
1

Abstract

The Cuckoo search algorithm is a recent addition to metaheuristic techniques. It
simulates the breeding behaviour of certain cuckoo species into a numerical
optimization technique. Cuckoo birds lay their eggs in the nests of other host birds
so that their chicks when hatched can be nurtured by the host birds. The optimum
design algorithm presented for moment resisting steel frames is based on the cuckoo
search algorithm. The design algorithm selects the appropriate W sections for the
beams and column of a steel frame out of 272 W sections listed in the LRFD-AISC
(Load and Resistance Factor Design, American Institute of Steel Construction) [52]
such that the code requirements are satisfied and the weight of steel frame is the
minimum. Code specifications necessitate the consideration of a combined strength
constraint with lateral torsional buckling for beam-column members. Furthermore
displacement constraints as well as inter-storey drift restrictions of multi-storey
frames are also included in the design formulation. Further constraints related with
the constructability of a steel frame are also considered. The number of steel frames
are designed by the algorithm presented to demonstrate its efficiency. The same steel
frames are also designed by using the big bang-big crunch algorithm as well as the
particle swarm optimizer for comparison.

Keywords: structural optimization, discrete optimization, metaheuristic search
techniques, steel frames, swarm intelligence, cuckoo search algorithm, particle
swarm optimizer.

1 Introduction

The improvements took place in the design optimization techniques based on
metaheuristic algorithms in recent years have helped engineers tremendously in
finding the solutions of computationally intractable design problems [1-5]. By
means of these techniques it became possible to determine the solution of discrete
structural optimization problems more efficiently than with those based on

Paper 71

Design Optimization of Moment Resisting Steel Frames
using a Cuckoo Search Algorithm

M.P. Saka1 and E. Doğan2
1 Department of Civil Engineering
 University of Bahrain, Isa Town, Bahrain
2 Civil Engineering Department
 Celal Bayar University, Manisa, Turkey

©Civil-Comp Press, 2012
Proceedings of the Eleventh International Conference
on Computational Structures Technology,
B.H.V. Topping, (Editor),
Civil-Comp Press, Stirlingshire, Scotland

2

mathematical programming methods. The fundamental properties of metaheuristic
algorithms are that they imitate certain strategies taken from nature, social culture,
biology or laws of physics that guide the search process. Their goal is to efficiently
explore the search space using these guiding mechanisms in order to find near
optimal solutions. They also use some strategies to avoid getting trapped in confined
areas of search space. Furthermore they do not even require an explicit relationship
between the objective function and the constraints. The mechanisms used in search
of the optimum solution are not deterministic but stochastic. They are not problem
specific and proven to be very efficient and robust in obtaining the solution of
practical engineering design optimization problems with both continuous and
discrete design variables. Several algorithms have been developed that are based on
these techniques. A detailed review of these applications are carried out in [6,7].
After the successful applications of early metaheuristic techniques such as genetic
algorithms, evolutionary strategies and simulated annealing in structural
optimization, number of new metaheuristic algorithms have been emerged in recent
years which are even more efficient and robust than the earlier techniques.

Particle swarm optimizer is one of the recent algorithms that is based on

swarm intelligence [8,9]. In nature fish school, birds flock and bugs swarm not only
for reproduction but for other reasons such as finding food and escaping predators.
There are implicit rules that each member of bird flock and fish school has to abide
by so that they can move in a synchronized way without colliding. Each individual
in a flock maintains optimum distance from the neighboring individuals so that the
flock can move smoothly from one place to another. Particle swarm optimizer is a
simulator of social behavior that is used to realize the movement of a birds’ flock. It
is population based optimization algorithm. Its population is called a swarm and
each individual in the swarm is called a particle. Each particle flies through the
problem space to search for optimum. Particle swarm optimization has been
successfully applied to in developing structural optimization algorithms [10-20].

Harmony search method is another recent addition to metaheuristic techniques

[21-25]. This algorithm was inspired by the observation of music improvisation.
Trying to find a pleasing harmony in a musical performance is analogous to finding
the optimum solution in an optimization problem. The aim of the musician is to
procedure a piece of music with harmony. Similarly a designer intends to determine
the best solution in an optimization problem under the given objective and limiting
constraints. Both have the same target; to determine the best. Harmony search
method is widely applied in structural design optimization since its emergence.
These applications have shown that harmony search algorithm is robust, effective
and reliable optimization method [26-39].

Big Bang-Big Crunch algorithm is developed by Erol and Eksin [40] which is

population based algorithm similar to genetic algorithm and particle swarm
optimizer. It consists of two phases as its name implies. First phase is the big bang in
which the randomly generated candidate solutions are randomly distributed in the
search space. In the second phase these points are contracted to a single
representative point that is the weighted average of randomly distributed candidate
solutions. First application of the algorithm in the optimum design of steel frames is
carried out by Camp [41] which is followed by other applications [42-46].

