
Abstract

This paper deals with modeling wave dispersion in periodically heterogeneous plates
characterised by high contrasts in elastic coefficients. We study two plate models
based on the Reissner-Mindlin (R-M) theory and on the Kirchhoff-Love (K-L) theory.
Models of homogenized plates were obtained using the two-scale unfolding method
with the high contrast ansatz respected by scaling the elasticity coefficients of com-
pliant inclusions. Consequently, dispersion properties are retained in the limit when
the scale of the microstructure tends to zero. For some wavelengths, “mass density”
coefficients can be negative, so that intervals of frequencies exist for which there is no
propagation of elastic waves, the so-called band-gaps. Dispersion analysis for guided
waves is performed for both types of the plates; occurrence of band gaps for the R-M
plates is confirmed using numerical examples, however, the homogenized K-L plate
model does not admit band gaps.

Keywords: phononic materials, plate models, homogenization, band gaps, wave dis-
persion.

1 Introduction

We consider problems of wave propagation in periodically heterogeneous plates with
high contrasts in elastic coefficients. Following the approach of [1] and [7] we ap-
ply the unfolding method of homogenization [4] to obtain limit plate models. Two
cases are studied: 1) according to the Reissner-Mindlin theory the plate deformation
is described by the mid-plane deflections and by rotations of the plate cross-sections
which account for the shear stress effects; 2) using the Kirchhoff-Love theory, the
plate deflections are described by the bi-harmonic operator, thus neglecting the shear
effects. In both cases we assume such heterogeneities which depend on the mid-plate
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coordinates only, but do not change with the transversal coordinate. As an example
we can consider plates with soft cylindrical inclusions. Under such restrictions the
homogenization is applied to the plate equations with the elastic coefficients defined
as periodically fluctuating functions associated with the heterogeneities. Due to the
high contrast ansatz in scaling the elasticity coefficients of inclusions, as employed in
[1, 6, 2, 3], dispersion properties are retained in the limit when the scale (the charac-
teristic size) of the microstructure tends to zero.

Namely for the Reissner-Mindlin plates we show that, when the size of the mi-
crostructures tends to zero, the limit homogeneous structure presents the phononic
effect: for some wavelengths, the mass coefficients associated with the inertia can be
negative [6]. This means that there exist intervals of frequencies in which there is no
propagation of elastic waves, the so-called band-gaps.

2 Heterogeneous plates

We consider heterogeneous structures associated with a given scale, say ε0 > 0, which
is the ratio between the characteristic lengths of the microscopic and the macroscopic
description. There exist convergent sequences of solutions of the plate problems char-
acterized by scales ε → 0. For any fixed ε > 0 we shall rely on the following essential
material properties.

The fourth order, bi-dimensional elasticity tensor CC = (Cijkl) is symmetric Cijkl =
Cklij = Cikjl and positive definite. In particular, for the sake of simplicity, we consider
isotropic materials only, which are characterized by two Lamé parameters. The plate
model according the Reissner-Mindlin theory involves also the shear modulus, here
treated formally as an independent parameter γ > 0, although it is associated with one
of the Lamé parameters. The mass density ρ is positive.

We treat periodic composite materials, so that the material coefficients CC, γ and ρ
are periodically oscillating functions in R2; it will be described in detail in Section 3.1

2.1 The Reissner–Mindlin plate model

The plate model can be derived by an asymptotic analysis of the elasticity problem
imposed in Ω×] − h, h[, where Ω ⊂ R2 is an open bounded domain with regular
boundary ∂Ω and h is the plate thickness. In the time interval [0, T ] the plate undergoes
the following two modes of displacements: the in-plane “membrane modes” described
by U = (U1, U2) : [0, T ] × Ω̄ −→ R2, and the “off-plane” transversal deflections
W : [0, T ]× Ω̄ −→ R; moreover the cross-sections undergo rotations Θ = (Θ1, Θ2) :
[0, T ]× Ω̄ −→ R2.

The displacement and rotation (U, W,Θ) of the plate satisfy the equilibrium equa-
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tions 

hρ
d2

dt2
U − hdivσ(U) = T in Ω ,

hρ
d2

dt2
W − hdivτ (W,Θ) = F in Ω,

h3

3
ρ

d2

dt2
Θ− h3

3
divσ(Θ)− hτ (W,Θ) = M in Ω,

U = 0 , W = 0 , Θ = 0 on ∂Ω .

