entire span of
the knot vector {0, 0, 0, 1, 3, 3, 4, 4, 4}.

functions N2
i (t) used to construct R2

i (t) are shown in Figure 2b) over the entire span
of the knot vector. The curve interpolates those control points for which the corre-
sponding basis function attains value one (knot value at which this occurs defines the
parameter corresponding to that control point), the rest of the control polygon is only
approximated. The curve is C1 continuous everywhere except for the point corre-
sponding to parameter 3 at which the continuity has been weakened by repeating that
particular value in the knot vector twice.2 Note the C0 continuity of the B-spline basis
function N4 in Figure 2b) at parameter 3. The coincidence of the interface between
the first (red) and the second (green) knot span on the curve with the intersection of
the curve with its control polygon is a rule for quadratic curve only. Note that the red
part of the curve (corresponding to the first knot span of size 1) is significantly larger
than the green part (corresponding to the second knot span of size 2) despite the fact
that the control polygon between control points 1 and 4 is symmetric with respect to
the middle of its second segment. This is the consequence of the weight 4 applied
at the third control point which results in the attraction of the curve toward the third
control point.

The computational isogeometric mesh within the single NURBS patch is formed
by partitioning the parametric space into the non-zero knot spans in each direction (in
the example above, there are three such non-zero knot spans, see Figure 2). Since
the shape functions within the single non-zero knot span are C∞, the computation
of characteristic components of the discretized governing differential equation (e.g.
stiffness matrix, load vector, etc.) on each non-zero knot span is performed in the

2Generally, multiplicity k ≤ p of a particular inner knot decreases the continuity of the basis func-
tions of degree p at that knot to Cp−k.
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standard FE-like fashion, typically using the Gaussian numerical quadrature3.
The IGA has many features in common with the FEM (the shape functions form

a partition of unity, they have the compact support, affine invariance applies, a nu-
merical integration is employed, Neumann boundary conditions are satisfied naturally
etc.) but there are some more or less significant differences. In the traditional FEM,
the individual nodes are part of the computational domain, and corresponding degrees
of freedom (DOFs) have the direct physical meaning (e.g. displacement in particular
direction at the node), which is the direct consequence of the Kronecker delta property
of the finite element shape functions. In the framework of the IGA, the control points
of NURBS patches are generally not part of the physical computational domain. This
implies that the application of Dirichlet boundary conditions is not straightforward
and must be handled (often only approximately) within the available NURBS space.
Except for the h-, p-, and hp-refinement strategies, the isogeometric concept offers
also a higher order refinement methodology, known as k-refinement [1, 4], which has
no analogue in the standard FEM and which is based on the fact that knot insertion
(refinement of the parametric space) and degree elevation algorithms do not com-
mute. Using the k-refinement, it is possible to increase the continuity across knot span
boundaries (within a single NURBS patch) while limiting the growth of control vari-
ables. An important feature of the IGA analysis is the fact that due to a larger support
of basis functions of quadratic degree and higher4 the number of control points neces-
sary to obtain results of similar quality as that from the FEM using a basis function of
the same degree, is smaller. The same also holds for the representation of the under-
lying geometry. This conciseness of parametrization makes the IGA attractive for the
shape optimization problems as the size of the design variable space is kept limited
while still preserving sufficient level of flexibility and geometrical continuity. More-
over, the approximation property of the B-spline basis functions (the actual geometry
does generally not interpolate individual control points) eliminates the undesirable os-
cillations (know in the FEM) due to the interpolation nature of (typically Lagrangian)
finite element basis functions and reduces the need for the regularization.

3 Particle Swarm Optimization

A lot of new metaheuristic optimization methods is inspired by nature. Algorithms
simulate social behavior of animals, birds or insects or behave according to some
physical phenomena. One of the main advantages of metaheuristics is that there is
no need to determine a gradient of an objective function as in case of mathematical
programming methods. Particle Swarm Optimization, as a member of Swarm Intelli-
gence techniques, is a relatively new method firstly introduced in [8]. It is based on
a natural behavior of bird flocking or fish schooling. The flock acts like one organ-
ism. The whole flock as well as every individual, called particle, has its own memory.

3Note, however, that Gaussian numerical quadrature is generally not optimal and that there exist
more efficient numerical integration schemes for the IGA.

4Note, that for linear degree, the IGA analysis is identical with the FEM based on linear elements.
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Figure 3: Velocity update of one particle in 2D where c1 = c2 = 2.

Particles share their best knowledge to each other thus the flock can find the optimal
solution efficiently.