3

Cuckoo search algorithm is also one of the very recent (2010) metaheuristic
technique which simulates the breeding behavior of certain cuckoo species into a
numerical optimization technique [47]. Cuckoo birds lay their eggs in the nests of
other host birds sometimes removing the host’s eggs to provide more possibility of
hatching their own eggs. Cuckoo search algorithm is population based metaheuristic
technique and its basic steps are as follows. Initially population of nests is randomly
generated and each nest contains number of eggs representing potential solution to
the design problem. Each nest is evaluated by computing its objective function
value which is its fitness. Among all nests the best one is selected. Depending on the
quality of the new eggs host eggs are replaced. Some cuckoo eggs are discovered by
host birds and thrown out of nests. These are replaced by new eggs. These steps are
continued until termination criteria is satisfied. Comparison of cuckoo search
algorithm with some of other metaheuristic techniques is carried out in [48] and it is
stated that the performance of cuckoo search algorithm in obtaining the optimum
solution of selected benchmark optimization problems is the best. Application of the
cuckoo search algorithm in structural design optimization has shown that it yield
lighter optimum designs with less number structural analysis compare to other
algorithms [49,50,51].

In this study the optimum design problem of moment resisting steel frames is
formulated according to LRFD-AISC (Load and Resistance Factor Design,
American Institute of Steel Construction) [52]. Design constraints include the
displacement limitations, inter-storey drift restrictions of multi-storey frames,
strength requirements for beams and beam-columns. Furthermore, additional
constraints are considered to satisfy practical requirements. These include three
types of inequalities. The first type ensures that the flange width of the beam section
at each beam-column connection of each storey is less than or equal to the flange
width of column section. The second and third type of constraints are required to be
included to make sure that the depth and the mass per meter of column section at
each storey at each beam-column connection are less than or equal to width and
mass of the column section at the lower storey. The design problem turns out to be
discrete nonlinear programming problem. Cuckoo search optimization technique is
employed to determine the optimum solution. The same design problems are also
solved by big bang-big crunch algorithm as well as particle swarm optimizer. The
optimum results obtained by the three different metaheuristic techniques are
compared to evaluate their performance.

2 Discrete Optimum Design of Steel Frames to
LRFD-AISC

The design process of moment resisting steel frames necessitates selection of steel
profile sections for its columns and beams from a standard steel section tables. This
selection should be carried out in such a way that the frame with the selected steel
sections satisfy the serviceability and strength requirements specified by the code of
practice while the economy is observed in the overall or material cost of the frame.

4

When the constraints are implemented from LRFD–AISC in the formulation of the
design problem the following discrete programming problem is obtained.

Find a vector of integer values I (Eqn. 1) representing the sequence numbers of
steel sections assigned to ng member groups

[]ng
T III ,...,, 21=I (1)

to minimize the weight (W) of the frame

Minimize
11

ng nk
W m Lik ik

= ∑ ∑
==

 (2a)

 Subject to

() / 1,....,1 h j nsj j j juδ δ δ− ≤ =− (2b)

1,....,i ndi iuδ δ≤ = (2c)

V Vu nφ≤ (2d)

8 1.0 0.2
9

1.0 0.2
2

P M Pu ux ufor
P M Pc n nx c nil b il

P M Pu ux ufor
P M Pc n nx c nil b il

φ φ φ

φ φ φ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

+ ≤ ≥

+ ≤ ≤

 (2e)

1,....,B B s nusc sb≤ = (2f)

1D Ds s≤ − (2g)

1m ms s≤ − (2h)

where Eq. (2a) defines the weight of the frame, ng is total numbers of groups in the
structural system, km is the unit weight of the steel section selected from the
standard steel sections table for group k, iL is the length of member i which belongs
to group k, nk is total number of members in group k.

Eq. (2b) represents the inter-storey drift of the multi-storey frame. jδ and 1−jδ are

lateral deflections of two adjacent storey levels and jh is the storey height. ns is the
total number of storeys in the frame.

5

Eq. (2c) defines the displacement restrictions that may be required to include other
than drift constraints such as mid-span deflections of beams. nd is the total number
of restricted displacements in the frame. juδ is the allowable lateral displacement.
The horizontal deflection of columns is limited due to unfactored imposed load and
wind loads to height of column / 300 in each storey of a building with more than one
storey. iuδ is the upper bound on the deflection of beams which is given as
(span / 300) if they carry plaster or other brittle finish.

Eq. (2d) represents the shear capacity check for beam-columns. φ is resistance
factor in shear, uV required shear strength, nV is nominal shear strength.

Eq. (2e) defines the local capacity check for beam-columns. nm is number of
members, nl is number of load cases, nxM is nominal flexural strength, uxM is
applied moment, nP is nominal axial strength, uP is applied axial load, Øc is
resistance factor for columns if the axial force is in compression, Øb is resistance
factor in bending. It is apparent that computation of compressive strength ncPφ of a
compression member requires its effective length. The computation of the effective
length of a compression member in a frame can be automated by using Jackson and
Moreland monograph [53]. The relationship for the effective length of a column in a
swaying frame is given as:

 ()()
() ()k

kk
/tan

/
6

36/

21

2
21

π
π

γγ
πγγ

=
+

− (3)

where k is the effective length factor and γ1 and γ2 are the relative stiffness ratio for
the compression member which are given as:

∑
∑=

11

11
1 /

/

bb

cc
I
I

γ and
∑
∑=

22

22
2 /

/

bb

cc

I
I

γ (4)

The subscripts c and b refer to the compressed and restraining members respectively
and the subscripts 1 and 2 refer to two ends of the compression member under
investigation. The solution of the nonlinear equation (3) for k results in the effective
length factor for the member under consideration. The Eqn. (3) has the following
form for non-swaying frames.