(1)

with τ and σ expressed by the following linear constitutive laws:
τ (W,Θ) := γ(∇W −Θ), shear stress due to relative (to mid-plane) rotation of cross-s.
σ(Θ) := CCe(Θ) , normal stress due to bending induced by rotations
σ(U) := CCe(U) , normal stress due to the in-plane membrane modes.

(2)
In general, we may consider a general decomposition of ∂Ω with respect to the above
displacements and rotations into the “Neumann” and “Dirichlet” parts of the boundary.
However, for the sake of simplicity, we consider the fully supported and clamped plate.

The linearized deformation tensor e(Θ) = (eij(Θ)) is given by the symmetric
gradient e(Θ) = 1/2 (∂jΘi + ∂iΘj), i, j = 1, 2.

We shall consider solutions in the form of harmonic stationary waves induced by
harmonic loading

T(x, t) = t(x) exp{iωt} , F (x, t) = f(x) exp{iωt} , M(x, t) = m(x) exp{iωt} ,
(3)

where ω is a given frequency, so that

U(x, t) = u(x) exp{iωt} , W (x, t) = w(x) exp{iωt} , Θ(x, t) = θ(x) exp{iωt} .
(4)

On substituting (3) into (1), we get the following equations governing the amplitudes
(u, w,θ): 

−ω2hρu− hdivσ(u) = t in Ω ,

−ω2hρw − hdivτ (w,θ) = f in Ω,

−ω2h3

3
ρθ − h3

3
divσ(θ)− hτ (w,θ) = m in Ω,

u = 0, w = 0, θ = 0 on ∂Ω.

(5)

2.2 The Kirchhoff–Love plate model

The motion of the plate is given by the out-off plate deflections W and by the in-plane
(membrane modes) displacements U. Let us recall that this kind of plate does not
admit any relative rotation of the plate cross-sections w.r.t. the plate mean surface,
therefore, it is convenient rather for thin plates.
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We shall consider solutions in the form of harmonic stationary waves induced by
harmonic loading, see (3). Thus, in analogy with (4), for a given fixed frequency ω,
the amplitudes (u, w) satisfy

− ω2hρu− hdivσ(u) = t in Ω ,

h3

3
∇∇ : Σ(w)− ω2ρ

(
hw − h3

3
∇ · ∇w

)
= f −∇ ·m in Ω ,

w = 0, n · ∇w = 0, u = 0 on ∂Ω ,

(6)

where ∇∇v = (∂2v/∂xi∂xj) is the 2nd order differential operator and stresses σ and
Σ are given in terms of the elasticity tensor, as follows:

σ(u) = CCe(u) ,

Σ(w) = CC∇∇w = σ(∇w) .
(7)

3 Homogenization

We consider a plate made of a heterogeneous material, whereby its periodic structure
is defined in the reduced 2D configuration directly. As usual, we use small parameter
ε describing the characteristic size of the microstructure. The solutions of (5) and
(6) depend upon ε, which will be indicated by the superscript �ε. Using asymptotic
analysis, the limit model for ε → 0 can be obtained which describes behaviour of the
homogenized material. Details on the homogenization procedure are out of the scope
in this short paper, interested readers are referred to associated publications [4] and
[1, 6].

Remark on the “in-plane” membrane modes. In the rest of the paper we consider
just the out-of-plane “deflection” and “rotation” modes of plate deformation, since, in
the linear theory used here, there is no coupling between these modes and the “mem-
brane” modes described by displacements u. The “membrane” modes satisfying (1)1
and (5)1 are driven by the same type of equations as in the 3D elasticity which was
discussed in papers [1, 7, 2, 3].

3.1 Strongly heterogeneous periodic composite

We assume the plate Ω is constituted by the matrix Ωε
m and by periodically distributed

inclusions; their collection forms domain Ωε
c. The split of Ω is subject to the following

constraints.

1. Ωε
m, Ωε

c ⊂ Ω ⊂ R2 and Ωε
m ∩ Ωε

c = ∅,

2. Ω = Ωε
m ∪ Ωε

c ∪ Γε, where Γε = Ωε
m ∩ Ωε

c .

3. matrix: Ωε
m is connected. As the result, inclusions Ωε

c are disconnected.
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The microstructure is generated as a periodic lattice using the representative peri-
odic cell (RPC) denoted by Y . For simplicity, we consider a rectangular RPC with the
following definition: Y = Π2

i=1]0, ȳi[⊂ R2 (R being the set of real numbers) where
ȳi > 0 can be chosen so that |Y | = 1. The RPC is decomposed in accordance with Ω,
i.e. Ym ⊂ Y and Yc = Y \ Ym are strictly contained in Y .