Each particle represents a potential solution in D-dimensional space. The i-th
particle Xi is represented as Xi = (xi1, xi2, xi3, . . . , xiD). Particles fly through the
searched space with a velocity Vi = (vi1, vi2, vi3, . . . , viD). Every component of the
velocity is updated according to the following equation

vj+1
id = w ·vj

id +c1 ·rand() ·(pid−xj
id)+c2 ·Rand() ·(pgd−xj

id), d = i, . . . , D (5)

where w is the inertia weight, vj
id is a velocity from the previous step, c1 is the cognitive

factor, c2 is the social factor, pid represents the best position of the particle i, pgd

represents the best swarm position and rand() and Rand() are two random scalars,
vectors or matrices, respectively, in the range of [0,1] (see [9]). The first addend of the
Equation 5 is deterministic and represents an inertia of the particle. If there is a zero
contribution from the second as well as the third addend, the particle will move only
with inertia from the previous step and it does not stay in a local minimum. The second
addend of Equation 5 is stochastic because of the random function rand(). It provides
movement of the particle towards its own best position. The third contribution is
stochastic as well and provides shifting of the particle to the best swarm position.
Figure 3 illustrates stochastic contributions of Equation 5. Since each addend is scaled
by a random number in the range of [0,1], the end of the velocity vector can be placed
anywhere in the yellow hatched area.

The position of the particle xj
id is then updated by

xj+1
id = xj

id + 1 · vj+1
id (6)

where vj+1
id is an actual velocity from Equation 5 and 1 has the meaning of the unit

time.
There are two possibilities how to scale stochastic addends [10]. The first approach,

a linear PSO, is using two random scalars as rand() and Rand() which multiply the
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Figure 5: Returning process for a particle which flies out of the solution space.

magnitude of the cognitive and social vectors. The main disadvantage of this method
is that particle will fly over the straight line at the end of the algorithm and whole space
will not be searched. The second approach, a classical PSO, produces a two random
vectors or two random diagonal matrices, respectively. The movement of particles is
then diverse during the whole run. The classical approach is used hereafter.

The algorithm of the PSO can be described as follows.

1. The first step is to set up all coefficients and variables. We use values as listed in
Table 1, see the next section for the discussion on the settings. Note that initial
velocities can be zero or random. Non-zero velocities have a merit of diversity in
the deterministic addend, and therefore, have been used in our implementation.

2. In the next step, the value of an objective function is calculated for all particles.
The value is then compared with the best solution of the particle and with the
best solution of the whole swarm. In case of better value in the actual iteration
than in previous ones, the positions Pgd and Pid are updated.

3. Velocities are calculated for all particles according to Equation 5 and positions
are updated by Equation 6.

4. The algorithm ends after reaching a maximum number of iterations selected at
the first step.

The main drawback is that the PSO can move particles out of the admissible space.
The easiest solution is to restrict a velocity or coordinates for a particle which flies out-
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side. The three most frequent PSO approaches of controlling velocitiesare depicted in
Figure 4. An absorbing wall ensures the movement of the particle along the bound-
ary, a reflecting wall bounces the particle back to the admissible space and an invisible
wall does not utilize updating of a particle position if the movement directs behind
the boundary. In our implementation, another approach is used. The coordinates are
limited to the given bounds, i.e. if the particle flies out of the admissible space, it is
returned back to the boundary according to Figure 5.

4 Mesh generation using Distmesh tool

The Distmesh tool (DM) is a heuristic smoothing algorithm for generating uniform
meshes [11]. The DM is based on a simple dynamical system of expanding pin-jointed
structure, here characterized by the second (background) mesh, see Figure 6a). Those
trusses that are too short are causing repulsive forces that move the too close nodes
apart, see Figure 6b) for the final solution. The main disadvantage apart from high
computational demands is the need to return nodes that leave the prescribed admissi-
ble domain, i.e. the same problem encountered within the PSO. The DM offers similar
procedure as is shown in Figure 5 for basic entities. A polygon used in our compu-
tations to describe the background mesh boundary is one of them, see the original
paper [12] for more details. The background mesh, however, does not have to comply
with requirements on a standard (e.g. FEM) computational mesh, as it does not have
to precisely follow the exact geometry. Thus construction of such mesh can be simpli-
fied up to only two inner iterations of the DM and thus does not introduce a bottleneck
to the whole process.

a) b)

Figure 6: An illustrative example of a generation of a uniform mesh from randomly
generated points inside a polygon: (a) Triangulation of random points forming a truss-
like structure, (b) The final mesh after the application of the Distmesh tool.