 1
/

)2/tan(2
)/tan(

/1
24

21
2

21 =+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛ +
+⎟

⎠
⎞

⎜
⎝
⎛

k
k

k
k

k π
π

π
πγγπγγ

 (5)

Eq. (2f) is included in the design problem to ensure that the flange width of the beam
section at each beam-column connection of storey s should be less than or equal to
the flange width of column section.

6

Eqs. (2g) and (2h) are required to be included to make sure that the depth and the
mass per meter of column section at storey s at each beam-column connection are
less than or equal to width and mass of the column section at the lower storey 1−s .
nu is the total number of these constraints.

3 Cuckoo Search Algorithm

Cuckoo search algorithm is originated by Yang and Deb [47] which simulates
reproduction strategy of cuckoo birds. Some species of cuckoo birds lay their eggs
in the nests of other birds so that when the eggs are hatched their chicks are fed by
the other birds. Sometimes they even remove existing eggs of host nest in order to
give more probability of hatching of their own eggs. Some species of cuckoo birds
are even specialized to mimic the pattern and color of the eggs of host birds so that
host bird could not recognize their eggs which gives more possibility of hatching. In
spite of all these efforts to conceal their eggs from the attention of host birds, there is
a possibility that host bird may discover that the eggs are not its own. In such cases
the host bird either throws these alien eggs away or simply abandons its nest and
builds a new nest somewhere else. In cuckoo search algorithm cuckoo egg
represents a potential solution to the design problem which has a fitness value. The
algorithm uses three idealized rules as given in [47]. These are: a) each cuckoo lays
one egg at a time and dumps it in a randomly selected nest. b) the best nest with high
quality eggs will be carried over to the next generation. c) the number of available
host nests is fixed and a host bird can discover an alien egg with a probability of

[]0,1ap ∈ . In this case the host bird can either throw the egg away or abandon the
nest to build a completely new nest in a new location. The pseudo code of the
cuckoo search algorithm is given in Fig. 1.

Cuckoo search algorithm initially requires selection of a population of n eggs

each of which represents a potential solution to the design problem under
consideration. This means that it is necessary to generate n solution vector of

{ }T1 ngx = x ,, x in a design problem with ng variables. For each potential
solution vector the value of objective function ()f x is also calculated. The
algorithm then generates a new solution ν β=+1 ν

i ix x + λ for cuckoo i where ν +1
ix and

ν
ix are the previous and new solution vectors. 1β > is the step size which is selected

according to the design problem under consideration. λ is the length of step size
which is determined according to random walk with Levy flights. A random walk is
a stochastic process in which particles or waves travel along random trajectories
consists of taking successive random steps. The search path of a foraging animal can
be modeled as random walk. A Levy flight is a random walk in which the steps are
defined in terms of the step-lengths which have a certain probability distribution,
with the directions of the steps being isotropic and random. Hence Levy flights
necessitates selection of a random direction and generation of steps under chosen
Levy distribution.

7

Cuckoo Search Algorithm
begin

 Initialize a population of n host nests , 1, 2,....,ix i n= ;

 while (until the termination criterion is satisfied);

 Get a cuckoo randomly, (let it be ix)

and generate a new solution by Levy flights;

 Evaluate its fitness (let it be iF);

 Choose a nest among n nests randomly, (let it be jx);

 if ()i jF F>

 replace jx by the new solution ix ;

 end

 Abandon a fraction (aP) of worse nests and

 built new ones at new locations via levy flights;
 Keep the best nests (or solutions);
 Rank the solutions and find the current best;
 end while

 Post process results;
end

Figure 1. Pseudo code for Cuckoo search algorithm

Mantegna [54] algorithm is one of the fast and accurate algorithm which
generates a stochastic variable whose probability density is close to Levy stable
distribution characterized by arbitrary chosen control parameter α (0.3 1.99)α≤ ≤ .
Using the Mantegna algorithm, the step size λ is calculated as

1/
x

y αλ = (6)

where x and y are two normal stochastic variables with standard deviation xσ and

yσ which are given as

 () () ()
()() ()

1/

1 / 2

1 sin / 2
1 / 2 2x

α

α

α πα
σ α

α α −

⎡ ⎤Γ +
= ⎢ ⎥

Γ +⎢ ⎥⎣ ⎦
 and () 1yσ α = for 1.5α = (7)

in which the capital Greek letter Γ represents the gamma function that is the
extension of the factorial function with its argument shifted down by 1 to real and
complex numbers. That is if k is a positive integer () (1)!k kΓ = − .

8

4 Cuckoo Search Based Optimum Design Algorithm with
Discrete Variables

The solution of the discrete design problem given in Eqns. 2(a-h) is obtained using
the cuckoo search algorithm. The optimum design technique based on cuckoo search
method treats the sequence number of the steel sections in the standard W-section
list as a design variable as mentioned in section 2. For this purpose complete set of
272 W-sections starting from W100x19.3 to W1100x499mm as given in LRFD-
AISC is considered as a design pool from which the optimum design algorithm
selects W-sections for frame members. Once a sequence number is selected, then the
sectional designation and properties of that section becomes available from the
section table for the algorithm. Consequently the design vector consists of integer
numbers between 1 to 272 which corresponds to the sequence numbers of W-
sections in the discrete set. The cuckoo search based optimum design algorithm
consists of the following steps.