The coordinates of any point in Ω can be split into a “coarse” part ξ = (ξi) and a
“fine” part y = (yi), also called fast and slow evolving parts: For a given finite ε > 0
we have the unique decomposition

x ≡ ε
[x

ε

]
Y

+ ε
{x

ε

}
Y

= ξ + εy , where y =
{x

ε

}
Y
∈ Y and ξ = ε

[x

ε

]
Y
∈ Ω ,

(8)

where ξi = εkiȳi, i = 1, 2, ki ∈ Z is the lattice coordinate. Such a decomposition is
unique, once Y ∈ R2 is defined. Note that [zi/ȳi]Y (no summation) is the integer part
of zi/ȳi and {zi/ȳi}Y is the remainder. We shall consider ȳi = 1, i = 1, 2.

Material parameters CCε = (Cε
ijkl) and γε are periodically oscillating. For the

sake of simplicity we shall consider only piecewise constant material. To retain the
phononic effect in the homogenized plate, following the analogous approach em-
ployed in the case of phononic 3D periodic structures, we introduce the scaling of
the material coefficients in the inclusions:

CCε(x) = χε
c(x)ε2CCc + χε

m(x)CCm ,

γε(x) = χε
c(x)ε2γc + χε

m(x)γm .
(9)

We recall the standard properties of constant tensors CCc, CCm and coefficients γc, γm

which usually are considered: there exist constants 0 < m < m < ∞ independent of
ε such that (recall |e|2 = eijeij),

Cm
ijkleijekl ≥ m|e|2 ∀e = (eij) ∈ R2×2, eij = eji , sup

x∈Ω
|Cm

ijkl| ≤ m ,

m ≤ γm ≤ m ,
(10)

and in analogy for CCc and γc. The rotation-deflection coupling coefficient γε(x), i.e.
the shear stiffness, is only relevant for the Reissner-Mindlin plate model. It is worth
noting that CCε(x) and γε(x) are positive definite for ε > 0 only.

The density of the two materials is assumed to be of the same order of magnitude,
therefore we shall consider

ρε(x) = χε
c(x)ρc + χε

m(x)ρm ,

ρ ≤ ρs ≤ ρ ,
(11)

where ρ, ρ are given positive real numbers.
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Some preliminaries The homogenized model was obtained using the periodic un-
folding method which is based on the unfolding operator Tε : v ∈ L1(Ω; R) →
L1(Ω× Y ; R) defined, as follows, see [4],

Tε(v)(x, y) = v(ε
[

x
ε

]
+ εy) , x ∈ Ω, y ∈ Y .

We shall use H1
#(Y ) and H2

#(Y ), the spaces of periodic (scalar) functions,

H1
#(Y ) = {v ∈ H1(Y ) | v is Y-periodic } ,

H2
#(Y ) = {w ∈ H2(Y )| w,∇yw are Y-periodic} ,

(12)

and the associated space of vector-valued functions H1
#(Y ) = (H1

#(Y ))2.

3.2 Reissner-Mindlin phononic plate

We apply the unfolding method of homogenization to obtain a limit model of the R-
M plate for ε → 0. The elastic standing waves are described by the solution of the
following problem with the oscillating material coefficients: For a given frequency,
find triplet (wε,θε) ∈ (H1

0 (Ω))
3 such that

− hω2

∫
Ω

ρε

(
wεzε +

h2

3
θε ·ψε

)
+ h

∫
Ω

[γε(∇wε − θε)] · (∇zε −ψε) +
h3

3

∫
Ω

[CCεe(θε)] : e(ψε)

=

∫
Ω

(fzε + m ·ψε) ,

(13)

for all (zε,ψε) ∈ (H1
0 (Ω))

3.
Here we present the homogenized “macroscopic” model which involves homoge-

nized coefficients describing the effective mass and elasticity coefficients. The stand-
ing waves propagating in the homogenized plate are described in terms of amplitudes
(θ, w) ∈ H1

0(Ω)× ∈ H1
0 (Ω) which satisfy the following equations:

− ω2

∫
Ω

(
h3

3
[M(ω2)θ] ·ψ + hN (ω2)wz

)
+

h3

3

∫
Ω

[IDex(θ)] : ex(ψ) + h

∫
Ω

[G(∇xw − θ)] · (∇xz −ψ)