8



a) b) c)

10 mm

10
m

m

fy
fx

0 2 4 6 8 10

2

4

6

8

10

1 2 3

4 5

6,9

7
8

10
11

12

0 2 4 6 8 10

2

4

6

8

10

1 2 3 4 5

6 7

8

9

10

11
12

13

14

15,20,25

16

17

18

19

21

22
23

24

26

27
28

29

30

31

32

33
34
35

Figure 7: A square plate with an indicated hole (a) and starting positions of control
nodes for (b) coarse and (c) fine settings.

5 Shape optimization method

A combination of all methods mentioned above is applied on the benchmark struc-
ture depicted in Figure 7a) taken from [13]. The symmetrically supported plate is
10 mm high as well as wide and the thickness is 1 mm. Young’s modulus E is equal
to 10 N/mm2 and Poisson ratio ν equals to 0.3. Control nodes, placed on the struc-
ture, define a curve of a hole and a boundary polygon. The results will be shown
for two resolutions of the control points, coarse and fine settings, see Figure 7b) and
Figure 7c).

The overall objective of the shape optimization is to find positions of the control
nodes so that the shape of the benchmark structure has minimal compliance in the
discretized form [14]

min L = 1
2
fT u, (7)

s.t. Ku = f, (8)
s.t. V = const., (9)

with the stiffness matrix K and u and f as displacements and load vectors, respec-
tively. Two examples of loadings and volume constraints are solved. The first example
is symmetrically stretched, fx = fy = −1 N/mm and the total volume is restricted
to 70% of the original volume, i.e. to V = 70 mm2. The second example is charac-
terized by an unsymmetrical loading fx = −1 N/mm, fy = −2 N/mm and a volume
constraint is set to V = 95 mm2. Note that OOFEM software ([15]) enhanced by the
Isogeometric analysis [16] is used for the computation of the compliance L and the
volume V of the primary mesh as well.

The single objective optimization problem is therefore composed of the objective
function L enhanced by the penalty function ensuring fulfilment of the volume con-
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straint. The general shape of the penalty function used hereafter reads as

penaltyi =

(
χi

αmin

)β

∗MaxPeni, (10)

where χi is the value of the i-th equality constraint, violation of which by αmin percent
is penalized with the MaxPeni value; a parameter β then influences the steepness of
the penalty curve. Particularly, in case of the volume restriction, the penalty function
is defined by

χ1 =
V

Vmax

− 1, MaxPen1 = 2, (11)

where V is the volume obtained from OOFEM using NURBS and Vmax is the re-
quested volume mentioned above. Other parameters are listed in Table 1.

PSO Penalty functions

c1 c2 w iter nop αmin β

2 1 0.6 100 16 0.005 2

Table 1: Coefficients for the PSO are following: c1 is a cognitive factor, c2 is a social
factor, w is an inertia weight, iter is the number of iterations, nop is the number
of particles. Penalty functions have following coefficients: αmin is a distance where
MaxPeni penalty is assigned and β is a shape parameter.

Then, one particle Xi in the PSO represents one potential solution. Since the plate
is in 2D and has N control points, the vector Xi contains its all coordinates i.e. 2N
components. The number of particles can be set to relatively low value e.g. 16 and
the number of iterations can be restricted to 100. A cognitive factor is set to c1 = 2
according to [10] and a social factor to c2 = 1. The second factor is set to lower value
than in [10] because we use a less number of particles and the social knowledge is not
that important as the personal knowledge, i.e. we would like to keep the diversity of
solutions. For the sake of completeness, all important coefficients are listed in Table 1.

Some nodes defining the boundary are forbidden to move because of prescribed
supports. It is therefore necessary to distinguish which components of velocities can
be zeros and non-zeros, respectively. If a movement of the node is allowed, the corre-
sponding component in the velocity vector is at the start of the PSO set to a random
value in the range of [−1, 1]. Otherwise, the component is zero. The initial positions
of nodes are sums of starting positions depicted in Figure 7b) and Figure 7c) and initial
velocities according to Equation 6.

In the next step of the algorithm the Distmesh tool is used. It ensures that the
nodes do not move towards each other by limiting the maximal length of the velocity
terms to the half of the shortest edge connecting the given node within the background
mesh. However, this does not ensure transposing of nodes as shown in Figure 8a)
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and forming of unwanted loops on the boundary. This problem is solved by another
penalty term

χ2 = V − VDM MaxPen2 = 2, (12)

where V is the volume obtained from Isogeometric analysis and VDM is the volume
obtained from the DM background mesh; i.e. we penalize big differences between
these two meshes in terms of volumes, see Figure 8c), which is usually the case of the
loops on the boundary.