1. Select the values of cuckoo search parameters. These are the total number of

host bird’s nests (n), step size parameter β , ap probability of cuckoo egg being
discovered by host bird and maximum number of iteration to terminate the
design process.

2. Generate host nests. Select randomly sequence number of steel sections from
the discrete list for each group in the frame.

()minmaxmin

i
0 IIrII −+= 1 2, ,.., n gI I I I⎡ ⎤= ⎣ ⎦ ni ,....,1= (8)

where the term r represents a random number between 0 and 1, Imin is equal to 1
and Imax is the total number of values in the discrete set respectively. ng is the
total number of design variables.

3. Carry out the analysis of the steel frame with these sections and check whether

the design limitations are satisfied or not. If this nest violates the design
constraints severely discard it and repeat the selection of a new nest. If it is
slightly infeasible consider it for better solutions.

4. Check whether the newly selected nest is acceptable. If not, go to step 3.

5. After the selection of acceptable nests, calculate the objective function value for

each nest. Determine the one which has the best objective function value.

6. Get new solution for each cuckoo randomly by levy flights using Eq. (9)

1 Levyi iI I β+ = + × (9)

 ()i i
bLevy r I Iλ= × × − (10)

9

Where β symbolizes the step size which is assumed to be 0.1 for this study. λ
refers to step length, r is random number from standard normal distribution, Ib

i

is the position of best nest so far.

7. Analyze the steel frame with these sections. If it is acceptable then compare it

with the one randomly selected from the population. If it produces better design
then replace it with this new solution.

8. Depending on pa probability parameter, find out whether each nest keep its

current position Eq.(11). R matrix stores 0 and 1 values such that anyone of
them is assigned to each component of i-th nest, in which 0 means that current
position is kept and 1 implies that the current position is to be updated.

(11)

This is conducted by means of Eq. (12).

(12)

Where, r is random number between 0 and 1. Perm1 and Perm2 are two row
permutations of the corresponding nest. R defines the probability matrix.

9. Perform analysis of steel frame with these sections. If all the constraints are

satisfied, compare this design with the older one. If a better design is produced
then replace this nest with older one. Otherwise, continue with the current
design.

10. Repeat step 6 - 9 until a predefined number of iterations is reached. This

number is selected large enough such that within this number of design cycles
no further improvement is observed in the objective function.

4.1 Constraint handling

Most structural optimization problems include problem-specific constraints, which
are difficult to solve using the traditional mathematical optimization algorithms.
Penalty functions have been commonly used to deal with constraints. However, the
major disadvantage of using the penalty function is that some tuning parameters are
added in the algorithm and the penalty coefficients have to be tuned in order to
balance the objective and penalty functions. If appropriate penalty coefficients
cannot be provided, difficulties will be encountered in the solution of the
optimization problems. To avoid such difficulties, a new method, called ‘fly-back
mechanism’, was developed in [11] for particle swarm optimizer. For most of the
optimization problems containing constraints, the global minimum locates on or
close to the boundary of a feasible design space. The particles are initialized in the

0
1i rand pa

rand pa

if
if

<

≥

⎧
← ⎨

⎩
R

()i i i
+1

i iI I P 1 Perm2r erm= + × × −R

10

feasible region. When the optimization process starts, the particles fly in the feasible
space to search the solution. If any one of the particles flies into infeasible region, it
will be forced to fly back to the previous position to guarantee a feasible solution.
The particle which flies back to the previous position may be closer to the boundary
at the next iteration. This makes the particles to fly to the global minimum in a great
probability. Therefore, such a ‘fly-back mechanism’ technique is suitable for
handling the optimization problem containing the constraints. Compared with the
other constraint handling techniques, this method is relatively simple and easy to
implement. Some experimental results have shown that it can find a better solution
with a fewer iterations than the other techniques [11].

In this study fly-back mechanism is used for handling the design constraints. Once
all nests (Ii) are generated, the objective functions are evaluated for each of these
and the constraints in the problem are then computed with these values to find out
whether they violate the design constraints. If one or a number of the nests give
infeasible solutions, these are discarded and new ones are re generated. If a nest is
slightly infeasible then such nests are kept in the solution. These particles having
one or more constraints slightly infeasible are utilized in the design process that
might provide a new nest that may be feasible. This is achieved by using larger error
values initially for the acceptability of the new design vectors and then reduce this
value gradually during the design cycles and finally to use an error value of 0.001 or
whatever necessary value that is required to be selected for the permissible error
term towards the end of iterations. This adaptive error strategy is found quite
effective in handling the design constraints in large design problems.

5 Design Examples

Three moment resisting steel frames are designed using cuckoo search method based
optimum design algorithm presented in the previous section. The modulus of
elasticity is taken as 200kN/mm2 in all the examples. Cuckoo search algorithm
parameters total number of nests, step size and the fraction of the worst nests (pa)
are selected as 40, 0.1, 0.35 respectively in the design examples considered.The
maximum number of iterations is taken as 50000 as to give equal opportunity to
each technique to reach the optimum designs. However the optimum designs are
attained in much less number of iterations than the maximum number of iterations as
shown in the tables of the design examples.