=

∫
Ω

(
[R(ω2)m] ·ψ + S(ω2)fz

)
∀ψ ∈ H1

0(Ω), z ∈ H1
0 (Ω) ,

(14)

where ID is the 4th order tensor of homogenized elasticity coefficients see (21), G is
the 2nd order tensor given in (22) describing the shear stiffness of the plate, M(ω2)
(the 2nd order tensor) and N (ω2) are homogenized mass coefficients. Below we ex-
plain how these coefficients are computed.
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Characteristic microscopic responses. The homogenized coefficients are expressed
in terms of the characteristic responses, the so-called corrector basis functions. We
proceed in analogy with [1] where the 3D elasticity dynamic problems were consid-
ered. We employ the elasticity bilinear form

cYm (ũ, ṽ) =

∫
Ym

(CCmey(ũ)) : ey(ṽ) . (15)

The following characteristic responses depend exclusively on properties of the stiffer
material in Ym; two problems for the so-called corrector basis functions are to be
solved:

• Find θ̃
rs ∈ H1

#(Y )/R such that

cYm

(
θ̃

rs
+ Πrs, ṽ

)
= 0 ∀ṽ ∈ H1

#(Ym) . (16)

• Find w̃k ∈ H1
#(Ym)/R such that∫

Ym

γm∇y(w̃
k + yk) · ∇yz̃ = 0 ∀z̃ ∈ H1

#(Ym) . (17)

To express the homogenized mass coefficients, we need the eigenfrequencies and
eigenfunctions which describe vibration of the inclusions clamped into the matrix.
Two eigenvalue problems with discrete spectra are solved:

• Find (Θr, λr) ∈ H1
#0(Y )× R for r = 1, 2, . . . such that (note Θr = (Θr

i ))

∼
∫

Yc

[CCcey(Θ
r)] : ey(ψ) = λr ∼

∫
Yc

ρΘr ·ψ ∀ψ ∈ H1
#0(Y ) . (18)

• Find (W r, µr) ∈ H1
#0(Yc)× R for r = 1, 2, . . . such that

∼
∫

Yc

[γc∇yW
r] · ∇yζ = µr ∼

∫
Yc

ρW rζ ∀ζ ∈ H1
#0(Yc) . (19)

The eigenfunctions are normalized, so that

∼
∫

Yc

ρΘr ·Θs = δrs , ∼
∫

Yc

ρW rW s = δrs . (20)

Homogenized coefficients. The homogenized plate elasticity is represented by the
following two tensors:

• Homogenized “in-plane” elasticity ID = (Dijkl):

Dijkl = cYm

(
θ̃

kl
+ Πkl, Πij

)
= cYm

(
θ̃

kl
+ Πkl, θ̃

ij
+ Πij

)
.

(21)

The symmetric expression is obtained due to (16).

7



• Homogenized shear elasticity G = (Gkl) introduced as

Gkl =

∫
Ym

γm∂y
l (w̃k + yk)

=

∫
Ym

γm∇y(w̃
k + yk) · ∇y(w̃

l + yl) .

(22)

The symmetric expression is obtained due to (17).

Inertia of the homogenized plate is represented by the following two mass coeffi-
cients:

M(ω2) = I ∼
∫

Y

ρ−
∑

r

ω2

ω2 − λr
∼
∫

Yc

ρΘr⊗ ∼
∫

Yc

ρΘr ,

N (ω2) =∼
∫

Y

ρ−
∑

r

ω2

ω2 − µr

∣∣∣∣∼∫
Yc

ρW r

∣∣∣∣2 ,

(23)

see [1, 7] for derivation of the analogical mass coefficients in 3D elasticity problems.
Influence of the load is weighted by the load coefficients which are computed by
similar formulae

R(ω2) = I −
∑

r

ω2

ω2 − λr
∼
∫

Yc

ρΘr⊗ ∼
∫

Yc

Θr ,

S (ω2) = 1−
∑

r

ω2

ω2 − µr
∼
∫

Yc

ρW r ∼
∫

Yc

W r .

(24)

As the result of our homogenization procedure, we obtain Problem (14) where
(w,θ) are the local amplitudes of harmonic waves excited by harmonic “homoge-
nized” loads with frequency ω. Let us note that, when for some ω the tensor M(ω) is
positive definite and the scalarN (ω) is positive, then also free structure vibrations (i.e.
stationary waves in domain Ω) can be excited. However, M(ω) or N (ω) may not be
positive (definite) for some ω; for the “membrane mode”, cf. [1] and [7], we proved
existence of whole frequency intervals – the band gaps – where the positiveness of
M(ω) fails. An analogical result can be proved for the coupled rotational and deflec-
tion modes: in each interval of frequencies ω2 ∈ (λr, λr+1) given by (18) there exists
a sub-interval of frequencies for which M(ω) is not positive. In such intervals, free
vibration “rotation modes” may be restricted, or completely suppressed. Also for the
shear modes associated with the deflection w and the corresponding mass N (ω) < 0,
in each interval of frequencies ω2 ∈ (µr, µr+1) there may exist subintervals with re-
stricted or suppressed wave propagation.