The last deficiency is an appearance of a peak with almost zero volume in pur-
suit of spreading out the points, see Figure 8b). This is again solved by the penalty
approach in terms of perpendicularity of quoins emerged in points 1 and 10 in Fig-
ure 7b). Penalty function is used in the following form

χ3 =
2∑

j=1

cos φj, MaxPen3 = 0.1, (13)

where φj is an angle of the boundary at points 1 and 10, respectively.

6 Results

The known analytical optima of the selected benchmark are characterized by the el-
lipsoidal hole with different radii a and b for the prescribed loadings and a volume.
Note that in case of fx = fy the hole is circular. Therefore, we have simulated the
problem with two parameters a and b in the range of [1,9] with step 0.1. The situation
is depicted in Figure 9a). The coordinates of curve’s control nodes are proportionally
changed thus this simple model does not cover all possible solutions. The compliance
for all values of parameters is depicted in Figure 9b) and Figure 9c) for the first and
second example, respectively. The white lines show solutions with a proper prescribed
volumes. The objective function is minimized thus the optimum is the solution with
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Figure 8: (a) A loop which is created in case two nodes are transposed, (b) irregularity
in corner nodes and (c) a difference between a real NURBS mesh and a background
mesh from the Distmesh tool.
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Figure 9: (a) A parametric solution of benchmarks: compliance of parametric solu-
tions where a and b are in the range of [1,9] with a step of 0.1 mm and white lines
represent prescribed volumes V with the green points of analytical optima for the first
example (b) V = 70 mm2 and a diameter of 6.18 mm and the second example (c)
V = 95 mm2 and a = 1.8 mm and b = 3.6 mm.

the minimal compliance value lying on the curve given by those white lines, here
represented with the green points.

author method compliance volume

[13] mesh 16x16 16.165 Nmm -

[13] mesh 32x32 16.193 Nmm -

[13] mesh 64x64 16.195 Nmm -

this paper parametric solution - coarse settings 15.529 Nmm 69.809 mm2

this paper presented method - coarse settings 15.574 Nmm 69.702 mm2

this paper parametric solution - fine settings 16.156 Nmm 69.809 mm2

this paper presented method - fine settings 16.047 Nmm 70.013 mm2

Table 2: Comparison of results for reference [13] and the presented method for the
first example.

Four optima of the benchmark presented in Figure 10 are obtained with the pro-
posed method described in Section 5. The obtained values of the objective functions
and constraints are in reasonable agreement with theoretical results, see comparison
of values in Table 2 and Table 3 for the optima obtained by the parametric solution
based on an analytical solution and by the presented approach. However, the ob-
tained graphical solutions can deviate from theoretical results for fine resolutions, see
again Figure 10. With increasing refinement of the problem, some pathological be-
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Figure 10: Best solutions obtained by the PSO for the coarse (Left column) and fine
settings (Right column) and for the first (Top) and the second (Bottom) example. The
dashed lines represent shapes of analytical optima.

haviour is observed. Possible causes may be not large enough size of the considered
population, enforced boundary conditions (to keep the hole smooth) or the rather not
optimal behaviour of Distmesh along boundary. All these aspects need to be inves-
tigated in the future research.

7 Conclusion

This paper has shown a combination of three methods. The Isogeometric analysis is a
step towards a CAD method which, as an addendum, has several advantages over the
classical FE analysis in obtaining the mechanical response of a structure. The precise
description of the geometry predetermines IGA as a solution to the shape optimiza-
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author method compliance volume

[13] mesh 16x16 21.337 Nmm -

[13] mesh 32x32 21.377 Nmm -

[13] mesh 64x64 21.389 Nmm -

this paper parametric solution - coarse settings 21.331 Nmm 94.911 mm2

this paper presented method - coarse settings 21.338 Nmm 94.991 mm2

this paper parametric solution - fine settings 21.402 Nmm 94.911 mm2

this paper presented method - fine settings 21.091 Nmm 95.255 mm2

Table 3: Comparison of results for reference [13] and the presented method for the
second example.

tion problem. The particle wwarm optimization algorithm is then characterized by a
physical meaning of a group of flying particles which can utilize the inner properties
of the dynamics of the particles. The shape optimization problem is difficult from the
regularity point of view. Therefore, not only limitations within the PSO have been
used in this paper, but also a second, background mesh produced by the Distmesh
tool has been utilized. The solutions obtained indicate the problem of irregularities
with a growing number of control points arises from the unsatisfactory description of
the optimization solutions near the boundaries.
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