11

Figure 2. Flow chart of cuckoo based optimum design algorithm

12

5.1 Six-Storey, Two-bay Steel Frame

The six storey two-bay steel frame shown in Fig. 3 is considered as first design
example. The frame consists of thirty members that are collected in eight groups as
shown in the figure. The allowable inter-storey drift is 1.17cm while the lateral
displacement of the top storey is limited to 7.17cm. The frame is designed by three
different optimum design algorithms that are based on three different metaheuristic
algorithms. These are cuckoo search algorithm, particle swarm optimizer and big
bang-big crunch algorithm

Figure 3. Six-storey, two-bay moment resisting steel frame

13

Table 1. Optimum designs for six-storey, two-bay steel frame

 Figure 4. Design histories of three different metaheuristic methods for six-storey,

two-bay steel frame

The optimum W-section designations for each group obtained by three
metaheuristic algorithms are given in Table 1. The optimum design attained by the
cuckoo search algorithm is the lightest among three optimum designs having
6970.60kg of minimum weight. This weight is 8% and 8.8% less than the ones

Group
No.

Member
Type CSO PSO BBBC

1 Column W460X82 W530X74 W460X106
2 Column W410X53 W310X52 W410X60
3 Column W310X38.7 W200X41.7 W250X49.1
4 Column W610X82 W460X89 W360X64
5 Column W530X66 W460X89 W360X64
6 Column W150X29.8 W360X72 W200X41.7
7 Beam W460X60 W460X60 W460X60
8 Beam W460X52 W460X68 W460X60

Max. Int. St. Drift Ratio 0.77 0. 78 0.78
Maximum Strength Ratio 0.94 0.99 0.98
Top storey drift (cm) 4.421 4.5325 4.654
Minimum Weight. kg
(kN)

6970.60
(68.358)

7532.11
(73.865)

7583.56
(74.369)

Number of Str. Analysis 18000 6890 9250

14

obtained by particle swarm and big bang-big crunch algorithms. It is noticed that in
all three designs inter-storey as well as top storey drift values are much less than
their upper bounds while the ultimate strength constraints are around 0.99 which is
very close to their upper bound 1. This clearly indicates that strength constraints
dominate the design. It is apparent from Table 1 that cuckoo search algorithm
required more structural analysis than particle swam and big bang-big crunch
algorithms to reach the optimum design. It should be worthwhile to mention that the
cuckoo search algorithm used in this study is the standard one not the improved
version. The design history of each metaheuristic algorithm is illustrated in Fig. 4. It
is apparent from the figure that cuckoo search algorithm has better convergence rate
compare to other two algorithms. Therefore, it may be concluded that cuckoo search
algorithm has demonstrated better performance in the optimum design of six storey,
two bay steel moment resisting frame.

5.2 Ten-Storey, Three-Bay Frame

Ten-storey, three-bay steel frame shown in Fig. 5 is considered as second design
example which consists of seventy members that are collected in nine groups. The
dimensions and loading of the frame is shown in the figure. The allowable inter-
storey drift is 1.17cm while the lateral displacement of the top storey is limited to
11.83cm. The ultimate strength and geometric constraints are implemented as they
are described in section 2. This frame is also designed by using particle swarm
optimizer and big bang-big crunch algorithm in addition to cuckoo search technique
for comparison.

The optimum W-section designations for each group obtained by three

metaheuristic algorithms are given in Table 2. The optimum design attained by the
cuckoo search algorithm is the lightest among three optimum designs having
22477.59kg of minimum weight. This weight is 1.8% and 2.7% less than the ones
obtained by particle swarm and big bang-big crunch algorithms. It is noticed that in
all three designs inter-storey as well as top storey drift values are much less than
their upper bounds while the ultimate strength constraints are equal to 1 which is
their upper limits. This clearly indicates that strength constraints dominate the
design. The design histories of three different metaheuristic algorithms are given in
Fig. 4. It is apparent from the figure that cuckoo search algorithm has better
convergence rate compare to other two algorithms. Once again cuckoo search
approach required more structural analysis than particle swarm and big bang-big
crunch algorithms. This may be due to the fact that in this study the standard cuckoo
search technique is used in the optimum design algorithm. It is quite probable that
the improved version of the same technique may find the optimum design requiring
less number of structural analysis than the standard cuckoo search method.
Therefore, it may be concluded that cuckoo search algorithm demonstrates better
performance compare to particle swarm and big bang-big crunch algorithms in
finding the optimum design of six storey, two bay steel moment resisting frame.

15

Figure 5. Ten-storey, three-bay moment resisting steel frame

16

Group
No.

Member
Type CSO PSO BBBC

1 Column W530X150 W610X153 W840X176
2 Column W610X113 W610X113 W460X97
3 Column W530X92 W530X92 W610X92
4 Column W460X82 W460X82 W460X89
5 Column W200X59 W310X60 W310X60
6 Column W410X53 W410X53 W310X60
7 Column W200X59 W310X60 W310X60
8 Column W410X53 W410X53 W310X60
9 Beam W530X66 W460X68 W530X66

Max. Int. St. Drift Ratio 0. 82 0. 87 0.79
Maximum Strength Ratio 1.00 1.00 1.00
Top storey drift (cm) 7.45 7.86 7.14
Minimum Weight. kg
(kN)

22477.59
(220.429)

22879.35
(224.369)

23079.73
(226.334)