We show that for the coupled modes q := (θ, w) in plates, the dispersion analysis
is more complex than in the 3D continuum. In Section 4.3, we discuss the band gap
distribution using a numerical example. Interesting applications can be found [8].
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Numerical illustration. To illustrate numerical modelling of the homogenized Reissner-
Mindlin plate, in Fig. 1 we depict a finite element (FEM) approximation of corrector
basis functions θ̃

rs
and w̃k, see (16) and (17), as computed for a periodic structure

made of cylindrical soft inclusions in a harder matrix. The material coefficients re-
lated to the microstructure are introduced in Table 1, the plate thickness is h = 1mm.

θ̃
rs

w̃k

Figure 1: Corrector basis function for the Reissner-Mindlin plate. Note: both θ̃
rs

and
w̃k, r, s, k = 1, 2 are computed just in the matrix part Ym whereby Yc is void. In the
left figure, θ̃

rs
is represented by arrows, its magnitude |θ̃rs| by colors.

The homogenized mass coefficients are evaluated, for a given frequency ω, using
the eigenmodes (Θr, λr) and (W r, µr), r = 1, 2, . . . ; the eigenfunctions are displayed
in Fig. 2 for the first 12 modes computed on the cylindrical inclusion. The properties
of matrix M(ω) and coefficientN (ω) computed for this microstructure are discussed
in Section 4.3.

|Θr| in Yc W r in Yc

Figure 2: Eigenmodes for the Reissner-Mindlin plate.
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material par. units: in matrix Ωm: in inclusions Ωc:
(λCC, µCC) GPa (50.898, 20.681) (1.798, 1.483)
γ GPa 10.0 0.5
ρ 103 kg/m3 2.799 1.142

Table 1: Material parameters of the microscopic constituents. By λCC, µCC we denote
the two Lamé stiffness coefficients.

3.3 Kirchhoff-Love phononic plate

In analogy with the Reissner-Mindlin plate model (13), we consider the elastic stand-
ing waves, cf. [5] for the plate homogenization. We find solutions to the following
problem with the oscillating material coefficients: For a given frequency, find deflec-
tion wε ∈ H2

0 (Ω) such that

−ω2h

∫
Ωε

c

ρcwεv − ω2h

∫
Ωε

m

ρmwεv − ω2h3

3

∫
Ωε

m

ρm∇wε · ∇v − ω2h3

3

∫
Ωε

c

ρc∇wε · ∇v

+
h3

3

∫
Ωε

m

CCm∇∇wε : ∇∇v + ε2h3

3

∫
Ωε

c

CCc∇∇wε : ∇∇v

=

∫
Ω

(fv + m · ∇v) ∀v ∈ H2
0 (Ω) .

(25)

To present the homogenization result for ε → 0, we proceed in analogy with the
case of the Reissner-Mindlin plates. Using the unfolding method of homogenization
[4] and obtain the following equation for the transversal deflections w ∈ H2

0 (Ω) such
that

−ω2h

∫
Ω

ρ̄wv − ω2h3

3

∫
Ω

(M(ω2)∇w) · ∇v +
h3

3

∫
Ω

(ID∇∇w) : ∇∇v

=

∫
Ω

(
[R(ω2)m] · ∇v + fv

)
∀v ∈ H2

0 (Ω) ,

(26)

where ρ̄ is the average density of both material components situated in Y . Above
ID is the 4th order homogenized bending stiffness tensor defined below in (31) and
M(ω2) is the homogenized mass tensor computed using a similar expression to (23),
see (32). The “effective material parameters” are defined in terms of the characteristic
microscopic responses.