Number of Str. Analysis 18000 13600 13100

Table 2. Optimum designs for ten-storey, three-bay steel frame

Figure 6. Design histories of three different metaheuristic methods for ten-storey,

three-bay steel frame

5.3 Fifteen-Storey, Three-bay Steel Frame

The three-bay, fifteen-storey frame shown in Figure 7 is considered as third design
example. The dimensions and the external loading of the frame are shown in the

17

figure. The frame is subjected to gravity loading of 12.4kN/m on the beams of roof
level and 20kN/m on the beams of each floor. The lateral loading is the wind
loading. Frame consists of 105 members that are collected in 12 groups. Inner
columns and outer columns in every three storey considered to be different groups.
The beams of roof and intermediate floors are considered to be two different groups
as shown in the figure. The allowable inter-storey drift is 1.17cm while the lateral
displacement of the top storey is limited to 17.67cm. The strength capacities of steel
members are computed according to LRFD-AISC as explained in section 2.

This frame also designed by particle swarm as well as big bang-big crunch

algorithms in addition to cuckoo search approach. The W-sections designations
obtained by the three techniques in the optimum designs are shown in Table 3. The
minimum weight of the frame is determined as 22902.10kg by the cuckoo search
method, 29092.81kg by the particle swarm algorithm and 29003.48kg by the big
bang-big crunch approach. The optimum design attained by the cuckoo search
algorithm is 27% and 26.6% less than the ones obtained by the particle swarm and
big bang-big crunch techniques. This clearly indicates the fact that the cuckoo search
method performs better than the other two in larger size optimum design problem. It
is noticed that in the optimum frame while the drift constraints are not at their
bounds the ultimate strength constraint are almost equal to 1. It is expected for inter-
storey drift constraints to reach to their upper limits in the design of such a tall
frame. However, it should be remembered that geometric constraints which forces
the design to have larger W-sections at the lower storey than the one at the upper
storey produces heavier design. This in turn makes the ultimate strength constraints
active in the design process not displacement constraints.

Group

No.
Member

Type CSO PSO BBBC

1 Beam W250X38.5 W410X46.1 W310X32.7
2 Beam W410X46.1 W410X46.1 W410X46.1
3 Column W310X38.7 W410X38.8 W250X67
4 Column W310X38.7 W410X38.8 W250X67
5 Column W410X53 W460X52 W460X89
6 Column W410X67 W460X193 W530X138
7 Column W460X113 W530X196 W610X140
8 Column W200X41.7 W250X32.7 W250X49.1
9 Column W410X46.1 W410X60 W360X51

10 Column W410X46.1 W410X60 W360X51
11 Column W460X60 W460X60 W530X109
12 Column W530X92 W690X170 W690X125

Max. Int. St. Drift Ratio 0.76 0.64 0.63
Maximum Strength Ratio 0.98 0.99 0.98
Top storey drift (cm) 10.35 8.59 8,76
Minimum Weight. kg
(kN)

22902.10
(224.59)

29092.81
(285.301)

29003.48
(284.425)

Number of Strc. Analysis 16800 12800 12600

Table 3. Optimum designs for fifteen-storey, three-bay steel frame

18

Figure 7. Fifteen–storey, three-bay moment resisting steel frame

19

Figure 8. Design histories of three different metaheuristic methods for fifteen-
storey, three-bay steel frame

Design histories of three algorithms are shown in Fig. 8. It is very clear from the
figure that cuckoo search method has a better convergence rate and reached lighter
optimum design than the other ones attained by particle swarm and big bang-big
crunch algorithm. Hence it can be concluded that cuckoo search algorithm is
reliable, robust and efficient algorithm that can be effectively used to obtain the
optimum design of steel moment resisting frames.

6 Conclusions

The optimum design algorithm developed is based on cuckoo search method
which selects the optimum W-section designations from W-sections table for the
beams and columns of a moment resisting steel frame such that design constraints
described in LRFD-AISC are satisfied and the frame has the minimum weight. In
view of the results obtained it is concluded that the cuckoo search method is an
efficient and robust technique that can successfully be used in optimum design of
steel frames and determines lighter optimum solutions compare to particle swarm
and big bang-big crunch methods. In the optimum design of fifteen storey, three bay
frame, the optimum frame obtained by the cuckoo search approach is 27% lighter
than the one attained by the other two metaheuristic techniques. Furthermore, the
cuckoo search method basically has only one parameter to be specified by a user
which is the total number of nests. This provides a robustness to the algorithm
compared to many other metaheuristic techniques that require pre-determination of
more parameters. Selection of these parameters most of the time are problem-

20

dependent. It is further noticed that the adaptive error strategy combined with fly-
back mechanism for constraint handling increases the efficiency of the cuckoo
search method and removes the necessity of selecting the value of penalty
coefficient in the penalty function method.

Acknowledgement

Authors would like to thank Dr. Xie-She Yang for providing the computer code for
the cuckoo search method.