Characteristic microscopic responses. In contrast with the Reissner-Mindlin plates,
the cross-section rotations in the Kirchhoff-Love theory are fully determined by the
gradients of deflections; consequently only two instead of four microscopic problems
must be solved. The corrector basis function w̃kl ∈ H2

#(Ym) solves the following
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equation ∫
Ym

[
CCm∇∇yy(w̃

kl + Πkl)
]

: ∇∇yyṽ = 0 ∀ṽ ∈ H2
#(Y ) , (27)

where Πkl = ykyl. To compute the homogenized mass tensor, one needs to solve the
local problem: find (λr,ϕr) ∈ R×W(Yc) satisfying∫

Yc

[CCc∇yϕ
r] : ∇yϑ = λr

∫
Yc

ρϕr · ϑ ∀ϑ ∈ W(Yc) , (28)

where we employ the spaces of rotation-free vector fields:

W(Yc) = {w ∈ H1
#(Yc)| ∇y × w = 0} . (29)

Obviously, due to the ellipticity of the operator in (28), functions {ϕr}r form an or-
thogonal system; we use the standard normalization∫

Yc

ρϕr ·ϕs = δrs . (30)

Homogenized coefficients. The homogenized Kirchhoff-Love plate model involves
the following material coefficients defined in terms of the characteristic responses just
introduced:

• Homogenized elastic coefficients ID = (Dijkl)

Dijkl =∼
∫

Ym

[CCm∇∇yy(w̃
kl + Πkl)] : ∇∇yyΠ

ij

=∼
∫

Ym

[CCm∇∇yy(w̃
kl + Πkl)] : ∇∇yy(π

ij + Πij) ,

(31)

where the symmetric expression follows due to (27);

• Homogenized mass tensor M = (Mij)

M(ω2) = I ∼
∫

Y

ρ−
∑
r≥1

ω2

ω2 − λr
∼
∫

Yc

ρϕr⊗ ∼
∫

Yc

ρϕr . (32)

• Homogenized load coefficient R = (Rij)

R(ω2) = I −
∑
r≥1

ω2

ω2 − λr
∼
∫

Yc

ρϕr⊗ ∼
∫

Yc

ϕr . (33)

By virtue of the right-hand side expression in (32), M(ω2) can be negative, or
negative semi-definite for some frequencies ω. In such a case, standing wave propaga-
tion could be restricted or even suppressed for modes characterized by the deflection
gradient ψ := ∇w being the eigenvector associated with the non-positive eigenvalue
of M(ω2). However, the theory explained in [1] for the standard 3D elasticity cannot
be simply adopted, because the first left hand side term in (26) does not change its
sign and contributes to the positive inertia even for negative M(ω2).
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4 Dispersion analysis

We consider guided waves in the homogenized plates. In what follows we employ
plane waves of the frequency ω propagating in the direction n, whereby the wave
length is given by the wave number κ. Let θ̄ and w̄ be the amplitudes, then

θ(x) = θ̄eiκn·x ,

w(x) = w̄eiκn·x .
(34)

4.1 Reissner-Mindlin plates

The wave equation of the homogenized plate is obtained from (14)

−h3

3
∇ · IDe(θ)− hG(∇w − θ) = ω2h3

3
M(ω2)θ ,

−h∇ · G(∇w − θ) = ω2hN (ω2)w ,
(35)

We shall employ the following notation:

A = ID : (n⊗ n) , b = Gn , g = G : (n⊗ n) . (36)

On substituting the wave ansatz (34) in (35), we get the dispersion equation:(
κ2 h3

3
A + hG, −iκhb

iκhb·, κ2hg

) (
θ̄
w̄

)
= ω2

(
h3

3
M(ω2), 0

0, hN (ω2)

) (
θ̄
w̄

)
.

(37)

We can now discus computing the wave numbers and distinguish some special
modes.

First, let us assume ω2N (ω2)−κ2g 6= 0, then w̄ can be eliminated from (37) using

w̄ =
iκb · θ̄

ω2N (ω2)− κ2g
, (38)

therefore, there is a π/2 phase shift between the rotation and deflection amplitudes.
Consequently (37) can be rewritten, as follows:

κ2

(
h3

3
A + h(ω2N (ω2)− κ2g)−1b⊗ b

)
θ̄ =

(
ω2h3

3
M(ω2)− hG

)
θ̄ . (39)

Thus, we obtain the following biquadratic equation to be solved for (κ, θ̄):(
κ4R− κ2S(ω) + T(ω)

)
θ̄ = 0 , (40)
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where

R = g
h2

3
A ,

S(ω) = ω2h2

3

(
N (ω2)A + gM(ω2)

)
+ b⊗ b− gG ,

T(ω) = ω2N (ω2)

(
ω2h2

3
M(ω2)− G

)
.

(41)

Eq. (40) can be rewritten using substitution ψ̄ = −κ2LT θ̄ with LLT = R (note A is
symmetric pos. def.), so that κ2 can be computed by solving the following eigenvalue
problem: (

S(ω), L
LT , 0

) (
θ̄
ψ̄

)
=

1

κ2

(
T(ω), 0
0, −I

) (
θ̄
ψ̄

)
. (42)

Obviously, if both S(ω2) and T(ω2) are positive definite (both are symmetric), whereby
the left-hand side matrix is also positive definite, then κ2 > 0, so that there are two
guided waves. Otherwise band gaps can occur; we shall demonstrate such situations
in the next Section.

Let us recall that (42) is eligible for ω2N (ω2) 6= κ2g. In the opposite case, we get
formally κ2S(ω)−T(ω) = κ2

(
ω2 h3

3
N (ω2)A + h2b⊗ b

)
. Consequently, (40) reads

as κ2b ⊗ bθ̄ = 0, thus, b ⊥ θ̄. Clearly, in this case we recover the mode which will
be just described.

Special modes with b ⊥ θ̄. Let us now assume ω2N (ω2) = κ2g, thus, (38) is
invalid. On denoting B(ω2) = ω2 h3

3
M(ω2)−hG, from (37) we deduce the following

eigenvalue problem

B(ω2)θ̄ + bη = κ2h3

3
Aθ̄ ,

b · θ̄ = 0 ,
(43)

where η = w̄ is the Lagrange multiplier of constraint b ⊥ θ̄. Recalling ω2N (ω2) =
κ2g, due to the comparison between (43) and (37) we can observe that w̄ = η.

However, assuming ω2N (ω2) 6= κ2g, when b · θ̄ = 0, deflections vanish, i.e.
w̄ = 0, by virtue of (38). In this case, (39) reduces to (43) where η = 0. A nontrivial
“hour-glass” rotational mode must satisfy

θ̄ ∈ ker

(
B(ω2)− κ2h3

3
A

)
∩ ker bT . (44)

Condition (44) can be reformulated, as follows: take θ̂ = b⊥ with |θ̂| = 1, and express
f(ω2, κ2) := (B(ω2) − κ2 h3

3
A)θ̂. Now (44) holds for θ̂ whenever f(ω2, κ2) = 0,

which presents a system of two equations for (ω2, κ2). Obviously, only real positive
solutions possess a wave mode.

13



4.2 Kirchhoff-Love plates

We follow a similar procedure like the one performed in analysis of waves in the
Reissner-Mindlin plates. For any plane wave given in (34), the Kirchhoff-Love plate
equation (with zero external loads, assuming fully clamped plate)

−ω2hρ̄w + ω2h3

3
∇ ·M(ω2)∇w +

h3

3
∇∇ : (ID∇∇w) = 0 (45)

takes the following form:

−ω2hρ̄w̄ − ω2κ2h3

3
M(ω2) : n⊗ nw̄ + κ4h3

3
n⊗ n : ID(n⊗ n)w̄ = 0 . (46)

Denoting

d̂ = n⊗ n : ID(n⊗ n) , and m̂(ω2) = M(ω2) : n⊗ n , (47)

(46) yields a biquadratic equation for wave numbers κ of plane waves propagating in
direction n,

κ4d̂− κ2ω2m̂(ω2)− ω2 3ρ̄

h2
= 0 . (48)

It is worth noting that if no inertia related to cross-section rotations was considered,

i.e. m̂ ≡ 0 a priori, the dispersion relation (48) would possess κ2 = ±ω/h

√
3ρ̄/d̂.

However, in our case with mass M(ω2) related to the rotations the dispersion formula
yields the following expression for ϑ = κ2/ω2 where

ϑ± =
m̂(ω2)±

√
(m̂(ω2))2 + 12 ρ̄d̂

h2ω2

2d̂
. (49)

This relation reveals that a propagating wave exists for any frequency ω. Indeed, even
for M(ω2) negative (semi)definite, such that m̂(ω2) < 0, we have always ϑ+ > 0
independently of ω. Thus, in contrast with the Reissner-Mindlin plates, the homoge-
nized Kirchhoff-Love model does not admit band gaps for guided waves.

4.3 Computing band gaps for the Reissner-Mindlin phononic plates

In this section we use the same plate microstructure generated by cylindrical inclu-
sions, with material properties listed in Table 1, for which some illustrations of com-
puted corrector basis functions and eigenmodes were introduced. The aim of this
section is to show some interplay between eigenmodes of the inclusion and the band
gaps identified from the dispersion analysis. It performs in the following steps (see
[7] for the analogical procedure of computing the dispersion curves in a 3D phononic
homogenized composite):
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Figure 3: Dispersion curves of two modes for the Reissner-Mindlin plate. There is
at least one small band gap [6.174, 6.392]Hz, while 3 others have almost negligible
lengths. The resonance frequencies of the vibration modes in the elastic inclusions are
marked by points on the frequency axis, see Table 2.