References

[1] G. A. Kochenberger and F. Glover, “Handbook of Meta-Heuristics”, Kluwer

Academic Publishers, 2003
[2] J. Dreo, A. Petrowski, P. Siarry and E. Taillard, “Meta-Heuristics for Hard

Optimization”, Springer-Verlag, Berlin, Heidelberg, 2006
[3] X-S. Yang, “Nature-Inspired metaheuristic Algorithms”, Luniver Press, 2008.
[4] X-S. Yang, “Engineering Optimization: An Introduction with Metaheuristic

Applications”, John Wiley, 2010.
[5] S. Luke, “Essentials of Metaheuristics”,

http://cs.gmu.edu/~sean/book/metaheuristics/, 2010.
[6] M.P. Saka, "Optimum Design of Skeletal Structures: A Review", in B.H.V.

Topping, (Editor), "Progress in Civil and Structural Engineering Computing",
Saxe-Coburg Publications, Stirlingshire, UK, Chapter 10, pp 237-284, 2003.
doi:10.4203/csets.10.10

[7] M.P. Saka, "Optimum Design of Steel Frames using Stochastic Search
Techniques Based on Natural Phenomena: A Review", in B.H.V. Topping,
(Editor), "Civil Engineering Computations: Tools and Techniques", Saxe-
Coburg Publications, Stirlingshire, UK, Chapter 6, pp 105-147, 2007.
doi:10.4203/csets.16.6

[8] J. Kennedy, R. Eberhart and Y. Shi, “Swarm Intelligence”, Morgan Kaufmann
Publishers, 2001.

[9] S. He, Q. H. Wu, J. Y. Wen, J. R. Saunders and R. C. Paton, “A Particle
Swarm Optimizer with Passive Congregation”, BioSystems, 78, 135-147,
2004

[10] P. Fourie and A. Goenwold, “The particle swarm Optimization Algorithm in
Size and Shape Optimization”, Structural and Multidisciplinary Optimization,
23, 4, 259-267, 2002.

[11] S. He, E. Prempain and Q. H. Wu “An Improved Particle Swarm Optimizer
for Mechanical Design Optimization Problems”, Engineering Optimization,
36, 5, 585-605, 2004.

[12] L. J. Li, Z. B. Huang, F. Liu and Q. H. Wu, “A heuristic Particle Swarm
Optimizer for Optimization of Pin Connected structures”, Computers and
structures, 85, 340-349, 2007.

[13] R. E. Perez and K. Behdinan, “Particle Swarm Approach for Structural Design
Optimization”, Computers and Structures, 85,1579-1588, 2007

1

[14] C-J Liao, C-T Tseng, P. Luarn, “A discrete version of particle swarm
optimization for flowshop scheduling problems”, Computers & Operations
Research 34 , 3099 – 3111, 2007.

[15] P. W.Jansen, R. E. Perez, “Constrained Structural design Optimization via a
parallel augmented Lagrangian Particle Swarm Optimization Aproach”,
Computers and Structures, 89, 13-14, 1352-1366, 2011

[16] G. Poitras, G. Lefrancois, G. Cormier, “Optimization of Steel Floor Systems
Using Particle Swarm optimization”, Journal of Constructional Steel research,
67, 8, 1225-1231, 2011.

[17] O. Duran, L. Perez, A. Batoccia, “Optimization of Modular Structures using
Particle swarm optimization”, Expert Systems with Applications, 39, 3, 3507-
3515, 2012.

[18] G-C. Luh, C-Y, Lin, “Optimal design of truss-structures using particle Swarm
Optimization”, Computers and Structures, 89, 23-23, 2221-2232, 2011.

[19] V. Plevris, A. Batavanis, M. Papadrakakis, “Optimum design of Steel
Structures with Particle Swarm Optimization Method based on EC3”, Proc. of
3rd Int. Conf. on Computational Methods in Structural Dynamics and
earthquake Eng’g, COMPDYN 2011, Corfu, Greece.

[20] E. Doğan, M. P. Saka. “Optimum design of unbraced steel frames to LRFD–
AISC using particle swarm optimization”, Advances in Engineering Software.
DOI: 10.1016/j.advengsoft.2011.05.00, 2011

[21] Z. W. Geem, J. H. Kim, G.V. Loganathan, “A New Heuristic Optimization
Algorithm; Harmony Search”. Simulation 76:60-68, 2001.

[22] K. S. Lee and Z. W. Geem, “A New Structural Optimization Method Based on
the Harmony Search Algorithm”, Computers and Structures, 82, 781-798,
2004.

[23] K. S. Lee and Z. W. Geem, “A New Meta-Heuristic Algorithm for Continuous
Engineering Optimization: Harmony Search Theory and Practice”, Computer
Methods in Applied Mechanics and Engineering, 194, 3902-3933, 2005.

[24] Z. W. Geem, “Novel derivative of harmony search algorithm for discrete
design variables”. Applied Mathematics and Computation 199, 1, 223–230,
2008.

[25] Z. W. Geem (Ed.), “Music-Inspired Harmony Search Algorithm”, Springer,
2009.

[26] S. Carbas and M. P. Saka, “Optimum Design of Single Layer Network Domes
Using Harmony Search Method”, Asian Journal of Civil Engineering, 10, 1,
97-112, 2009.

[27] M. P. Saka and F. Erdal, “Harmony search based algorithm for the optimum
design of grillage systems to LRFD-AISC”. Structural and Multidisciplinary
Optimization, 38, 1,25-41, 2009.

[28] M. P. Saka, “Optimum Design of Steel Sway Frames to BS5950 Using
Harmony Search Algorithm”, Journal of Constructional Steel Research, Vol.
65, No. 1, 36-43, 2009.

[29] S. O. Degertekin, “Optimum Design of Steel Frames via harmony Search
Algorithm”, Studies in Computational Intelligence, 239, 51-78, 2009.

[30] S. O. Degertekin, M. S. Hayalioglu and H. Gorgun, “Optimum Design of
Geometrically Nonlinear Steel frames with Semi-Rigid Connections Using a

2

Harmony Search Algorithm”, Steel and Composite Structures, 9, 6, 535-55,
2009.

[31] M. P. Saka and O. Hasancebi, “Adaptive Harmony Search Algorithm for
Design Code Optimization of Steel structures”, Chapter 3, Harmony Search
Algorithms for Structural Design Optimization, Dr. Z. W. Geem (Ed.), SCI
239, pp:79-120, Springer, 2009.

[32] Z. W. Geem (Ed.), “Recent Advances in Harmony Search Algorithm”,
Springer, 2010.

[33] Z. W. Geem (Ed.), “Harmony Search Algorithms for Structural Design
Optimization”, Springer, 2010.

[34] O. Hasançebi, F. Erdal and M. P. Saka, “An Adaptive Harmony Search
Method for Structural Optimization”, Journal of Structural Engineering,
ASCE, 136,4, April, 419-431, 2010.

[35] Z. W. Geem, “Harmony Search Algorithm”. www.harmonysearch.info.
Accessed 04 May 2011.

[36] M. P. Saka, “Optimum Geometry Design of Geodesic Domes Using Harmony
search Algorithm”. Advances in Structural Engineering, 10, 6, 595-606, 2007.

[37] S. Carbas and M. P. Saka, “Optimum topology design of various geometrically
nonlinear latticed domes using improved harmony search method”, Structural
and Multidisciplinary Optimization, 45, 3, 377-399, 2012.

[38] F. Erdal, E. Doğan and M. P. Saka “Optimum design of cellular beams using
harmony search and particle swarm optimizers”, Journal of Constructional
Steel Research, 67, 2, 237-247, 2011

[39] M. P. Saka, I. Aydogdu, O. Hasancebi and Z. W. Geem, “Harmony Search
Algorithms in Structural Engineering”, Chapter 6 in the book titled
“Computational Optimization and Applications in Engineering and Industry”,
X-S Yang and S. Koziel, (Editors), Springer, 145-182, 2011.

[40] O. Erol and I. Eksin, “A New Optimization Method: Big Bang-Big Crunch”,
Advances in Engineering Software, 37, 106-111, 2006.

[41] C. V. Camp, “Design of Space Trusses Using Big Bang-Big Crunch
Optimization”, Journal of Structural Engineering, ASCE, 133, 7,999-1008,
2007.

[42] A. Kaveh and S. Talatahari, “Size Optimization of Space Trusses Using Big
Bang-Big Crunch Algorithm”, Computers and Structures, 87, 1129-1140,
2009.

[43] Kaveh and S. Talatahari, “Optimal design of single layer domes using
metaheuristic algorithms: a comparative study”, International Journal of Space
Structures, 25, 4, 217-227, 2010.

[44] Kaveh and S. Talatahari, “Optimal Design of Schwedler and Ribbed Domes
via Hybrid Big Bang Big Crunch Algorithm”, Journal of Constructional Steel
research, 66, 3, 412-419, 2010.

[45] Kaveh and S. Talatahari, “A discrete big bang-big crunch algorithm for
optimal design of skeletal structures”, Asian Journal of Civil Engineering,
11,1, 103-122, 2010.

[46] Kaveh and H. Abbasgholiha, “Optimum Design of Steel Sway Frames Using
Big Bang Big Crunch Algorithm”, Asian Journal of Civil Engineering, 12, 3,
293-317, 2011.

1

[47] X-S Yang, S. Deb, “Engineering Optimization by Cuckoo Search”, Int. J.
Mathematical Modeling and Numerical Optimization”, Vol. 1, No. 4, 330–
343, 2010.

[48] P. Civicioglu, E. Besdok, “A conceptual comparison of the cuckoo search,
particle swarm optimization, differential evolution and artificial bee colony
algorithms”, Artificial Intelligence Review, DOI: 10.1007/s10462-011-9276-0,
2011.

[49] A.H. Gandomi, X-S Yang, A. H. Alavi, “ Cuckoo search algorithm: A
metaheuristic approach to solve structural optimization problems”,
Engineering with Computers, DOI: 10.1007/s00366-011-0241-y, 2011

[50] Kaveh, T. Bakhspoori, “Optimum design of steel frames using cuckoo search
algorithm with Levy flights”, The Structural design of Tall and Special
Buildings, DOI: 10.1002/tal.754, 2011.

[51] X-S Yang, S. Deb, “Multi-objective cuckoo search for design optimization”,
Computers and Operations Research, DOI: 10.1016/j.cor.2011.09.026, 2011.

[52] LRFD-AISC, Manual of Steel Construction, “Load and Resistance Factor
Design”, Metric Conversion of the Second Edition, AISC, Vol. I&II, 1999.

[53] W. McGuire, “Steel Structures”, Prentice-Hall, 1968.
[54] R. N. Mantegna, “Fast, accurate algorithm for numerical simulation of Levy

stable stochastic processes”, Physical Review E, 49, 5, 4677-4683, 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