1. Compute the microscopic response, i.e., the corrector rotations θ̃rs and deflec-
tions w̃k, and the eigenmodes (Θr, λr) and (W r, µr), r = 1, 2, . . . .

2. Compute homogenized coefficients ID, G.

3. For a given direction of wave propagation and any given frequency ω ∈ [ω, ω]:

(a) compute homogenized masses M(ω) and N (ω),

(b) constitute matrices R, S(ω), T(ω),

(c) solve the generalized eigenvalue problem (42) to obtain (θ̄
k
, ψ̄

k
) and Λk :=

1/κk, k = 1, 2, 3, 4. It should be noted that complex eigennumbers Λk are
obtained when the left-hand side matrix involving S(ω), or matrix T(ω)
are not both positive definite.

(d) Select only real positive Λk̂, k̂ ∈ {1, 2, 3, 4}, such that κk̂ := 1/
√

Λk̂

is the wave number of a propagating wave, i.e. (ω, κk̂) is one point of a
dispersion curve.
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4. Display the point-wise computed curves, see Fig. 3.

Using this algorithm we analyzed band gaps in the frequency range 0 to 35 Hz. In
Fig. 3 two wave modes κ1 and κ2 are represented by dispersion curves, whereby the
gaps can be observed in intervals (ω−, ω+) identified by unbounded slopes of the κ(ω)
functions, i.e. limω→ω− κ(ω) = +∞ and limω↘ω+ κ(ω) = −∞. In contrast with the
3D phononic structure, see [7], where the band gaps can be directly analyzed using
eigenvalues of the mass tensor, [1], apparently for plates analogical conclusions cannot
be deduced, as can be seen by comparing Fig. 3 with illustrations of eigenvalues of
M(ω) and values of N (ω), see Fig. 4 and Fig. 5.
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Figure 4: The eigenvalues of the mass matrix M(ω2). There are two intervals where
both eigenvalues are negative.

mode: µ1 µ1 λ1 λ2 µ3 λ3 λ4 µ4

Hz 6.175 14.368 15.245 15.247 23.080 24.177 24.206 32.458

Table 2: Resonance frequencies < 35 Hz with nonzero mean of the associated
eigenfunctions (see formulae (23)) for the eigenvalue problems (18) and (19). Note:
λ1 ≈ λ2 and λ3 ≈ λ4 should be double frequencies due to the structure symmetry.
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Figure 5: Values of N (ω) can be negative, as observed in 4 small intervals.

5 Conclusions

We presented homogenized models of wave propagation in strongly heterogeneous
plates, considering the Reissner-Mindlin (R-M) and the Kirchhoff-Love (K-L) the-
ories; while the first one takes into account shear effects related to rotations of the
plate cross-section with respect to the mid-plane, the second theory neglects this phe-
nomenon, which makes it convenient rather for thin plates. The homogenization re-
sults reveal dispersion properties for the homogenized plates: we conjecture, with
reference to the 3D phononic crystals, that there exist bands of frequencies for which
the wave equations admit evanescent solutions only, at least for certain polarizations.
There is a remarkable difference between the R-M and K-L models: while for R-M
the wave polarization is determined by components of (θ, w), i.e. the rotation and
deflection, for K-L there is just a scalar wave associated with the deflection w.

An important restriction of both presented models is related to the transversal
isotropy: here only cylindrical inclusions are admissible, although their shapes can
be arbitrary. To treat more general composite plates with e.g. spheroidal inclusions,
the homogenization procedure must be applied to a 3D composite with thickness pro-
portional to ε, i.e. to the microstructure scale.

The phononic effect, in general, is associated with vibration modes excited at the
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“microscopic” level. By virtue of definitions (23) and (32), these modes determine
“positivity”, or “negativity” of the homogenized masses; in [1] we described how this
observation can be employed to predict band gaps in the 3D phononic crystals. The
classical method of the band gap identification is based on analysis of guided waves,
thus, upon construction of dispersion curves; it is necessary to compute frequencies for
selected wave numbers ranging the Brillouin zone, cf. [7]. Although a detailed study
of the band gaps for the presented models is an issue of our further research, using a
numerical example we demonstrated existence of band gaps in a guided wave propa-
gation in an infinite homogenized R-M plate. For the K-L plate a simple calculation
shows that there is always a propagating wave even if the mass tensor associated with
the plate rotations is negative definite. For standing waves the band gap phenomenon
will be studied separately, as in that case the influence of boundary conditions must
be respected.
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